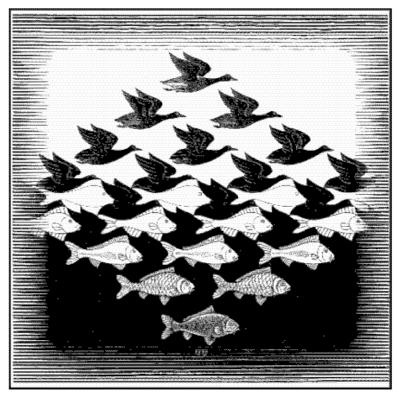
Some Fundamentals of

INVERSE MODELLING

Ross Bannister Room 2L49

D.A.R.C.

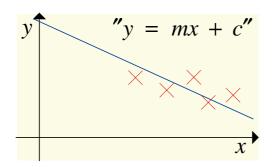
University of Reading



'Sky and Water I', M.C. Escher, 1938

What does an inverse model do?

'Forward' model



Model parameters: m and c

$$\binom{m}{c}$$
 '+' $x \to y$

'Inverse' model

$$\begin{pmatrix} y_1, x_1 \\ y_2, x_2 \\ \dots \\ y_n, x_n \end{pmatrix}$$
 (+ errors) \rightarrow $\begin{pmatrix} m \\ c \end{pmatrix}$ (+ errors)

Examples of inverse modelling ...

Exact inversion techniques:

- Matrix inversion
- PV inversion
- Abel's integration equation
- Newton-Raphson method

Inexact inversion applications:

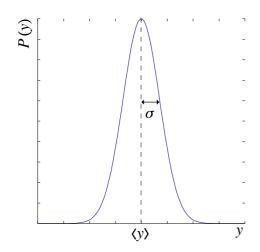
- Data assimilation
- Satellite retrieval
- Medical Imaging
- Geology
- Astronomy
- Solar physics
- Missile interception

... and any situation in where:

- observations are noisy,
- observations are incomplete and irregular,
- parameters cannot be measured directly.

Parameter Estimation by Maximum Likelihood (Method of Least Squares)

Gaussian error characteristics (one variable)

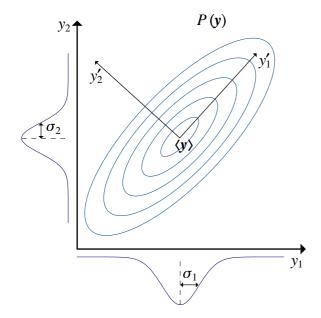


$$P(y) \propto \exp\left(-\frac{(y - \langle y \rangle)^2}{2\sigma^2}\right)$$

Mean : $\langle y \rangle$

Variance : σ^2

(two or more variables)



$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

$$P(\mathbf{y}) \propto \exp\left(-\frac{1}{2} (\mathbf{y} - \langle \mathbf{y} \rangle)^T \mathbf{R}^{-1} (\mathbf{y} - \langle \mathbf{y} \rangle)\right)$$

$$\mathbf{R} = \begin{pmatrix} \sigma_1^2 & \cos(y_1, y_2) \\ \cos(y_1, y_2) & \sigma_2^2 \end{pmatrix}$$

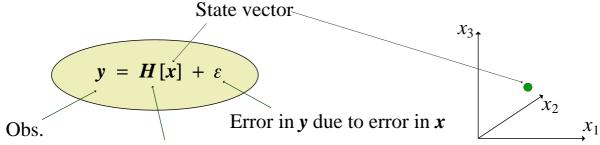
$$\mathbf{U}\mathbf{R}\mathbf{U}^T = \begin{pmatrix} \lambda_1' & 0 \\ 0 & \lambda_2' \end{pmatrix}$$

Ingredients (for an inversion)

R

- 1. Observations y P(y)
- 2. A-priori (background) $x_B P(x)$ **B**
- 3. Constraints ...

The forward model (strong constraint)



F.M. (physics & measurements)

How will 1,2,3 combine to give the most likely set of parameters?

