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ABSTRACT

In this paper it is argued that rotational wind is not the best choice of leading control variable for variational data assimila-
tion, and an alternative is suggested and tested. A rotational wind parameter is used in most global variational assimilation
systems as a pragmatic way of approximately representing the balanced component of the assimilation increments. In ef-
fect, rotational wind is treated as a proxy for potential vorticity, but one that it is potentially not a good choice in flow
regimes characterised by small Burger number.

This paper reports on an alternative set of control variables which are based around potential vorticity. This gives rise to a
new formulation of the background error covariances for the Met Office’s variational assimilation system, which leads to
flow dependency. It uses similar balance relationships to traditional schemes, but recognises the existence of unbalanced
rotational wind which is used with a new anti-balance relationship. The new scheme is described and its performance is
evaluated and compared to a traditional scheme using a sample of diagnostics.

1 Introduction

The background state used in three and four dimensional variational data assimilation (VAR) constrains the
assimilation towards a numerical forecast of the atmosphere. The manner in which this is done is governed
by the background error covariance matrix, B, which describes the (Gaussian) probability distribution function
(PDF) of forecast errors. In VAR systems of operational scale, the size of the problem renders it prohibitive to
be able to generate complete information about the structure of B, or to represent it as an explicit matrix. To
allow VAR to work, B is represented in a compact form which makes assumptions about how elements of the
forecast vector are correlated with other elements. Control variable transforms are used for this purpose (see
Sec. 2). A usual assumption is that the wind field is correlated with the mass field in a way that is consistent
with diagnostic balance relationships, e.g. by geostrophic balance.

The formulation of the B-matrix is thought to be extremely important to the ability of VAR to give a realistic
state of the atmosphere, as, e.g. analysis increments are parallel to the B-matrix. The B-matrix is particularly
important in poorly observed regions and for poorly observed variables. An important concern is that the B-
matrix has inadequate flow dependence, as it is common practice to consider B to be static (or quasi-static)
allowing it to describe only the average characteristics of the PDF. There are strong arguments for reviewing
the way that B is treated in VAR to allow it to capture flow dependence. For instance it is well known that
background error covariance structures (as predicted by the Kalman filter equations in simpler systems) distort
with the flow, and can deviate greatly from the static case, especially in areas of strong instability. The Kalman
filter equations cannot be applied fully to problems of operational scale, so instead flow-dependent ’fixes’ to
VAR are sought that hopefully mimic the most important properties of the Kalman filter. Apart from the 4d-
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VAR method itself, which implicitly propagates an otherwise static B-matrix through the assimilation window,
there have been many attempts to modify the B-matrix formulation to allow flow dependent aspects of the error
statistics to be utilized in VAR. Important examples are listed under the following headings.

• Variance updating: The grid-point variances of variables can be dynamically updated from cycle-to-
cycle, e.g. as used with some variables by a cycling algorithm in the ECMWF system (Fisher and
Courtier 1995).

• Control variable transform modifications: Flow dependent relations (rather than static relations) can be
introduced to relate variables in a way that adapts with the background state. For instance wind and
mass variables can be related with a non-linear balance equation (Fisher 2003), and the spatial structure
of point-to-point correlation functions can be adjusted to fit the flow, e.g. by using a geostrophic co-
ordinate transform (Desroziers 1997).

• Special treatment of fast-growing features: The most active modes of the dynamical system can be
diagnosed (e.g. by the breeding method or by determination of the fastest growing singular vectors)
and analysed separately from the rest of the flow (the rest being treated with standard VAR). Example
methods are the reduced rank (or simplified) Kalman filter (Fisher 1998), and the errors of the day scheme
(e.g. Barker and Lorenc 2005).

All of these variants rely on the control variable transform (CVT) method to formulate some or all of the
B-matrix. As explained in Sec. 2, control variables are chosen whose background errors are assumed to be
uncorrelated, which leads to a simplification of the background term in the cost function. In order to be uncor-
rleated, it is assumed that each control variable should represent the separate modes of atmospheric motion, ie
a part to represent the slow Rossby modes, and other parts to represent the fast gravity modes, etc. The Rossby
modes form the balanced component of the flow and are associated fundamentally by the potential vorticity
(Gill 1982, Hoskins, McIntyre and Robertson 1985, Cullen 2003). The control variable that represents the
Rossby modes is said to be ’balanced’.

