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Abstract

This paper investigates the e�ect on balance of a number of Schur product-type localization
schemes which have been designed with the primarily function of reducing spurious far-�eld
correlations in forecast error statistics. The localization schemes studied are a mixture of a
non-adaptive scheme (where the moderation matrix is decomposed in a spectral basis), and two
adaptive schemes, namely a simpli�ed version of SENCORP (Smoothed ENsemble COrrelations
Raised to a Power) and ECO-RAP (Ensemble COrrelations Raised to A Power). The paper
shows, we believe for the �rst time, how the degree of balance (geostrophic and hydrostatic)
implied by the error covariance matrices localized by these schemes can be diagnosed. Here
it is considered that an e�ective localization scheme is one that reduces spurious correlations
adequately but also minimizes disruption on balance (where the 'correct' degree of balance is
assumed to be possessed by the unlocalized ensemble). By varying free parameters that describe
each scheme (e.g. the degree of truncation in the schemes that use the spectral basis, the 'order'
of each scheme, and the degree of ensemble smoothing), it is found that a particular con�guration
of the ECO-RAP scheme is best suited to the convective-scale system studied. According to our
diagnostics, geostrophic balance is closely maintained by this scheme, but hydrostatic balance is
weakened at many vertical levels, although less so than other con�gurations and than the other
schemes.

1 Introduction

1.1 Sampling error

Progress to improve the e�cacy of ensemble data assimilation (DA) methods like the ensemble
Kalman �lter (EnKF) has been impeded by problems with sampling error, which arises from
�nite ensemble sizes (N members), especially those ensembles that are small compared to the
size of the system (n elements in the state vector), see e.g. [11, 10, 12]. Sampling error appears
in calculations of an ensemble-derived estimate of the forecast error covariance matrix PDE

(N) ∈
Rn×n. The standard form of this matrix is:

PDE
(N) =

1

N − 1

N∑
l=1

δxlδx
T
l =

1

N − 1
XXT, (1)

where the superscript �DE� stands for �dynamical ensemble� (produced directly from the dy-
namical model - see Tab. 1), δxl ∈ Rn is the lth perturbation from the ensemble mean, and
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Ensemble Description
No. of

members
Ensemble
member

Ensemble
matrix

Covariance

Dynamical
ensemble
(DE)

The ensemble of
perturbations from the
dynamical forecast

model (pre-localization).

N δxl X PDE
(N)

Correlation
function
ensemble
(CE)

The ensemble whose
covariance gives the

correlation matrix that
localizes.

K ωk K ΩCE
(K)

Localized
ensemble
(LE)

The ensemble whose
covariance gives the
localized covariances.

M x̃m X̃ PLE
(N,K)

Smoothed
ensemble
(SE)

A spatially smoothed
version of the dynamical

ensemble.
N δwl � C

Table 1: Summary of the four types of ensemble used in this paper. The �correlation func-
tion� and �localized� ensembles are speci�ed with either the spectral, SENCORP or ECO-RAP
schemes.

X ∈ Rn×N is the matrix of ensemble perturbations X = {δx1, δx2, . . . δxN}. We shall call the
ensemble comprising the N members δxl the DE. Due to sampling error, this is only an estimate
of the true forecast error covariance matrix P. The following formula provides a rough guide

to how sampling error in the correlation
[
CDE

(N)

]
ij
=
[
PDE

(N)

]
ij
/(σiσj) (denoted

[
E
{
δCDE

(N)

}]
ij
)

changes with N and the true correlation C:[
E
{
δCDE

(N)

}]
ij
∼ 1√

N

(
1−

(
[C]ij

)2)
, (2)

[11] where i and j are component indices, [•]ij indicates a matrix element and σi is the standard
deviation of component i, σ2

i = [P]ii. Apart from the well-known dependence of sampling
error on N , the other feature of this expression is that sampling errors are expected to be high
when true correlations Cij are small. Such sampling errors in the EnKF lead to anomalous
analysis increments especially in the far-�eld - e.g. between an observation and distant �elds
where expected true correlations are small - and to anomalous covariances in observation space
through the term HPHT in the analysis equations. The beauty of the EnKF over traditional
variational schemes is that no covariance model is needed and so does not fall foul of incorrect
assumptions that may be made in that covariance model (namely assumptions of homogeneity,
isotropy, and geostrophic and hydrostatic balances) which may not be valid. This is though at
the cost of sampling error.

1.2 Localization

In general it is not possible to distinguish genuinely large values of sample covariances from
anomalously large ones that arise due to sampling error, but it is often possible to reduce sam-
pling errors by damping covariances that are expected to be small. For instance, if points i and
j are separated by a large distance then they may be expected to be only weakly correlated.
By this reckoning these sample covariances should be damped or eliminated. This is the idea
behind localization, where the elements [PDE

(N)]ij are e�ectively multiplied by a moderation func-
tion, λ, which is unity when i = j and reduces with increased separation between the locations
represented by i and j (ri and rj respectively).
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There are a number of ways that localization may be applied in ensemble DA. The Schur
(element-by-element) product method replaces PDE

(N) in the EnKF with a localized version,

PLE
(N,K) = PDE

(N) ◦ ΩCE
(K), where ΩCE

(K) ∈ Rn×n is the moderation matrix formed of moderation

functions (for a single �eld, [ΩCE
(K)]ij = µ(ri, rj), where |µ(ri, rj)| ≤ 1 and µ(ri, ri) = 1), [9]. The

meanings of the �CE� superscript and the (K) subscript are explained in Sect. 2.1. The main
issues with this method are in the choice of moderation function, in how it is implemented, and
in any undesirable side e�ects of the localization, such as damage to �lter's balance properties.

Localization can also be applied by limiting observations that contribute to each grid point
to those that fall within a localization radius (domain localization). This is used, e.g., in the
Local Ensemble Kalman Filter (LEKF) [5] and is commonly used with the Ensemble Transform
Kalman Filter (ETKF) [13] and the Singular Evolutive Interpolated Kalman �lter (SEIK �lter)
[14]. Domain localization can give rise to loss of smoothness [15] and is problematic for observa-
tions whose observation operators are a function of a highly non-local part of the model space
(such as measurements from radiometers) [16, 2, 4]. The focus of this paper is on the Schur
product formulation and how it a�ects geophysical balances.

1.3 The e�ect of localization on geophysical balances

Localization helps to alleviate some of the sampling noise problems with ensemble DA, but they
can degrade essential geophysical balance properties of the ensemble. This was demonstrated by
[19] who showed that anomalous rapid oscillations in surface pressure appeared in the (localized)
EnKF analyses.