Bayes' Theorem:

$$y) \propto P(x)P(y \mid x)$$

$$\propto \exp\left(-\frac{1}{2}\eta^{T}\mathbf{B}^{-1}\eta\right)\exp\left(-\frac{1}{2}\varepsilon^{T}\mathbf{R}^{-1}\varepsilon\right)$$

$$\propto \exp\left(-\frac{1}{2}(x - x_{B})^{T}\mathbf{B}^{-1}(x - x_{B}) + \frac{1}{2}(\mathbf{H}[x] - y)^{T}\mathbf{R}^{-1}(\mathbf{H}[x] - y)\right)$$

 η : error in a-priori = $x - x_B$

 ε : error in model's guess = y - H[x]

Maximum likelihood ⇒ minimum penalty

$$J[x] = \frac{1}{2}(x - x_B)^T \mathbf{B}^{-1}(x - x_B) + \frac{1}{2}(\mathbf{H}[x] - y)^T \mathbf{R}^{-1}(\mathbf{H}[x] - y)$$
$$x|_{\min J} = x_A \text{ (analysed parameters)}$$

Notes on the cost function

$$J[x] = \frac{1}{2}(x - x_B)^T \mathbf{B}^{-1} (x - x_B) + \frac{1}{2}(H[x] - y)^T \mathbf{R}^{-1} (H[x] - y)$$

For n unknown parameters in x, and m observations in y,

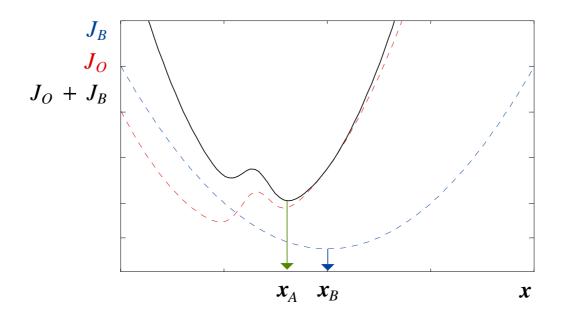
$$\mathbf{B} \qquad n \times n$$

$$\mathbf{R} \qquad m \times m$$

need $\geq n$ pieces of independent information

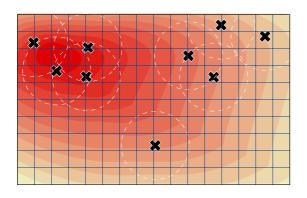
Why "least squares"?

Eg. if H[x] is non-linear ...



Methods of Inverting

1. Cressman Analysis



- Cheap.
- Easy to implement.
- A-priori in data-poor regions.
- No account of errors.
- Not dynamically consistent.
- Direct observations only.
- No forward model used.

2. Best Linear Unbiased Estimator (BLUE)

 $\nabla J = 0$:

 $x_A = x_B + \mathbf{K}(y - H[x_B])$

 $\mathbf{K} = \mathbf{B}\mathbf{H}^{T} (\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R})^{-1}$

with error covariance

 $\mathbf{A} = (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1}$

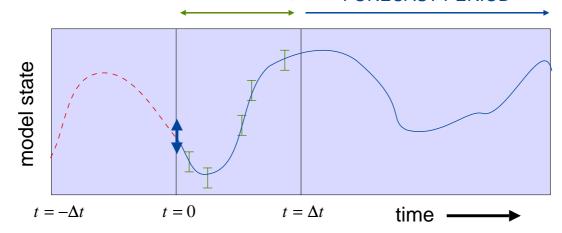
- Account taken of errors.
- Can use indirect obs.
- A-priori in data poor regions.
- Difficult to know **B**.
- Difficult to use with non-linear operators.
- Expensive for large Nos. of degrees of freedom.

3. Variational Analysis (4d-Var)

$$J[x] = \frac{1}{2}(x - x_B)^T \mathbf{B}^{-1}(x - x_B) + \frac{1}{2}(H[x] - y)^T \mathbf{R}^{-1}(H[x] - y)$$

ASSIMILATION WINDOW (OBS. INFLUENCE INIT. CONDS.)

FORECAST PERIOD



- Account taken of errors.
- Can use indirect obs. and nonlinear operators.
- Suitable for large Nos. of degrees of freedom.
- 4d-Var is dynamically consistent.

- A-priori in data poor regions.
- Difficult to know **B**.
- Expensive.
- Difficult to implement and use.
- Needs preconditioning.

4. Kalman filter

- Account taken of errors.
- Can use indirect obs.
- A-priori in data poor regions.
- Evolves **B** in time.

- Difficult to use with non-linear operators.
- Very expensive.
- Difficult to use practically.