In the usual formulation of the CVT method, the rotational wind field takes a prominent role as it is used
directly in the mass-wind balance relationship to diagnose the mass field that is in balance with it (Sec. 2). The
underlying assumption here is that vorticity is itself a fully balanced variable. In this work, this assumption is
challenged, and in Sec. 3 arguments are presented (based on properties of potential vorticity) that vorticity has
a component that is unbalanced, and this part should not be used with the mass-wind balance relationship. A
new CVT formulation is presented in Sec. 4 that does not rely on the balanced vorticity assumption. The result
is a formulation that gives rise to a B-matrix which has a degree of flow dependence in a way that is sensitive to
the dynamical regimes present in the flow. Diagnostics for the new scheme are shown in Sec. 5 which highlight
some of its properties. Conclusions are summarised in Sec. 6.

2 Control variable transforms in VAR

2.1 General principles

The following is a brief outline of the CVT method. A more detailed review of CVTs is given by Bannister
(2007). The CVT is a change of variable that simplifies the treatment of the background term in the cost
function. In the standard Ide et al. (1997) notation, the cost function, J, in the incremental formulation (Courtier
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et al. 1994) is the following

J(δx) =
1
2

δxTB−1
δx+

1
2 ∑

i
(yo

i −Hi(xb +δx))TR−1
i (yo

i −Hi(xb +δx)). (1)

Equation (1) is minimized with respect to δx. In (1), xb is the background state, yo
i is the observation vector

at time step ti, Hi is the forward model operator (here including forecast model step to time ti), and Ri is the
observation error covariance matrix. The t = 0 state at any iteration is x = xb +δx and the analysis, xa, follows
from the δx that minimizes J. The CVT allows δx to be replaced with a control variable denoted χ (implicitly
an incremental quantity so the δ -notation is dropped), which is a vector related to δx by the linear operator
B1/2

0

δx = B1/2
0 χ. (2)

The square-root form of the CVT allows the background term in the cost function to simplify. Substituting (2)
into (1), by noting that B can be expressed as B = B1/2BT/2, and assuming that B1/2

0 ≈ B1/2 allows B to cancel
in the background term. The cost function in terms of χ then takes the form

J[χ] =
1
2

χ
T

χ +
1
2 ∑

i
(yo

i −Hi(xb +B1/2
0 χ)TR−1

i (yo
i −Hi(xb +B1/2

0 χ). (3)

In the χ representation the background error covariance matrix becomes the identity matrix ie, components
of background error are uncorrelated and have unit variance. It is the transformed cost function (3) that is
minimized with respect to χ in VAR. The unfeasible problem in the δx-representation has been transformed
into a feasible problem in the χ-representation as long as a square-root of B (the CVT) can be formulated.
The operator B1/2

0 used in (2) is distinct from B1/2 to indicate that it is an approximate square-root. It is an
important aim of data assimilation research to formulate a form of B1/2

0 which is close to B1/2. In practice, it
is not possible to know the actual (ideally flow dependent) B-matrix, but it is possible to have some idea of
what some of its important structure functions look like. It is possible to evaluate a given formulation, B1/2

0 by
examining structure functions of the implied error covariance matrix, Bic, where

Bic = B1/2
0 BT/2

0 . (4)

2.2 The usual formulation of control variable transforms in operational VAR systems

In practice, B1/2
0 is formulated with physical arguments (e.g. that balanced and unbalanced control variables

are uncorrelated) and with phenomonological arguments (e.g. that structure functions in the horizontal have a
very different structure to those in the vertical, and that vertical structure functions should vary in a special way
with latitude and scale). The problem of formulating B1/2

0 starts by considering separately the multivariate and
spatial parts of the covariances in the following form, using the notation of Derber and Bouttier (1999)

B1/2
0 = KB1/2

u , (5)

where K is the parameter transform (or balance operator - not to be confused with the balance relation - see
later), and takes care of the multivariate aspects of the problem, and B1/2

u is the spatial transform, which takes
care of the spatial aspects of the problem. Each is described more fully in e.g. Bannister (2007). This paper is
concerned with K.