Inappropriate imbalance is known to be very damaging to subsequent forecasts and so meth-
ods have been sought to reduce this e�ect. The simplest approach is to weaken the e�ect of
the localization by choosing moderation functions with longer length-scales [19], but this lessens
the bene�t of localization, and so requires more ensemble members. In any case, other factors -
such as the information provided by observations - in�uence the localization length-scales that
should be used [20]. It has been suggested that the root cause of balance degradation is due to
distortion of the covariance structures by the moderation functions [12, 22]. This a�ects mostly
those variables that are strongly anisotropic [22] like u and v (the zonal and meridional winds
- see e.g. Fig. 3 of [21]). In [22], the analysis is performed in terms of the more isotropic ψ
and χ (streamfunction and velocity potential) instead of u and v, which was found to maintain
a well balanced ensemble. The Met O�ce's hybrid DA scheme [24] localizes the same variables
that are used in their variational data assimilation system [23], namely increments of ψ, χ,
pu (unbalanced pressure) and µ (relative humidity). Balance is then introduced explicitly by
the parameter transform in their control variable transform1, which gives increments of u, v, p
(total pressure), θ (potential temperature) and q (speci�c humidity). The parameter transform
enforces balance conditions explicitly.

Although these are successful methods to maintain balance, they are likely to have limitations
in their applicability in DA. The approach of [24] requires that the appropriate balances (in
this case strong hydrostatic balance and weak geostrophic balance) are appropriate for the
system. These are questionable for convective �ows where, contrary to the large-scale case,
adding balance may be damaging. The approach of [22] does not add geostrophic balance
arti�cially, but it is unclear how it can be applied to preserve hydrostatic balance where the
(unknown) equivalent of an 'isotropic' variable in the vertical is needed. For these reasons we
turn to some adaptive localization schemes applied to the original variables (u, v, etc.), and use
them with a convective-scale ensemble to see how they a�ect balance.

1The parameter transform is called the balance operator in some DA systems.

3



1.4 Static vs. adaptive localization schemes

Traditionally moderation functions are prescribed and do not change with the �ow, but over
recent years schemes have been proposed that generate moderation functions which change
with the �ow. Here we examine some properties of a number of static and adaptive localization
schemes on a test ensemble. The adaptive schemes studied are a simpli�ed version of SENCORP
(Smoothed ENsemble COrrelations Raised to a Power) [3] and two variants of ECO-RAP (En-
semble COrrelations Raised to A Power) [1]. The properties that we will examine for each
scheme are (i) the structure of the moderation functions and (ii) the e�ect on the degree of
balance.

1.5 The cases studied

The main test ensemble is a 24-member ensemble of 3-hour forecasts from a quasi-operational
high-resolution weather forecasting model (the Met O�ce's 1.5 km now-casting model with a
domain over the Southern UK [30]). The ensemble's analysis perturbations are produced by
MOGREPS (the Met O�ce Global and Regional Ensemble Prediction System [17] adapted
for this domain [25, 26]). The date chosen as the main test is 20th September 2011, when a
cold front passed over the Southern UK. This case is interesting as the �ow shows detectable
deviations from geostrophic and hydrostatic balances and so should provide a good test of a
localization scheme to preserve the balance of the DE. Details of this case are documented in
[18]. A second case is studied to test further some of the results, which is a 24-member ensemble
of 1-hour forecasts. The date chosen for the second test is 26th July 2007, which has regions of
convective precipitation. Details of this second case are documented in [25, 28]. It is beyond
the scope of this paper to run DA with these cases, but the balance diagnostics shown should
be useful to guide the choice of localization scheme for DA.

The structure of this paper is as follows. In Sect. 2 we review the Schur product to de�ne our
notation and describe each of the three localization schemes considered. In Sect. 3 we introduce
and derive a range of diagnostics that show how each scheme localizes and a�ects balance for
the main case study. In Sect. 4 we use the best of the schemes found and apply them to other
pro�les (including for the second case study). In Sect. 5 we discuss the results and limitations
of the present work, conclude the paper and suggest further work.

2 The localization schemes

In this section the Schur product localization is described, and two static and three adaptive
variants of localization schemes are described.

2.1 Schur-product localized covariances

Just as PDE
(N) can be written as the outer product of a set of ensemble members in (1), the

matrix, ΩCE
(K), as used in PLE

(N,K) = PDE
(N) ◦ΩCE

(K) can be written in a similar way:

ΩCE
(K) =

1

K − 1

K∑
k=1

ωkω
T
k =

1

K − 1
KKT, (3)

where ωk ∈ Rn form a set of K new ensemble members that we shall call the �correlation
function ensemble� (CE) (as ΩCE

(K) behaves as a correlation matrix)2. The matrix K ∈ Rn×K is
the matrix of the K CE members K = {ω1,ω2, . . .ωK}, and this matrix may be considered to
be a 'square-root' of ΩCE

(K). Each localization scheme that we consider will be decomposed into

2The terms �dynamical ensemble� and �correlation function ensemble� are adopted from [4].
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its CE, which will help diagnose some of its important properties. From (1) and (3) the i, jth
matrix elements of PDE

(N) and ΩCE
(K) are, respectively:

[PDE
(N)]ij =

1

N − 1

N∑
l=1

[δxl]i[δxl]j , and [ΩCE
(K)]ij =

1

K − 1

K∑
k=1

[ωk]i[ωk]j , (4)

where [•]i indicates vector element. The CF ensemble must have the property that [ΩCE
(K)]ii = 1,

i.e. that the sum of squares (over the K members) of each element of the CE must equal to
K − 1. From (4) the i, jth element of PLE

(N,K) is:

[PLE
(N,K)]ij = [PDE

(N)]ij [Ω
CE
(K)]ij ,

=
1

(N − 1)(K − 1)

N∑
l=1

K∑
k=1

[δxl]i[ωk]i [δxl]j [ωk]j ,

=
1

(M − 1)

M∑
m=1

x̃mx̃T
m, (5)

where x̃m =
√

M−1
(N−1)(K−1)δxl ◦ ωk ∈ Rn form a new set of M ensemble members that we shall

call the �localized ensemble� (LE) where M = NK and m is shorthand for every pair of l and
k that appears in the line above (5). The matrix whose columns are the LE members may
be denoted X̃ ∈ Rn×M . The LE comprises every possible 'Schur product' pair of DE and CE
members. Table 1 summarises this terminology. The increase in the number of members from
N in the DE to M in the LE will lead to rank(PLE

(N,K)) > rank(PDE
(N)), and thus have a lower

sampling error. The importance of (5) is that any diagnostic that is applied to the DE may be
applied also to the LE, including the balance diagnostics to be introduced in Sect. 3.