Example with BLUE

1 unknown parameter, 1 observation, 1 initial estimate

	Value	Uncertainty
Prior estimate	x_B	$\mathbf{B} = \sigma_B^2$
Observation	y	$\mathbf{R} = \sigma_y^2$
Forward model	$\mathbf{H} = \mathbf{I}$	

BLUE formulae:

$$x_A = x_B + \mathbf{K} (y - \mathbf{H} [x_B])$$

$$\mathbf{K} = \mathbf{B} \mathbf{H}^T (\mathbf{H} \mathbf{B} \mathbf{H}^T + \mathbf{R})^{-1}$$

$$\mathbf{A} = (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1}$$

$$\mathbf{K} = \frac{\sigma_B^2}{\sigma_B^2 + \sigma_y^2}$$

$$x_{A} = \left(\frac{\sigma_{B}^{2}}{\sigma_{y}^{2}} + 1\right)^{-1} x_{B} + \left(\frac{\sigma_{y}^{2}}{\sigma_{B}^{2}} + 1\right)^{-1} y$$

$$= 0 \times x_{B} + 1 \times y \qquad \lim_{\sigma_{B}/\sigma_{y} \to \infty}$$

$$= 1 \times x_{B} + 0 \times y \qquad \lim_{\sigma_{y}/\sigma_{B} \to \infty}$$

$$\mathbf{A} = \frac{1}{\sigma_B^{-2} + \sigma_y^{-2}}$$

$$= \sigma_y^2 \qquad \lim_{\sigma_B/\sigma_y \to \infty}$$

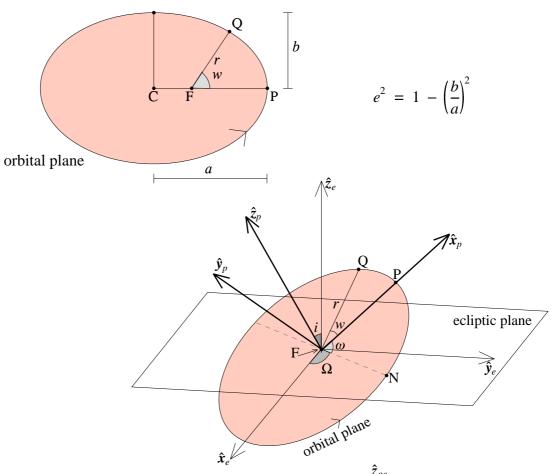
$$= \sigma_B^2 \qquad \lim_{\sigma_{\sqrt{\sigma_B} \to \infty}}$$

Example with BLUE (Astronomy - Inverting Kepler's Equation)

Want to determine orbital parameters:

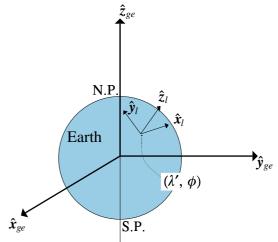
$$\mathbf{x} = (a, e, i, \Omega, \boldsymbol{\varpi}, \varepsilon)^T$$

Physics of the forward model:



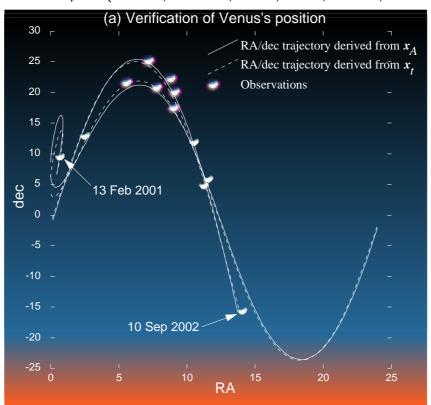
No a-priori Observations:

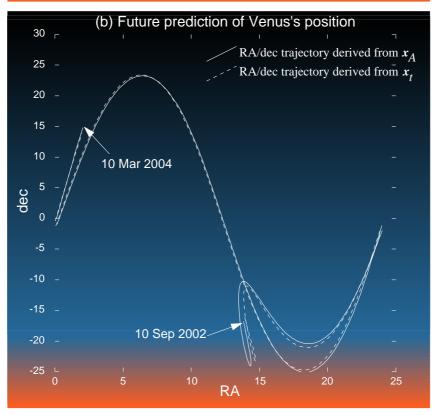
$$\mathbf{B}^{-1} = 0 \qquad \mathbf{y} = \begin{pmatrix} \operatorname{alt}_1 \\ \operatorname{azi}_1 \\ \operatorname{alt}_2 \\ \operatorname{azi}_2 \\ \dots \\ \dots \end{pmatrix}$$



Inversion results

 $\mathbf{x}_A = (0.7215, 0.0121, 4.40, 84.2, 83.3, 177.1)^T$ error (1 s.d.) = $(0.0010, 0.0080, 0.76, 4.5, 20.1, 2.5)^T$ $\mathbf{x}_t = (0.7233, 0.0067, 3.39, 76.7, 131.5, 182.0)^T$





4-Dimensional Variational Data Assimilation

Leith, 1993:

... the atmosphere "is a chaotic system in which errors introduced into the system can grow with time ... As a consequence, data assimilation is a struggle between chaotic destruction of knowledge and its restoration by new observations."