The PV-based CVT (Sec. 4) is tested in the VAR system of the Met Office (Lorenc et al. 2000, Ingleby 2001),
and so it is necessary to first review the standard Met Office CVT. In this system the control variable χ has the
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structure χ = (χδψ ,χδ χ ,χ
δ pr

,χδ µ), which has parts representing fields of streamfunction, velocity potential,
residual pressure and relative humidity increments. Each field is not represented in model space, but instead
as weights of modes which are designed to be uncorrelated. B1/2

u is the first operator that acts on χ - see (5)
and (2). It acts on each field separately and recovers these fields in the model’s longitude, latitude and height
representation. Let this intermediate field of variables be χ̃ = B1/2

u χ = (δψ̃,δ χ̃,δ p̃r,δ µ̃). This is the way that
the scheme treats the spatial covariances. At the Met Office, the remaining operator K has the structure

δψ

δ χ

δ p
δT
δq

 =


I 0 0 0
0 I 0 0
H 0 I 0

TH 0 T 0
(Γ+YT)H 0 Γ+YT Γ




δψ̃

δ χ̃

δ p̃r
δ µ̃

 , (6)

where the variables on the left hand side are the model variable increments streamfunction, velocity potential,
pressure, temperature and specific humidity (the Met Office model actually uses wind components δu and
δv instead of δψ and δ χ , but these are related trivially via the Helmholtz relations; there are model variable
increments omitted in (6) - e.g. vertical velocity and density). The operators in (6) are as follows: H is the linear
balance equation which operates on δψ̃ to give the pressure field that is in balance with δψ̃ , T is the hydrostatic
operator which calculates temperature from pressure increments, Γ, Y and Λ relate pressure, temperature and
relative humidity increments respectively to specific humidity increments - see Bannister (2007). Line 3 of (6)
for instance states that the full pressure increment has two contributions, a part that is related to δψ̃ , Hδψ̃ , and
a residual part, δ p̃r, and each contribution is treated as being uncorrelated with the other.

It is the process of recovering the model variables, δx, from the uncorrelated fields, χ̃ , with K that prescribes the
multivariate covariances between model variables in VAR. From a dynamical point of view there is a potential
flaw with the use of the full rotational wind as a control variable in (6). The arguments, which are presented
in the next section, require modification only to the upper left 3× 3 matrix of K in (6), and so the rest of this
paper will be concerned only with this part.

3 Shortcomings of the standard, ’vorticity-based’ control variable transform

3.1 The balanced vorticity approximation

Scheme (6) is termed vorticity-based because of the assumption that the rotational part of the wind (actually
represented not with vorticity but with streamfunction in the Met Office’s scheme) is a balanced variable with
no allowance of an unbalanced part. In general, mass and wind variables (including vorticity) have balanced
and unbalanced components as follows

δψ̃ = δψ̃b +δψ̃u, (7)

δ p̃ = δ p̃b +δ p̃u. (8)

Substitution of (7) into the third line of (6) gives

δ p = Hδψ̃ +δ p̃r = Hδψ̃b +Hδψ̃u +δ p̃r. (9)

Owing to the second term of the right hand side, (9) is flawed as the linear balance equation is anomalously
operating on an unbalanced state. The assumption that this term is negligible in the current scheme is referred
to here as the balanced vorticity approximation (BVA). In the PV scheme, the BVA is relaxed, and a more
realistic partition of wind and mass into balanced and unbalanced components as in (7)-(8) is performed.
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3.2 The unbalanced vorticity

The role of unbalanced vorticity is most easily understood by examining its role in the shallow water equations
(Katz et al. 2006). The shallow water equation system is often used as a simple tool to understand the 3-D
atmosphere, which may be regarded as a system of shallow water systems with one system per vertical mode.
The general principles from this analysis are transferable to 3-D. The perturbation form of the shallow water
potential vorticity (PV), δQ is as follows