2.2 Spectral representation of a localization matrix

Before the schemes are introduced it is useful to de�ne how the static moderation functions are
de�ned for a single variable s (where s in this paper represents either errors in zonal wind (δu),
meridional wind (δv), pressure (δp) or temperature (δT )). Note that the scheme described here
is denoted �spectral� because the localization matrix is represented in a spectral basis; it does
not mean that localization has been done in spectral space.

2.2.1 Form of the square-root of the localization matrix

The correlation function matrix for the case of variable s, ΩCE,s
(K) needs to be represented as

a 'square-root', Ks. For the static schemes considered in this paper, the eigen-representation,
ΩCE,s

(K) = 1
K−1FsΛsF

T
s is useful. The diagonal matrix Λs ∈ RK×K comprises K non-zero

eigenvalues, and Fs ∈ Rn×K comprises the eigenvectors. This is a rank K matrix (in practice

K � n) which corresponds to Ks = FsΛ
1/2
s , which is this variable's CE (it also needs to be

normalized so that the sum of squares of each row is K − 1).

2.2.2 The horizontal and vertical bases used in this work

Columns of Fs comprise 3-D �elds which are the products of horizontal plane waves and vertical
modes (see below), and diagonal elements of Λs comprise a variance spectrum. The variance
spectrum is a prescribed function of the horizontal total wavenumber of the plane waves and of
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Figure 1: The �rst four vertical modes used as basis functions to represent vertical aspects of
the moderation matrix in many of the localization schemes.

the vertical mode index. The elements of Ks are then:

[Ks]rk = cos

(
π

Lx
kxrx + δxs

)
cos

(
π

Ly
kyry + δys

)
ν (rz, kz)︸ ︷︷ ︸

[Fs]rk

λHs
(
k2x + k2y

)
λVs (kz)︸ ︷︷ ︸[

Λ
1/2
s

]
kk

, (6)

where the horizontal domain has dimensions Lx×Ly. The subscripts on [Ks]rk have the following
meanings: r represents a 3-D position rx, ry, rz and k represents horizontal wavenumbers kx,
ky and vertical mode kz (kx, ky, kz ∈ Z). ν(rz, kz) is the value of kzth vertical mode at level
rz. λ

H
s (k

2
x+ k2y) is the square-root of the horizontal part of the variance spectrum (a function of

total horizontal wavenumber), and λVs (kz) is the square-root of the vertical part of the variance
spectrum. The variance spectrum is prescribed to yield the required horizontal and vertical
localization length-scales.

The phases δxs and δys are chosen with the intention of allowing s to satisfy the imposed
boundary conditions consistent with the limited area model. For wind components δxδu = −π/2,
δyδu = 0, δxδv = 0 and δyδv = −π/2, which do not permit �ow in or out of the domain. The
remaining variables have δxs = −π/2 and δys = −π/2, which represent zero Dirichlet boundary
conditions. These conditions, however, are not seen in the correlations implied by (6) due to the
normalization mentioned in Sect. 2.1 (see Sect. 3.2). Form (6) is valid for a continuous system
and adjustments to (6) are needed to respect the staggering on the Arakawa C grid used for the
Met O�ce model (not shown).

The vertical modes are mutually orthogonal3 eigenvectors of a vertical error covariance ma-
trix for the Met O�ce's unbalanced pressure control variable4 used in the Met O�ce convective-
scale variational DA system[23, 6]. The �rst four vertical modes are plotted in Fig. 1.

For the static localization scheme de�ned by Ks the adoption of plane waves in (6) and a
variance spectrum dependent on the total horizontal wavenumber implies moderation functions
for s in the horizontal that are homogeneous and isotropic (see e.g. Appendix A of [27]).

3The modes are orthogonal in a speci�c inner product g(rz), i.e.
∑nz

rz=1 ν(rz , kz)ν(rz , k
′
z)g(rz) = δkzk′

z
.

4Modes for the 'unbalanced pressure' control variable are chosen as a convenient basis as they have reasonable
properties for this work, namely that the amplitude of their oscillations tend to decay with altitude.
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2.2.3 The horizontal and vertical variance spectra

To derive the horizontal and vertical variance spectra, we �rst de�ne the following:

µH(rH1 , rH2) = exp−
(
|rH2

− rH1
|

ˆ̀
H

)2

, (7)

µV(rz1 , rz2) = exp−
(
rz2 − rz1

ˆ̀
V

)2

, (8)

where ˆ̀
H and ˆ̀

V are the horizontal and vertical length-scales respectively and rH =
(
rx yy

)
.

Equations (7) and (8) are the horizontal and vertical moderation functions approximated by the
spectral localization scheme (they are also used in the ECO-RAP scheme, but not in SENCORP).
The combined localization is µ = µHµV and they are functions that decay with horizontal and
vertical separation.

The λHs spectrum is found by projecting (7) onto the plane waves (i.e. a Fourier transform),
and the λVs spectrum is found by projecting (8) onto the vertical modes. Given that K � n, (K
is the product of the number of plane waves and the number of vertical modes) these spectra will
be highly truncated, and so a localization scheme that is based on (6) will not perfectly recover
forms (7) and (8). For this reason in each experiment in Sect. 3 we describe the length-scales
as those that are implied from the spectral scheme - denoted `H and `V (without hats) - rather
than the prescribed length-scales in (7) and (8).

2.3 The static (spectral) localization scheme

Equation (6) forms the basis of a univariate static localization scheme where the moderation
functions are parametrized as de�ned in (7) and (8). The extension to multivariate static
localization schemes is necessary to study balance. The scheme is summarised with the following
form of the moderation ensemble:

KSpec =


FδuΛ

1/2
δu

FδvΛ
1/2
δv

FδpΛ
1/2
δp

FδTΛ
1/2
δT

 ∈ Rn×K , (9)

[KSpec](rs)k = [ωk](rs) = c(rs)[Fs]rk[Λ
1/2
s ]kk. (10)

where K is the number of modes used for each variable. The over-bar in (9) indicates that
the matrix is normalized such that the sum of squares of each row must be K − 1 (see Sect.
2.1), which is accounted for by the normalizing factor c(rs) in (10). The CE localization matrix,

ΩCE
(K), implied by (9) has auto-localization sub-matrices for variable s of the form FsΛsF

T
s

(ignoring normalization), and cross-localization sub-matrices between variables s1 and s2 of the

form Fs1Λ
1/2
s1 Λ1/2

s2 FT
s2 .