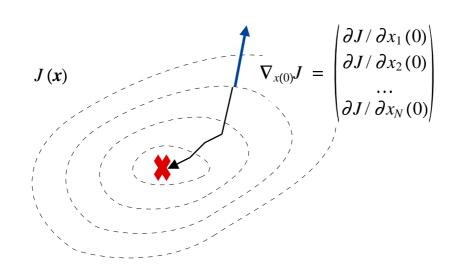
Cost function:

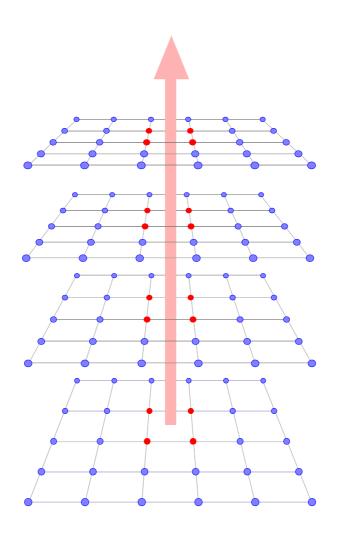
$$J[x] = \frac{1}{2}(x - x_B)^T \mathbf{B}^{-1} (x - x_B) + \frac{1}{2}(H[x] - y)^T \mathbf{R}^{-1} (H[x] - y)$$

$$= \frac{1}{2}(x(0) - x_B(0))^T \mathbf{B}^{-1} (x(0) - x_B(0)) + \frac{1}{2} \sum_{t} (H_t[M_t...M_{\delta t}x(0)] - y_t)^T \mathbf{R}_t^{-1} (H_t[M_t...M_{\delta t}x(0)] - y_t)$$

Gradient vector:

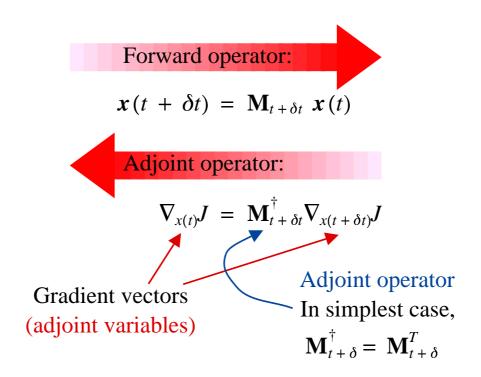
$$\nabla_{x(0)} J = \mathbf{B}^{-1} (\mathbf{x}(0) - \mathbf{x}_B(0)) + \sum_{t} \mathbf{M}_{\delta t}^{T} \dots \mathbf{M}_{t}^{T} \mathbf{H}_{t}^{T} \mathbf{R}_{t}^{-1} (\mathbf{H}_{t} [\mathbf{M}_{t} \dots \mathbf{M}_{\delta t} \mathbf{x}(0)] - \mathbf{y}_{t})$$





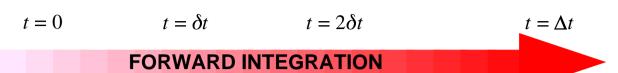
Adjoint Variables and Adjoint Operators

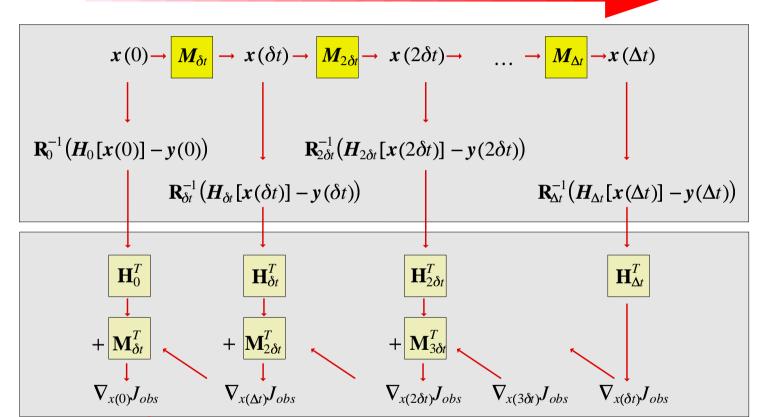
$$\nabla_{x(0)} J = \mathbf{B}^{-1} (\mathbf{x}(0) - \mathbf{x}_B(0)) + \sum_{t} \mathbf{M}_{\delta t}^{T} \dots \mathbf{M}_{t}^{T} \mathbf{H}_{t}^{T} \mathbf{R}_{t}^{-1} (\mathbf{H}_{t} [\mathbf{M}_{t} \dots \mathbf{M}_{\delta t} \mathbf{x}(0)] - \mathbf{y}_{t})$$