δQ = gh∇
2
δψ− f gδh, (10)

where g is the acceleration due to gravity, h is the height of the shallow water layer (this is akin to pressure in
the 3-D equations) and f is the Coriolis parameter (assumed in this section to be constant). In (10), products of
incremental quantities are ignored. Both streamfunction and height increments have balanced and unbalanced
parts akin to (7)-(8). The linear balance equation for this system relates balanced mass and balanced wind

0 = gδhb− f δψb. (11)

By (i) noting that unbalanced parts of the fields, δψu and δhu, do not contribute to the PV (see below) and (ii)
scaling horizontal distance, x, by the characteristic length scale, L0, x = L0x̂ (giving ∇2 = L−2

0 ∇̂2), allows (10)
and (11) to be developed as follows

δQ = gh∇
2
δψb− f gδhb = (gh∇

2− f 2)δψb = f 2(Bu2
∇̂

2−1)δψb. (12)

where Bu is the dimensionless Burger number

Bu =
√

gh
f L0

=
LR

L0
. (13)

The quantity
√

gh/ f is the Rossby radius of deformation, LR, which allows Bu to be interpreted as the ratio of
LR to L0 in (13). In the 3-D quasi-geostrophic system, Bu = NH/ f L0, where N is the static stability and H is
the characteristic vertical lengthscale.

Since ∇̂2 is O(1) when acting on δψb in (12), the relative importance of the wind part (first term) and the mass
part (second term) of the PV in (12) is controlled by Bu. Two limiting regimes are shown in Fig. 1 as follows
(Wlasak et al. 2006).

• For Bu� 1 (where L0 � LR, achieved e.g. when h is large and f is small), the PV does not depend on the
mass term in (12) but is controlled entirely by the balanced rotational wind. In the absence of the mass
term, the balanced rotational wind can take the value of the total rotational wind, resulting in δψu = 0
(top left corner of Fig. 1). In this regime the BVA is a good approximation.

• For Bu� 1 (where L0 � LR, achieved e.g. when h is small), the PV does not depend on the wind term in
(12) and is controlled entirely by the balanced mass field. In the absence of the wind term, the balanced
mass can take the value of the total mass field, resulting in δhu = 0 (bottom right corner of Fig. 1). In
this regime there is no reason to expect that the unbalanced wind is negligible and so the BVA (and hence
the standard VAR scheme) is not expected to be a good approximation.

In the rest of this paper, a new PV-based formulation of the CVT is introduced and tested which should not
suffer the shortcomings highlighted in (9), as it recognises the presence of an unbalanced vorticity component,
and therefore applies the balance relationship, H, more appropriately. The PV-scheme is introduced in Sec. 4.
In any scheme, the control variables (e.g. δψ̃ and δ p̃r in the standard scheme) are assumed to be mutually
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Figure 1: Regimes of the shallow water equations. The Rossby radius, LR (curved line), separates the
regimes into Bu > 1 (left of the curve) and Bu < 1 (right of the curve). In the extreme cases shown, the PV
is described only by the rotational wind for Bu� 1 and mass for Bu� 1.

uncorrelated. This property is rarely strictly true in reality, but a successful scheme should result in new
control variables that have only weak correlations. Even though the PV-based scheme is expected to be better
on dynamical grounds than the standard scheme, its new control variables must be tested for their degree of
correlation. These, and other diagnostics are shown in Sec. 5.

4 New control variables and transforms based on potential vorticity

The equations are developed for the PV-based scheme for the 3-D atmosphere. The new scheme must

• recognise the presence of an unbalanced vorticity,

• apply mass-wind balance relationships only to balanced variables,

• allow the system to adjust to the dynamical regime so that it resembles the existing scheme at high Bu,
but not at low Bu, and

• use control variables that are only weakly correlated, and with less correlation than the existing variables.