2.4 The adaptive localization schemes

The non-adaptive localization scheme is based on the spectral method described in Sects. 2.2
and 2.3 which does not change with the �ow. The SENCORP and ECO-RAP-based schemes
on the other hand are �ow dependent. SENCORP is itself based purely on the ensemble and
ECO-RAP is based on a combination of the ensemble and the spectral method.
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2.4.1 The simpli�ed SENCORP localization scheme

In the simpli�ed version of the 'order-Q' SENCORP scheme [3] that is studied in this paper,
the moderation matrix is taken to have the form5:

Ω = C◦Q, (11)

where ◦Q means the 'Schur power' (the Schur product of Q C-matrices, Q > 0). The matrix
C ∈ Rn×n is the correlation matrix formed from N spatially smoothed versions of the original
ensemble members, δwl (1 ≤ l ≤ N), and are collectively called the �smoothed ensemble� (SE)
- Tab. 1. The members are normalized after smoothing such that the variance of each element
amongst the SE is N − 1 to ensure that the diagonal elements of C - and hence C◦Q - are
unity. C is then found from C = 1

N−1
∑N
l=1 δwlδw

T
l . A square-root of Ω may be formed as a

generalisation of (5). The i, jth element of Ω is:

Ωij = (Cij)
Q =

(
1

N − 1

)Q( N∑
l=1

[δwl]i[δwl]j

)Q
,

=

(
1

N − 1

)Q N∑
l1=1

· · ·
N∑

lQ=1

[δwl1 ]i . . . [δwlQ ]i [δwl1 ]j . . . [δwlQ ]j ,

=
1

(K − 1)

K∑
k=1

[ωk]i[ωk]j , (12)

where the kth SENCORP CE member is ωk =
√

K−1
(N−1)Q δwl1 ◦ . . . ◦ δwlQ and where K = NQ

is the number of SENCORP moderation members and k is shorthand for every combination of
l1 . . . lQ that appears in the line above (12). The matrix containing the CE members is denoted

KSENCORP ∈ Rn×NQ

. The smoothing step is performed to give correlation length scales in C
that are longer than those in PDE

(N). The degree of smoothing is chosen, and the price of overesti-

mating the smoothing length-scales is only to lead to a less e�cient method6. The Schur power
of Q acts to reduce correlations most amongst the SE that are small (these correlations arguably
should be zero, but may not be zero because of sampling noise), but maintains correlations that
are close to ±1. In order to preserve the sign of the sample covariances during the localization,
Q must be even7. The de�nition of SENCORP's CE in terms of the ensemble is the key adaptive
feature of this method. Once the CE is found, the LE follows from (5).

2.4.2 The ECO-RAP localization scheme

The matrix KECORAP for the 'order-Q' ECO-RAP method [1] is a mixture of the SENCORP
and spectral approaches:

KECORAP = C◦Q


FδuΛ

1/2
δu

FδvΛ
1/2
δv

FδpΛ
1/2
δp

FδTΛ
1/2
δT

 ∈ Rn×K , (13)

5The full SENCORP localization matrix in [3] is [(C◦Q)q ]◦r, but this is too di�cult to factorise for the large
state space studied in this paper. Our simpli�ed application is the case q = 1 and r = 1.

6In the limit of in�nitely long length-scales in C, SENCORP will revert to the unlocalized system.
7Normally Q is even as indicated, but we will also consider a case when Q = 1 (in which case all matrix

elements of C◦Q are replaced with their absolute values).
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where the correlation matrix C◦Q is de�ned in Sect. 2.4.1. The number of CE members (the
number of columns in KECORAP) is the same as in KSpec, which depends on the number of
horizontal plane waves and vertical modes. The matrix elements of (13) are:

[KECORAP](rs)k = [ωk](rs) = c(rs)
∑
r′s′

(C◦Q)(rs)(r′s′)F(r′s′)k(Λ
1/2
s′ )kk. (14)

3 Diagnosed correlation functions and balance properties

The experiments performed for this work are listed in Tab. 2. The free parameters that are
explored include the degree of truncation (via Nkx and Nkz ), the implied horizontal and vertical

length-scales (`H and `V, controlled by ˆ̀
H and ˆ̀

V in (7) and (8)), the degree of ensemble pre-
smoothing, the order (Q) and the in�uence parameters (to be described in Sect. 3.4). Not all
parameters are relevant to all schemes. There are two kinds of diagnostics shown in this paper:

• Spatial correlation functions (univariate and multivariate) are computed between a selec-
tion of variables calculated from members of the DE (1) and the LE (5). These are found
from either the covariances PDE

(N) for the unlocalized system, or PLE
(N,K) for a localized

system (normalized by the standard deviations in the usual way). Some of the spatial
moderation functions found from ΩCE

(K) (3) are also shown. These show how strong the
degree of localization is and how the schemes deal with multivariate aspects.

• Balance diagnostics that measure the degree of geostrophic and hydrostatic balance are
computed for the dynamical and localized ensembles. These diagnostics are found as
follows (see [28] for details):

� For geostrophic balance (GB) the linear balance equation is used: Dδ′/Dt =M′ +
W ′+ other terms, where δ′ is the perturbation of divergence, andM′ andW ′ are per-
turbations of the 'mass' and 'wind' terms respectively (Eqs. (3)-(5) of [28]). Pertur-
bations are computed with respect to the mean. For �ow in perfect GB (and assuming
that the other terms are negligible),M′ and W ′ will be exactly anti-correlated.

� For hydrostatic balance (HB) the vertical wind equation is used: Dw′/Dt = P ′ +
T ′ + other terms, where w′ is the perturbation of vertical wind, and P ′ and T ′ are
perturbations of the 'vertical pressure gradient' and 'temperature' terms respectively
(Eqs. (6)-(8) of [28]). For �ow in perfect HB (and assuming that the other terms are
negligible), P ′ and T ′ will be exactly anti-correlated.

3.1 Diagnostics of the dynamical ensemble (no localization)

We have computed a large number of correlation functions for each case study, but we show only
a small selection of these to demonstrate the important points. Figure 2 shows some sample
correlation functions from the DE (Exp. 0 in Tab. 2).

