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What does an inverse model do?

'Forward' model
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Examples of inverse modelling ...

Exact inversion techniques: Inexact inversion applications:
» Matrix inversion » Data assimilation
* PV inversion » Satellite retrieval
» Abel's integration equation * Medical Imaging
* Newton-Raphson method » Geology

* Astronomy
» Solar physics
» Missile interception

... and any situation in where:

observations are noisy,
observations are incomplete and irregular,
» parameters cannot be measured directly.



Parameter Estimation by Maximum Likelihood
(Method of Least Squares)

Gaussian error characteristics (onevariable)
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I ngredients (for an inversion)

1. Observations y P(y) R
2. A-priori (background) X P(X) B
3. Congtraints ...

The forward model (strong constraint)

State vector
X3,

Crmwpie B
X2

Obs. Error iny dueto error in X X1
F.M. (physics & measurements)

How will 1,2,3 combineto givethe most likely set of
parameters?

Bayes Theorem:
y) < POOP(Y | X)
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n . Erorinapriori = X— Xg
e . error inmodel'sguess=y— H[X]

Maximum likelihood = minimum penalty

1 _ 1 _
I = Sx - Xg)' B (X — Xg) + S(HIX - YW R HX - )

leinJ = Xa (analysed pararneters)



Notes on the cost function

1 _ 1 _
IR = S(x - Xg)' BT (X — Xg) + S(HDA - Y RTHX - )

For n unknown parametersin X, and mobservationsiny,
B nxn

R mx m
need > n piecesof independent information

Why "least squares'?

Eqg. if H[X] isnon-linear ...




Methods of Inverting

1. Cressman Analysis

 Cheap.
* Easy to implement.

 A-priori in data-poor regions.

* No account of errors.

 Not dynamically consistent.
* Direct observations only.
» No forward model used.

2. Best Linear Unbiased Estimator (BLUE)

V] =0:
Xa = Xg + K(y — H[Xg]) » Account taken of errors.
K = BH'(HBH' + R)™ « Can use indirect obs.
with error covariance  A-priori in data poor regions.
A = (B + HRMH)? * Difficult to know B.

* Difficult to use with non-linear
operators.

¥ Expensive for large Nos. of
degrees of freedom.



3. Variational Analysis (4d-Var)
1 _ 1 _
I = S =)' BT (x = Xg) + S(HDXI = y)' RT(HD = y)
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 Account taken of errors.  A-priori in data poor regions.
 Can use indirect obs. and non- e Difficult to know B.
linear operators. » Expensive.
« Suitable for large Nos. of « Difficult to implement and use.
degreesof freedom. » Needs preconditioning.
e 4d-Var isdynamically
consistent.
4. Kalman filter
 Account taken of errors. * Difficult to use with non-linear
» Can use indirect obs. operators.
 A-priori in data poor regions. * Very expensive,

* Evolves B intime. * Difficult to use practically.



Example with BLUE

1 unknown parameter, 1 observation, 1 initial estimate

Value Uncertainty
Prior estimate Xg B = 03
Observation y R = o}
Forward model H = I —

BLUE formulae:
Xa = Xg + K(y — H[xg])
K = BH'(HBH' + R)*
A=@GB"'"+HRH

OB
K=— 2
-1 -1
0§ oy
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= 0 X Xg + 1xy lim
oploy — e
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Example with BLUE
(Astronomy - Inverting Kepler's Equation)

Want to determine orbital parameters:

x=(aei Q o, ¢

Physics of the forward model:

orbital plane 4

No a-priori Observations:
alt;
X A
B =0 y = alt_z Earth [
aZ|2 ‘\\ / ;y\ge
W, 9)
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Xa
error (1s.d.)