4.1 Basic equations

The scheme centres on two equations. The first is an approximate perturbation form of Ertel PV. By ignoring
products of perturbations and horizontal components of vorticity, and assuming small Rossby number, PV has
the form

α0∇
2
hδψ +β0δ p+ γ0

∂δ p
∂ z

+ ε0
∂ 2δ p
∂ z2 = δQ, (14)
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where α0, β0, γ0 and ε0 are reference state values (actually in this work they are the zonal mean of the lineari-
sation state), ∇h is the horizontal Laplacian and z is height. These elements introduce flow dependence into the
system. A derivation of this PV is given in Bannister and Cullen (2006). This PV is assumed to have the same
qualitative properties as the shallow water PV (10) in terms of the prominence of mass and wind variables in
different regimes. The second equation is the linear balance equation (LBE) which relates the balanced parts
of mass and wind

0 = ∇h · ( f ρ0∇hδψb)−∇
2
hδ pb, (15)

where ρ0 is the reference state density and f now is variable.

4.2 Equations for the balanced and unbalanced components

Equations (14)-(15) are used to formulate a set of equations to relate new control variables to model variables,
and the reverse. Equation (14) can be used to derive a diagnostic equation between the unbalanced mass and
wind variables. The unbalanced components have no PV

α0∇
2
hδψu +β0δ pu + γ0

∂δ pu

∂ z
+ ε0

∂ 2δ pu

∂ z2 = 0, (16)

which may be regarded as the anti-balance analogue to (15). Substituting (7)-(8) into (14) (ignoring for now
the tildes), and using (16) gives

α0∇
2
hδψb +β0δ pb + γ0

∂δ pb

∂ z
+ ε0

∂ 2δ pb

∂ z2 = δQ, (17)

which states that only balanced variables can influence PV. The unbalanced components cannot obey the LBE,
but substituting δψb with δψu and δ pb with δ pu in (15) gives a residual, which is called the anti-PV or linear
imbalance, δ Q̄

∇h · ( f ρ0∇hδψu)−∇
2
hδ pu = δ Q̄. (18)

Equations (15)-(18) are two pairs of equations, each associated with either the balanced or the unbalanced
components of the flow. The variables δψ̃b and δ p̃u (now with tildes to indicate that they are members of the
new vector χ̃) replace δψ̃ and δ p̃r of the standard scheme as balanced and unbalanced control variables in
VAR. The velocity potential variable, δ χ̃ remains the same. These particular variables have been chosen as
they represent the simplest change to the current system, they lead to a relatively efficient K-operator and are
analogous to those used by Cullen (2003) as implemented in the ECMWF’s VAR system (the way of generating
the equations is also similar).

Although Cullen’s trials were successful, his scheme has some drawbacks. Firstly his equations are posed in
spectral representation. Although this allows many of the equations to be solved relatively easily, it has the
consequence that the reference state quantities cannot be prescribed as a function of latitude. The scheme pre-
sented here for the Met Office’s VAR system allows latitude dependence of reference state quantities. Secondly,
Cullen’s scheme is tied to the ECMWF grid, which has Lorenz grid staggering in the vertical. The equations
to be solved are ill-conditioned in their own right, but the Lorenz grid exaggerates this effect. The Met Office
uses the Charney-Phillips grid staggering in the vertical which is not expected to suffer the same problems.
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4.3 Control-to-model variables

Based on (15)-(16), the PV-based K in (5) is as follows (for the three dynamical variables only) δψ

δ χ

δ p

 =

 I 0 H̄
0 I 0
H 0 I

 δψ̃b
δ χ̃

δ p̃u

 , (19)

This should be compared to the part of (6) concerned with dynamical variables. In (19), H is the matrix repre-
sentation of the LBE operator from (15) which has input δψ̃b and output δ p̃b, and H̄ is the matrix representation
of the anti-balance operator from (16) which has input δ p̃u and output δψ̃u. The key differences with (6) are
(i) the presence of the H̄-operator and (ii) the changes of the first and third control variables. This scheme
recognises the existence of an unbalanced vorticity and applies the LBE only to the balanced variable δψ̃b,
instead of δψ̃ . The operator H̄ is flow dependent due to the presence of state-dependent matrices present in
(16). The way that these operators are expected to work is along the lines of the arguments presented in Sec. 3
for the shallow water system (that δψ̃b = δψ̃ for Bu� 1, and δ p̃u = 0 for Bu� 1).