The �rst row, panels (a)-(c), are δT -δT spatial correlations on three cross sections through
the domain (the correlations are between positions in the �eld and the cross-hair). At the validity
time of the ensemble there is a cold front passing over the UK from the west and orientated
along the SW-NE direction [18]. This is re�ected in the anisotropy of the correlation structure
in panel (a), which is at level 30 (overlaid ellipse). The sign of the correlations stays mostly
positive in the horizontal, but there are some far-�eld features that may be due to sampling
error. The vertical correlations, panels (b) and (c) show mainly positive correlations up to level
55 and have a band of negative correlations above that. The local correlation structure shows
patterns that slope with longitude and latitude (overlaid ellipses). Some vertical correlations,
especially those involving δT and δp, may have legitimate far-�eld correlations (which arise due
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Exp Scheme N Nkx Nkz NkH `H
`V

Smoothing
Q

C◦Q

in�u-
ence

K

Horiz Vert ρH ρV
0 None 24 � � � � � � � � � � �
1 Spectral 24 9 5 58 200 30 � � � � � 290
2 Spectral 24 9 5 58 100 30 � � � � � 290
3 SENCORP 16 � � � � � 0 0 1 � � 16
4 SENCORP 16 � � � � � 0 0 2 � � 256
5 SENCORP 16 � � � � � 0 0 4 � � 65536
6 SENCORP 16 � � � � � 10 10 2 � � 256
7 SENCORP 16 � � � � � 50 50 2 � � 256
8 ECO-RAP 24 9 5 58 200 30 2 2 2 0 2 290
9 ECO-RAP 24 9 5 58 200 30 2 2 2 0 16 290
10 ECO-RAP 24 9 5 58 200 30 2 2 2 0 24 290
11 ECO-RAP 24 9 5 58 200 30 2 2 2 0 32 290
12 ECO-RAP 24 9 5 58 200 30 2 2 2 0 64 290
13 ECO-RAP 24 9 5 58 200 30 2 2 1 0 24 290
14 ECO-RAP 24 9 5 58 200 30 2 2 4 0 24 290

Table 2: Summary of experiments used to study the e�ect of localization on balance. The
variables Nkx and Nkz refer to the number of wavenumbers used in the x and z directions
respectively (with Nky = Nkx). The total number of horizontal wavenumbers, NkH , is found by

counting the number of wavenumbers whose total horizontal wavenumber satis�es
√
k2x + k2y ≤

Nkx . For comparison with K, the number of grid points representing one �eld is ∼ 360× 288×
70 ∼ 7× 106.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Univariate and multivariate spatial correlation functions for the main case study
(20th September 2011, 15 UTC) with no localization (Exp. 0). The �rst row, (a)-(c), is for
correlations of temperature at �eld locations with temperature at the cross-hair and the second
row, (d)-(f) is for correlations of zonal wind at �eld locations with pressure at the cross-hair.
The cross-sections correspond to the horizontal and vertical lines.

to 'action at a distance' e�ects caused by, e.g., near HB) so the e�ect of localization in the
vertical requires special attention.

The second row, panels (d)-(e), are δu-δp spatial correlations (the correlations are between
δu at positions in the �eld with δp at the cross-hair). On level 30, there are mainly positive
correlations to the north and negative correlations to the south of the cross-hair, which is the
large-scale pattern expected from GB [28, 21], although the pure geostrophic pattern is disturbed
and the �eld is modulated strongly the front. The vertical cross-sections, panels (e) and (f),
show large-scale and small-scale structures, but a clear band of negative correlation between
levels ∼ 45 and ∼ 55. These features are examples of the structures that an ensemble brings to
DA although the values in the far-�eld are likely to be noise.

The balance diagnostics corresponding to the vertical pro�le at the horizontal cross-hair
position are shown in panels (a) and (b) of Fig. 3 (continuous lines). The geostrophic covariance
diagnostic, panel (a), shows that GB is not well obeyed in the the DE, apart from around level
19. The low degree of GB is not surprising given that we are measuring GB at the grid scale
and that a front is passing through. The hydrostatic diagnostic, panel (b), shows that HB is
almost perfectly satis�ed (values are only just distinguishable from the ordinate and note the
di�erent scales of the abscissa between the two panels), with slight deviations around levels 11,
20, 28, and 37. For the purposes of this paper, these balance diagnostics for the unlocalized
system are considered as the target values which we would like preserved after localization.

Panels (c)-(e) of Fig. 3 (continuous lines) are the correlation functions for δT -δT in the
longitude, latitude and vertical directions along the cross-hairs in panels (a)-(c) of Fig. 2.
These will be useful for comparison with the localized correlation functions to assess the degree
of localization of the schemes considered.

3.2 Diagnostics of the spectral scheme

The implied spatial moderation functions for δT -δT and δu-δp found from the CE for the
spectral scheme using a modest number of wavenumbers (Nkx = 9 and Nkz = 5) are shown

11
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Figure 3: Diagnostics for the unlocalized and spectral scheme for the main case study. Panels (a)
and (b): geostrophic and hydrostatic correlation diagnostics. Panels (c)-(e): spatial correlation
functions with longitude, latitude and level. In all panels the continuous lines are for the
unlocalized system (Exp. 0) and the dashed lines are for the spectral scheme (Exp. 1).

in Fig. 4 in panels (a)-(f). This is denoted Exp. 1 in Tab. 2. If the moderation functions
were represented perfectly then the correlation functions for univariate correlations, panels (a)-
(c), would be isotropic in the horizontal (in terms of grid-points rather than longitude and
latitude) and monotonically decreasing away from the cross-hair to zero (in the vertical and in
any horizontal direction), as (7) and (8). This is clearly not the case, as is highlighted by the
presence of negative values. These are presumably features of the relatively low-rank CE (290
modes, which is much less than the number of grid points representing one �eld ∼ 7× 106).

The implied moderation sub-matrix for δT -δT has the form FδTΛδTFT
δT (Sect. 2.3), but for

di�erent variables, e.g. δu-δp, it has the form FδuΛ
1/2
δu Λ

1/2
δp FT

δp. The vertical basis functions
in F, denoted ν(rz, kz) in (6), are the same for all variables in this work, but the horizontal
basis functions depend upon each variable's lateral boundary conditions (Sect. 2.2.2). Panels
(d)-(f) of Fig. 4 show the implied spatial moderation function between δu and δp, which show
the subtle di�erences with panels (a)-(c)8. Clear from all the moderation functions is their
separable nature between the horizontal and vertical directions.