The adjoint of an operator propagates the adjoint variables in the reverse sense

(this is just the chain rule generalised to many variables)



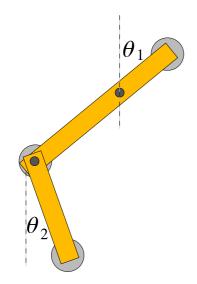


ADJOINT INTEGRATION

+
$$\nabla_{x(0)} J = \mathbf{B}^{-1} (x(0) - x_B(0))$$

Example of '4d'-Var. with a simple chaotic system

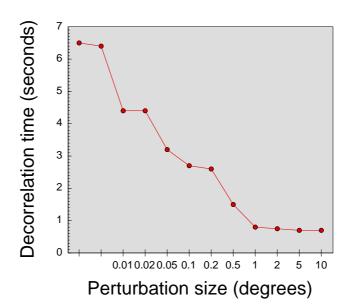
The double pendulum

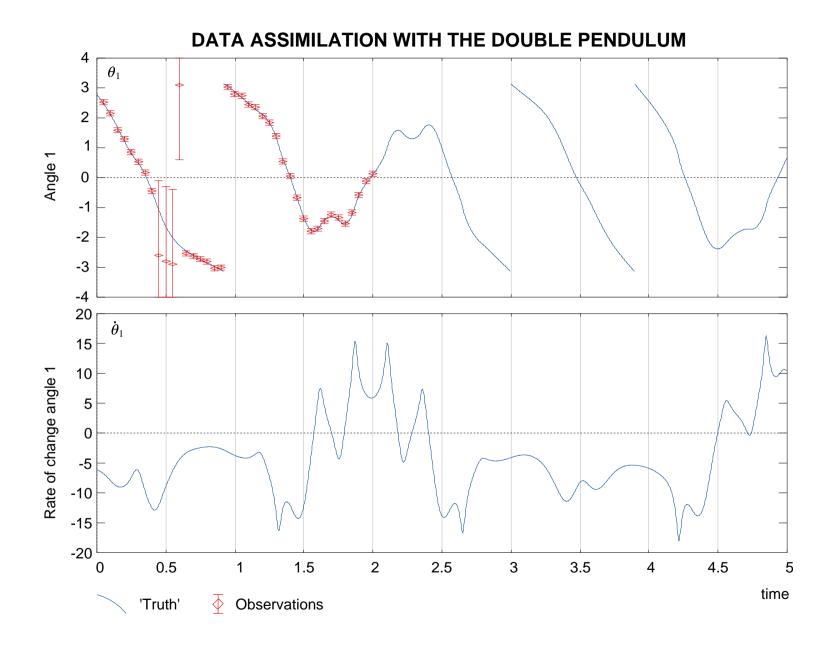


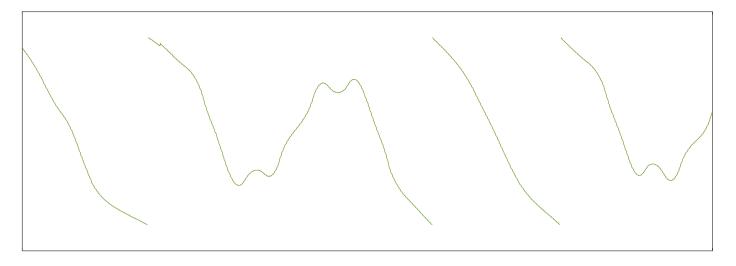
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{\theta}_i} \right) = \frac{\partial L}{\partial \theta_i}$$