4.4 Model-to-control variables

The most frequently used CVT is the control-to-model part shown in Sec. 4.3, which is needed to evaluate
the cost function (3) and its gradient (not shown). The inverse transform (model-to-control) is needed however
before the assimilation to derive background error statistics for each new variable in order to determine param-
eters in the spatial transform, B1/2

u in (5). The inverse transform derives a population of control variable δψ̃b,
δ χ̃ and δ p̃u from a population of model fields δψ , δ χ and δ p. The equations that need to be solved to achieve
this are discussed briefly here (the process of modelling spatial error covariances is beyond the scope of this
paper).

The equation for δψ̃b is found by eliminating δ p̃b between (15) and (17)

α0∇
2
hδψ̃b +β0∇

−2
h [∇h · ( f ρ0∇hδψ̃b)]+ γ0

∂

∂ z ∇
−2
h [∇h · ( f ρ0∇hδψ̃b)]+

ε0
∂ 2

∂ z2 ∇
−2
h [∇h · ( f ρ0∇hδψ̃b] = δQ, (20)

where tildes have been added to the control fields to distinguish them from model fields. The PV, δQ, is
calculated from the model fields via (14). The equation for δ χ̃ from δ χ is trivial (in practice the model
variables are δu and δv instead of δ χ , which involves solution of a Poisson equation). The equation for δ p̃u is
found by eliminating δψ̃u between (16) and (18)

∇h ·
(

f ρ0∇h∇
−2
h

[
−α

−1
0 β0δ p̃u−α

−1
0 γ0

∂δ p̃u

∂ z
−α

−1
0 ε0

∂ 2δ p̃u

∂ z2

])
−∇

2
hδ p̃u = δ Q̄. (21)

The anti-PV, δ Q̄, is calculated via (18) by substituting-in the model fields δψu → δψ and δ pu → δ p (the equa-
tion with these substitutions is equivalent to (18) because the LBE (15) eliminates the balanced contributions to
δ Q̄). Equations (20)-(21) give a set of control variable increments from a set of model variable increments. The
latter set are derived from differences between forecasts of different lengths, which are meant to have the same
properties of forecast errors under the approximation of the NMC method (Parrish and Derber 1992, Bouttier
1996, Berre et al. 2006).

Equations (20)-(21) are treated as 3-D elliptic problems which are solved approximately using the generalised
conjugate residual (GCR) method with appropriate boundary conditions and preconditioning. Both (20) and
(21) have the form δy = Cδx. The GCR works by solving a variational problem for δx which minimizes the
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Figure 2: Residuals (relative to |δQ|2 and |δ Q̄|2 for the balanced and unbalanced equations respectively.

residual |δy−Cδx|22 where | |2 represents an L2 norm. The residuals of (20)-(21) after each iteration of the
GCR minimization for an example case are shown in Fig. 2. Equations (20)-(21) are believed to have a large
condition number and the residuals remain high even after a large number of iterations. Even though these
equations have not been solved to a very high accuracy, they are still used in this study.

5 Diagnostics of the standard and PV-based schemes

This section contains some preliminary diagnostics from trials of the PV-based and the standard BVA-based
VAR. Only minimal discussion is given here as a more detailed paper will follow.

5.1 Correlations of control variables

The point-by-point correlations cor(δψ̃,δ p̃r) under the BVA and cor(δψ̃b,δ p̃u) under the PV scheme are
plotted in Fig. 3 as a function of latitude and level (correlations have been averaged zonally), found from a
population of six cases. VAR assumes zero correlations, but both plots show significant values (maxima of
±0.9), although the PV-based set has smaller correlations overall (rms of BVA is 0.349, rms of PV is 0.255),
indicating that the latter is a more suitable choice for uncorrelated control variables.