The localized spatial correlations found from the LE of Exp. 1 are shown in panels (g)-(l).
The correlations maintain the broad structures from the DE in Fig. 2, but are, by design, more
compact. Comparing Figs. 4 and 2, one of the most striking e�ects of the negative moderation
values is the narrowing of the vertical band of δT -δT correlations in the vertical, which may
have a damaging e�ect on balance. The selection of localized multivariate correlations (panels
(j)-(l)) keep their local structures, which is essential for the localized system to have any chance
of maintaining balance.

For reference, panels (c)-(e) of Fig. 3 (dashed lines) are the localized correlation functions

8The implied moderation functions for δT -δT were intended to disappear on the boundaries. This is not
evident in the Figs. because the normalization of the CE performed to make the localization matrix ΩCE

(K) into

a correlation matrix destroys this property.
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for δT -δT in the longitude, latitude and vertical directions along the cross-hairs, which show
more clearly how they di�er from the unlocalized correlation functions (continuous lines). The
two are similar in the horizontal, panels (c) and (d), within a degree or so from the cross-hair
(where the correlation is unity), but the localization tends to be stronger (and negative) in the
southerly direction than in the northerly direction, panel (d). The two lines are similar in the
vertical, panel (e), within about 5 levels of the cross-hair, but there is virtually no localization
from level 30 downwards.

The balance diagnostics for Exp. 1 are overlaid in panels (a) and (b) of Fig. 3 (dashed lines).
For the GB diagnostic, the localized ensemble follows closely the unlocalized ensemble, which
is an encouraging result, but not surprising given that `H is quite large. When the horizontal
length-scale, `H is halved (Exp. 2, in Tab. (2)), the close agreement lessens as expected (not
shown). The spectral scheme though dramatically loses the HB present in the unlocalized
system. This is a surprising result given that the unlocalized and localized correlation functions
are indistinguishable in the vicinity of the centre of the cross-hair - panel (e) - so the vertical
derivatives used in the HB diagnostic might be expected to be similar. Using this scheme
to localize in a convective-scale ensemble-based DA scheme may therefore anomalously induce
convective storms where there are not any.

3.3 Diagnostics of the SENCORP scheme

The spectral scheme uses the same moderation functions, irrespective of the �ow regime. SEN-
CORP on the other hand constructs moderation functions that are determined purely from the
DE. The simpli�ed SENCORP scheme has a number of parameters that can be adjusted, namely
the order, Q, and the degree of smoothing of the DE members to make the SE, which then make
the CE as in (12). As for the spectral scheme in Sect. 3.2, we examine the appearance of
the moderation functions and the e�ect that the scheme has on balance. For these SENCORP
experiments, we limit the number of ensemble members to N = 16 (see below).

3.3.1 E�ect of the order, Q

Figures 5 and 6 show the same selection of spatial moderation functions as in Sect. 3.2, but
for SENCORP with Q = 2 and Q = 4 respectively (no pre-smoothing of the DE is performed
at this stage and the unlocalized results shown use only 16 instead of 24 members). Panels
(a)-(f) of these Figs. can be compared with the same panels in Fig. 4 for the spectral case
(for brevity we do not show the SENCORP localized spatial correlations). For Q = 2 (Exp. 4)
the degree of localization for temperature, panels (a)-(c) in Fig. 5 is more severe than for the
spectral scheme studied. The structures in Fig. 5 are informed by the '�ow-of-the-day', but
there is less freedom in the simpli�ed SENCORP scheme to in�uence the length-scales. There
are no anomalous negative correlations in the SENCORP results. The multivariate moderation
functions that SENCORP applies between zonal wind and pressure, panels (d)-(e) of Fig. 5
are virtually zero at the same point (centre of the cross-hair), but can be signi�cant elsewhere,
especially south of the cross-hair. All regions of signi�cant correlation are the same ones where
the DE has signi�cant correlation (Fig. 2). Increasing the order to Q = 4 (Exp. 5, Fig. 6)
reproduces similar patterns as Q = 2, but with tighter localization. This is how SENCORP is
intended to work. The last column of table 2 shows the number of members, K in the LE. For
SENCORP this grows exponentially with Q, which was una�ordable for N = 24 and Q = 4,
which is why we restricted N = 16.

The localized spatial correlation functions along the cross-hairs for temperature are shown
in panels (c)-(e) of Fig. 7, which shows the localizing e�ect of SENCORP Exps. 4 and 5
(dotted and dashed lines respectively) against the unlocalized correlations (solid lines). All
lines di�er in the vicinity of the centre of the cross-hair (where correlations are close to unity)
more so than for the spectral scheme in the corresponding panels of Fig. 3. As shown in

13



(g) (h) (i)

(j) (k) (l)

(a) (b) (c)

(d) (e) (f)

Figure 4: The upper panels, (a)-(f), are univariate and multivariate implied spatial moderation
functions for the main case study for the spectral scheme (Exp. 1). The lower panels, (g)-(l)
are the localized versions of Fig. 2 (i.e. Fig. 2 multiplied by the �rst set of six panels of this
Fig.). The meaning of the cross-hair is explained in the caption of Fig. 2.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Univariate and multivariate implied spatial moderation functions for the main case
study for the SENCORP scheme with Q = 2 (Exp. 4). The meaning of the cross-hair is
explained in the caption of Fig. 2.

panels (a) and (b), the balance properties of the LE (for GB and HB) are virtually destroyed in
these SENCORP experiments. There is evidence of correspondence between the target values
(unlocalized) and the SENCORP values (in the sense that when the DE correlations increase
so do the LE correlations), but the values are very di�erent.

The e�ectiveness of SENCORP for Q = 2 and Q = 4 to localize is good, but their main-
tenance of balance properties is poor. Of these two experiments, Q = 2 gives (unsatisfactory
but) better balance results. We perform an extra SENCORP experiment with Q = 1 (see foot-
note 7) to see how that con�guration performs (Exp. 3). The results are included in Fig. 7
(dash-dotted lines). The GB and HB values (panels (a) and (b)) are closer to the target values
than the previous SENCORP tests, but Exp. 3 remains unsatisfactory and, in any case, proves
ine�ective at localizing (panels (c)-(e)).

3.3.2 E�ect of pre-smoothing

The full SENCORP scheme in [3] has more freedom to in�uence the length-scales than the
simpli�ed SENCORP (e.g. by making the parameter q mentioned in footnote 5 greater than
unity). Here though we are able to pre-smooth the DE. Two further SENCORP experiments
- Exps. 6 and 7 - are done with pre-smoothing of 10 and 50 grid points respectively in the
horizontal and vertical directions. A summary of the results is in Fig. 8. These tests show that
the pre-smoothing increases the localization length-scales (compared to no pre-smoothing), but
no choice of pre-smoothing maintains balance properties close to the target values.