X

I nversion results

= (0-7215, 0-0121, 4-40, 842, 83-3 177-1)
= (0-0010, 00080, 0:76, 45, 201, 25)

(07233, 0:0067, 339, 76-7, 131.5, 182.0)'

(a) Verification of Venus's position

_— RA/dec trajectory derived from x,
P " RA/dec trajectory derived from X
#  Observations

(b) Future prediction of Venus's position

| | ml

" RA/dec trajectory derived from x
.-~ RA/dec trgjectory derived from x;



4-Dimensional Variational Data Assimilation

Leith, 1993:

... the atmosphere "is a chaotic system in which
errors introduced into the system can grow with time
... As a consequence, data assimilation is a struggle
between chaotic destruction of knowledge and its
restoration by new observations."

Cost function:

1 _ 1 _
I = S(x - Xg)' B™ (X — Xg) + S(HDA - Y R HX - )

- %(x(o) — xs(0)) B™ (x(0) — xg(0)) +
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Gradient vector:
Viod = B (x(0) — xg(0)) +

D M. M{H{R™ (H{[M... Mgx(0)] — y)
t

33/ %1 (0)
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Adjoint Variables and Adjoint Operators

Viod = B™ (x(0) — xg(0))

+

D Mit... M{H{RT™ (Hi [Me... Mg (0)] — )

t
Forvard pera>

X(t + ot) = Miyst X(1)

_t

x(t)‘] = Mt+éth(t+at)~]

Adjoint operato
Gradient vectors
In S|mplest cas

(adjoint variables)

|\/|t+6= I\/|t+6

The adjoint of an operator propagates the adjoint variables in tF
reverse sense

(this is just the chain rule generalised to many variables)
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t=ot

t =20t

t = At

t=0
FORWARD INTEGRATION

X(0)—| My | — X(01) — | Mysi— X(20t)—

|

Ry (Ho[X(0)] - y(0))
Rit- (Hat [X(81)] - y(ot))

|

. | Myt =X (AD)

Rat (Hase [ X(201)] — y(20t)) ‘

Rat (Hac[X(AD)] — y(AL))

Ho H Hast Hat

l l l
+ My + Mas, + M3y

| \ | \ | \ \
Vx(O)'Jobs Vx(At)‘Jobs Vx(2(5t)'Jobs VX(36I)‘JObS Vx((St)‘Jobs

+ V,0J = B™(X(0) - xg(0))

<m0t TEcRATION
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Example of '4d'-Var. with a simple chaotic system

The double pendulum

(o) o
dt\96,] 296,
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Angle 1

Rate of change angle 1

-10
-15
-20

DATA ASSIMILATION WITH THE DOUBLE PENDULUM

0 0.5 1 15

T 'Truth'

§ Observations

2.5

3.5
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'4d-Var.' analysis
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‘Insertion’ run

-18-



Other GFD applications

Sour ces/sinks deter mination

Forward model (tracer transport Eq.):

c?qgt, Do . @ o3 ) + a0

What are the sources/sinks, ¢ (r) given observations of q(r, t)?

q(ry)
State vector: q = a(ra)

q(rn)
Cost function:

JIGl = (9 - 48)' By (q — Go) +

NI

1 _
> D (H [Me... Maq(0)] = ¥o' R (H([M... Msq(0)] — yo)
t t
Gradient w.r.t. g:
Ve = B5 (4 - Go) +

L (da))' 7 T Tp-1
2 Z( 3 ) Me s MOHERT (He M. M@ (O)] = )
t t'=0
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Other bonuses of doing inverse modelling / DA

* Model performance
» Observation quality

Some difficulties with inverse modelling / DA

Non-linearity (errors, parametrisations)
Model budget disruption by obs.
The'initialization problem'

Treatment of model error

Null space

Error characterization, esp. multivariate B
Artefacts from unrealistic B
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Summary

Inverse methods:

 are an integral part of science
« infer information about model parameters using:

* noisy, irregular, and indirect measurements
* how the system behaves

* require expertise in:
« forward modelling

* inverse techniques
« dealing with large volumes of information

* make use of a number of methods and assumptions, for
DA.

e Gaussian error characteristics
* method of least squares
e B.L.U.E. / 3d/4d Var. / Kalman filter

» can help assess:
* model performance
» observation quality
* becomes difficult esp:
* non-linear models

* large No. of degrees of freedom
* multivariate

« suffer potential problems:
* representing B
 artefacts
 null space
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