5.2 Lengthscales of control variables

The predicted properties of the control variables as summarised in Fig. 1 can be examined for real model data
by looking at the correlation lengthscales. Figure 4 shows vertical correlations for the variables δψ̃ and δ p̃r
of the standard BVA scheme (left panels), and δψ̃b and δ p̃u of the PV scheme (right panels) as a function of
wavenumber. The vertical structures are broader for the PV scheme than for the BVA scheme, particularly
at large horizontal scales (small wavenumbers). This is consistent with the assessment of Fig. 1 that at large
horizontal scales: (i) δψ̃b < δψ̃ in magnitude and (ii) δ p̃u is small unless in each case the vertical scale is large.
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Figure 3: Correlations for the BVA scheme, cor(δψ̃,δ p̃r) (panel a) and for the PV scheme, cor(δψ̃b,δ p̃u) (panel b).

(a) BVA, PSI (b) PV, PSIb

(c) BVA, Pr (d) PV, Pu

Figure 4: Vertical correlations of control variables with level 17 (≈ 500 hPa) as a function of wavenumber.
The top panels are for the rotational wind control variables and the bottom panels are for the mass control
variable (left: BVA, right: PV).
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5.3 Pseudo observation tests

The PV-scheme has been run with a small number of synthetic observations. The analysis increments that are
produced are indicative of the structure functions that are implied by the error covariance formulation. Figure
5 comprises cross sections of the analysis increments of pressure (left panels), zonal wind (middle panels) and
meridional wind (right panels) from an experiment that assimilates a number of point pressure observations
(the effect of one observation is visible in the cross sections shown). The top panels are for the BVA scheme
which show the region of influence of the pressure observation and the geostrophic dipole patterns of the wind
response. The bottom panels are for the PV-based scheme which show a pressure response similar to the BVA
(but with a narrower vertical scale). The wind response is unsatisfactory however and it is dominated by large
horizontal and small vertical scales. These winds are primarily unbalanced (the balanced parts - not shown
- are similar to the BVA response) and are due to amplification at these scales. From (16), the unbalanced
streamfunction is, from the H̄ operator

δψ̃u = ∇
−2
h

[
−α

−1
0 β0δ p̃u−α

−1
0 γ0

∂δ p̃u

∂ z
−α

−1
0 ε0

∂ 2δ p̃u

∂ z2

]
= H̄δ p̃u. (22)

This operator amplifies large horizontal and small vertical scales. The results in Fig. 5 are clearly anomalous
and following possible explanations are being considered.

• The variances of δ p̃u in the training set may be too large at large horizontal and small vertical scales due
to problems of removing the residuals from the GCR solver (Fig. 2). This is a symptom that the K−1

operator defined by the GCR solution of (20)-(21) is not the exact inverse of K operator defined by (19).
A fix might be to damp-out variance in δ p̃u at these scales. Note that a similar correction is used in the
BVA scheme at the Met Office as a result of the operation Hδψ̃ . Since δψ̃ contains unbalanced parts at
small vertical scales, these scales are removed from Hδψ̃ with vertical regression.

• A second order auto-regressive function (SOAR) is used to model the horizontal variance spectra for each
independent vertical mode (performed as part of B1/2

u ). The horizontal scale of this function may be too
large. A solution might be to replace the SOAR with the actual spectrum found from the training set.

5.4 Summary

A new formulation to model the multivariate aspects of forecast error covariances for data assimilation, based
on the properties of potential vorticity (PV) is formulated and tested in the Met Office’s VAR scheme. The
standard scheme makes the balanced vorticity approximation (BVA), which assumes that the rotational wind
is universally a balanced variable. The PV scheme relaxes this assumption and allows a contribution to the
rotational wind that is unbalanced in a way that is consistent with the flow regime.

In outline, the scheme looks similar to the standard scheme, as the standard control variables of streamfunction
and residual pressure are replaced with the balanced component of streamfunction and unbalanced pressure, but
is more difficult to apply owing to the three-dimensional elliptic equations that need to be solved to determine
the error statistics of the new variables, and the over sensitivity of the unbalanced wind response in the regime
of large horizontal and small vertical scales.
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Figure 5: Analysis increments of pressure and zonal and meridional winds from assimilation tests with
pseudo observations of pressure. The top row is for the BVA scheme and the bottom row is for the PV
scheme.
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