3.4 Diagnostics of the ECO-RAP scheme

The evaluation of the matrix of CE members for ECO-RAP (13) is more expensive in computer
time than comparable spectral and SENCORP schemes. Equation (13) requires the computation
of C◦Q ∈ Rn×n acting on a matrix that is ∈ Rn×K which is a prohibitive task for typical n. In
order to make ECO-RAP practical for the test cases used in this paper, some approximations
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(a) (b) (c)

(d) (e) (f)

Figure 6: Univariate and multivariate implied spatial moderation functions for the main case
study for the SENCORP scheme with Q = 4 (Exp. 5). The meaning of the cross-hair is
explained in the caption of Fig. 2.
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Figure 7: Diagnostics for the unlocalized and SENCORP scheme with Q = 1, 2 and 4 for the
main case study (note N = 16). Panels (a) and (b): geostrophic and hydrostatic correlation
diagnostics. Panels (c)-(e): spatial correlation functions with longitude, latitude and level. In
all panels the continuous lines are for the unlocalized system (N = 16 version of Exp. 0), the
dash-dotted lines are for Q = 1 (Exp. 3), the dotted lines are for Q = 2 (Exp. 4) and the dashed
lines are for Q = 4 (Exp. 5).

16



 0

 10

 20

 30

 40

 50

 60

 70

-1 -0.8 -0.6 -0.4 -0.2  0

V
e
rt

ic
a
l 
le

v
e
l

P/T correlation

(b) Hydrostatic diagnostic

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6

 0.8
 1

-6 -5 -4 -3 -2 -1  0  1

C
o

rr
e

la
ti
o

n

Longitude

(c) Spatial correlation functions with longitude

Unlocalized (as Exp. 0)
SENCORP sm. 0 (Exp. 4)
SENCORP sm. 10 (Exp. 6)
SENCORP sm. 50 (Exp. 7)

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6

 0.8
 1

 50  50.5  51  51.5  52  52.5  53  53.5

C
o

rr
e

la
ti
o

n

Latitude

(d) Spatial correlation functions with latitude

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6

 0.8
 1

 0  10  20  30  40  50  60  70

C
o

rr
e

la
ti
o

n

Vertical level

(e) Spatial correlation functions with vertical level

 0

 10

 20

 30

 40

 50

 60

 70

-1 -0.5  0  0.5  1

V
e
rt

ic
a
l 
le

v
e
l

M/W correlation

(a) Geostrophic diagnostic

Figure 8: Diagnostics for the unlocalized and SENCORP scheme with di�erent degrees of pre-
smoothing to generate the SE for the main case study (note N = 16 and Q = 2). Panels (a)
and (b): geostrophic and hydrostatic correlation diagnostics. Panels (c)-(e): spatial correlation
functions with longitude, latitude and level. In all panels the continuous lines are for the
unlocalized system (N = 16 version of Exp. 0), the dotted lines are for no pre-smoothing (Exp.
4, reproduced from Fig. 7), the dash-dotted lines are for 10 grid-points of pre-smoothing in the
horizontal and vertical (Exp. 6) and the dashed lines are for 50 grid-points of pre-smoothing
(Exp. 7).

17



to (13) are required. The full evaluation of KECORAP (adapted from (14)) is:

[KECORAP](rs)k = [ωk](rs) = c(rs)
∑
s′

nx∑
r′x=1

ny∑
r′y=1

nz∑
r′z=1

(C◦Q)(rs)(r′s′)F(r′s′)k(Λ
1/2
s′ )kk, (15)

where r′ = (r′x, r
′
y, r
′
z) and the domain has nx, ny and nz points in the x, y and z directions

respectively. Assuming that short-range correlations in C◦Q are the most important, (15) can
be approximated by:

[KECORAP](rs)k = [ωk](rs) ≈ c(rs)
∑
s′

rx+ρH∑
r′x=rx−ρH

ry+ρH∑
r′y=ry−ρH

rz+ρV∑
r′z=rz−ρV

(C◦Q)(rs)(r′s′)F(r′s′)k(Λ
1/2
s′ )kk,

(16)
where ρH is the maximum distance in either of the horizontal directions of correlations considered
in C◦Q, and ρV is the maximum distance of the vertical correlations considered. In this paper
we will call these the ECO-RAP in�uence parameters. Formulation (16) is used in this paper,
so a number of experiments are performed with di�erent values of ρH and ρV (columns 12 and
13 in table 2).

3.4.1 E�ect of the ECO-RAP in�uence parameters

It was found by experimentation that the degree of GB exhibited by the LE produced by ECO-
RAP degrades with increasing horizontal ECO-RAP in�uence parameter (not shown), so this
was set to ρH = 0 in the experiments shown here. We are left with a scheme that is essentially the
spectral scheme in the horizontal and the ECO-RAP scheme in the vertical and is a signi�cant
saving of computer e�ort. This subsection is concerned with the e�ect of ρV only (all spectral
parameters are as Exp. 1, the order is Q = 2 and only a small amount of pre-smoothing (two
units) is done in the horizontal and vertical directions).

Figure 9 shows the localized balance and spatial correlation diagnostics for this con�guration
for �ve values of ρV (Exps. 8-12), compared with the unlocalized (Exp. 0) results. In terms of
GB (panel (a)), ECO-RAP appears to perform reasonably. Although it is not as close to the
target correlations as the spectral scheme (Fig. 3(a)), it shows similar patterns of behaviour
in the vertical. The case with ρV = 2 (light dotted line) performs better than cases for other
values of ρV. The signi�cant gain from ECO-RAP though is found in the HB diagnostics (panel
(b)). Broadly speaking we �nd that the larger the value of ρV the closer the HB diagnostics are
to the target values. The test with ρV = 2 gives similar results to the spectral scheme (see Fig.
3(b)), but increasing this to ρV = 64 (black dash-dotted line) improves the match to the target
values throughout the middle levels of the domain (although marginally worst than the spectral
scheme in the lowest levels). This is a result that might be expected since the larger ρV, the more
�ow-dependent the scheme is and the further away the scheme is from the pure spectral scheme.
The horizontal localized correlation functions (panels (c) and (d)) show similar behaviour to the
spectral case (see Fig. 3, panels (c) and (d)). This is not surprising as the horizontal aspects of
the scheme are similar to the spectral scheme since ρH = 0 (it is not identical because of mixing
of information between vertical levels in ECO-RAP).