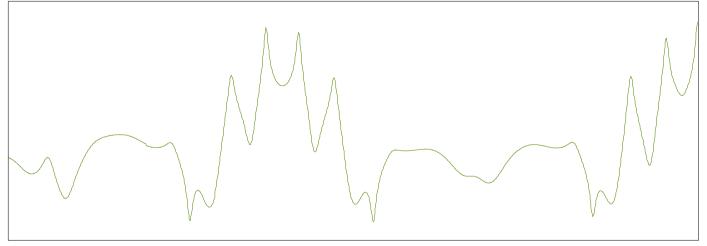
$$L = T - V$$

$$\mathbf{x} = \begin{vmatrix} \theta_1 \\ \theta_2 \\ \dot{\theta}_1 \\ \dot{\theta}_2 \end{vmatrix}$$

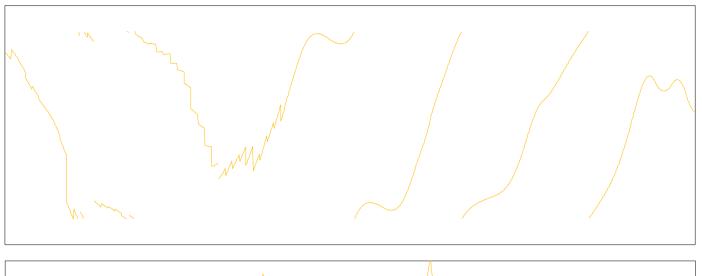








'4d-Var.' analysis



'Insertion' run

Other GFD applications

Sources/sinks determination

Forward model (tracer transport Eq.):

$$\frac{\partial q(\mathbf{r}, t)}{\partial t} = -\nabla \cdot (q(\mathbf{r}, t)\vec{v}(\mathbf{r}, t)) + \dot{q}(\mathbf{r})$$

What are the sources/sinks, $\dot{q}(\mathbf{r})$ given observations of $q(\mathbf{r}, t)$?

State vector:

$$\dot{q} = \begin{pmatrix} \dot{q} (\mathbf{r}_1) \\ \dot{q} (\mathbf{r}_2) \\ \dots \\ \dot{q} (\mathbf{r}_N) \end{pmatrix}$$

Cost function:

$$J[\dot{\boldsymbol{q}}] = \frac{1}{2} (\dot{\boldsymbol{q}} - \dot{\boldsymbol{q}}_B)^T \mathbf{B}_{\dot{q}}^{-1} (\dot{\boldsymbol{q}} - \dot{\boldsymbol{q}}_B) + \frac{1}{2} \sum_{t} \sum_{t} (\boldsymbol{H}_t [\boldsymbol{M}_t ... \boldsymbol{M}_{\delta t} \boldsymbol{q}(0)] - \boldsymbol{y}_t)^T \mathbf{R}_t^{-1} (\boldsymbol{H}_t [\boldsymbol{M}_t ... \boldsymbol{M}_{\delta t} \boldsymbol{q}(0)] - \boldsymbol{y}_t)$$

Gradient w.r.t. q:

$$\nabla_{\dot{q}} J = \mathbf{B}_{\dot{q}}^{-1} (\dot{q} - \dot{q}_{B}) + \sum_{t'=0}^{t} \left(\frac{\partial \mathbf{q}(t')}{\partial \dot{q}} \right)^{T} \mathbf{M}_{t'+1}^{T} \dots \mathbf{M}_{t}^{T} \mathbf{H}_{t}^{T} \mathbf{R}_{t}^{-1} (\mathbf{H}_{t} [\mathbf{M}_{t} \dots \mathbf{M}_{\delta t} \mathbf{q}(0)] - \mathbf{y}_{t})$$

Other bonuses of doing inverse modelling / DA

- Model performance
- Observation quality

Some difficulties with inverse modelling / DA

- Non-linearity (errors, parametrisations)
- Model budget disruption by obs.
- The 'initialization problem'
- Treatment of model error
- Null space
- Error characterization, esp. multivariate B
- Artefacts from unrealistic **B**

Summary

Inverse methods:

- are an integral part of science
- infer information about model parameters using:
 - noisy, irregular, and indirect measurements
 - how the system behaves
- require expertise in:
 - forward modelling
 - inverse techniques
 - dealing with large volumes of information
- make use of a number of methods and assumptions, for DA:
 - Gaussian error characteristics
 - method of least squares
 - B.L.U.E. / 3d/4d Var. / Kalman filter
- can help assess:
 - model performance
 - observation quality
- becomes difficult esp:
 - non-linear models
 - large No. of degrees of freedom
 - multivariate
- suffer potential problems:
 - representing B
 - artefacts
 - null space