These results appear to be encouraging, but the localized vertical correlation functions (panel
(c)) tell a di�erent story. The vertical in�uence parameter value tested that gives the best results
with regard to HB (ρV = 64) leads to vertical correlations that are so similar to the unlocalized
correlations that the scheme has become ine�ective. The vertical in�uence parameter tested that
gives the most e�ective localization is ρV = 2, which, as we have shown above, does not preserve
well the HB properties. By testing a range of ρV values shown in 9, we have though found
that the value ρV = 24 (black dashed line) is a possible compromise value, which approximately
preserves GB and HB in most regions of the atmosphere (apart from vertical levels 40-55),

18



 0

 10

 20

 30

 40

 50

 60

 70

-1 -0.8 -0.6 -0.4 -0.2  0

V
e
rt

ic
a
l 
le

v
e
l

P/T correlation

(b) Hydrostatic diagnostic

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6

 0.8
 1

-6 -5 -4 -3 -2 -1  0  1

C
o

rr
e

la
ti
o

n

Longitude

(c) Spatial correlation functions with longitude

Unlocalized (Exp. 0)
ECORAP rho_v=2 (Exp. 8)
ECORAP rho_v=16 (Exp. 9)
ECORAP rho_v=24 (Exp. 10)
ECORAP rho_v=32 (Exp. 11)
ECORAP rho_v=64 (Exp. 12)

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6

 0.8
 1

 50  50.5  51  51.5  52  52.5  53  53.5

C
o

rr
e

la
ti
o

n

Latitude

(d) Spatial correlation functions with latitude

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6

 0.8
 1

 0  10  20  30  40  50  60  70

C
o

rr
e

la
ti
o

n

Vertical level

(e) Spatial correlation functions with vertical level

 0

 10

 20

 30

 40

 50

 60

 70

-1 -0.5  0  0.5  1

V
e
rt

ic
a
l 
le

v
e
l

M/W correlation

(a) Geostrophic diagnostic

Figure 9: Diagnostics for the unlocalized and ECO-RAP scheme with di�erent degrees of vertical
in�uence parameter ρV for the main case study. Panels (a) and (b): geostrophic and hydrostatic
correlation diagnostics. Panels (c)-(e): spatial correlation functions with longitude, latitude and
level. In all panels the continuous lines are for the unlocalized system (Exp. 0), the light dotted
lines are for ρV = 2 (Exp. 8), the light dash-dotted lines are for ρV = 16 (Exp. 9), the black
dashed lines are for ρV = 24 (Exp. 10), the black dotted lines are for ρV = 32 (Exp. 11) and
the black dash-dotted lines are for ρV = 64 (Exp. 12).
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Figure 10: Diagnostics for the unlocalized and ECO-RAP scheme with Q = 1, 2 and 4 for the
main case study (all runs have ρH = 0 and ρV = 24). Panels (a) and (b): geostrophic and
hydrostatic correlation diagnostics. Panels (c)-(e): spatial correlation functions with longitude,
latitude and level. In all panels the continuous lines are for the unlocalized system (Exp. 0), the
dash-dotted lines are for Q = 1 (Exp. 13), the dotted lines are for Q = 2 (Exp. 12, reproduced
from Fig. 9), and the dashed lines are for Q = 4 (Exp. 14).

while still being e�ective at reducing far-�eld correlations. Although the original reason for
introducing the two in�uence parameters was for computational e�ciency, their presence has
shown how the ECO-RAP scheme can be tuned. We believe that these �ndings are potentially
important for possible use in convective-scale ensemble DA.

3.4.2 E�ect of the order, Q

Maintaining the best value, ρV = 24, from Sect. 3.4.1, we now investigate the e�ect of changing
the order of the scheme. Fig. 10 summarises the results for the same values of Q investigated for
SENCORP in Sect. 3.3.1. There is no clear overall winner as all experiments show signi�cant
reduction of far-�eld correlations and have levels of HB that are closer to the target unlocalized
values than other schemes. Most di�erences lie with the GB diagnostics where there is a general
trend that the larger Q the better the match. For this reason we take Exp. 14 as the best result.
By eye, the set of parameters represented by Exp. 14 seems to perform reasonably well with
the diagnostics shown.

4 Other case studies

The results in Sect. 3 are for a single pro�le. To demonstrate further the performance of the
schemes, we repeat the best con�gurations found from Sect. 3 to three additional pro�les cover-
ing various meteorological conditions, including precipitating and non-precipitating conditions
(see Tab. 3). Note that pro�le A is the one studied earlier. For conciseness, only the balance
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Pro�le Date Time
(UTC)

Long. Lat. Forecast
lead time

Precip? Details

A 20/09/2011 15:00 2.3◦W 52.5◦N 3 hr Yes On a cold front
arriving from
the west.

B 20/09/2011 15:00 0.3◦W 51.0◦N 3 hr No Ahead of the
cold front.

C 26/07/2007 18:00 3.0◦W 52.9◦N 1 hr Yes Leeward of
N.Wales
orography.

D 26/07/2007 18:00 1.3◦W 52.4◦N 1 hr No Non-convecting
region

Table 3: Characteristics of the four pro�les used in this study.

diagnostics are shown here. According to our judgement, the best schemes for balance mainte-
nance are represented by Exp. 1 (spectral), Exp. 3 (SENCORP) and Exp. 14 (ECO-RAP).

The GB comparison is shown in Fig. 11. The results are consistent with earlier results:
all schemes maintain most of the GB characteristics of the pro�le except for SENCORP (dash-
dotted lines). Even though ECO-RAP (dashed lines) doesn't quite capture all of the peaks and
troughs in the GB diagnostic quite as well as the spectral scheme (dotted lines) - e.g. around
levels 19 and 50 in panel (a), and levels 45 and 53 in panel (b) - this is possibly o�-set by its
performance in the HB diagnostic.

The HB comparison is shown in Fig. 12. The characteristics of the unlocalized system are
clearly less closely followed across the board. SENCORP (dash-dotted lines) performs the least
well, followed by the spectral scheme (dotted lines). Although ECO-RAP (dashed lines) matches
the unlocalized HB characteristics the closest, overall it is not clear whether its performance is
adequate in the upper levels, especially if it is used in a convective-scale setting. ECO-RAP
often follows the ups and downs of the unlocalized diagnostic (but with lower degrees of HB),
apart from at levels higher up in the atmosphere (e.g. around level 50 in panel (a), level 40 in
panel (b) and levels 40 and 60 in panels (c) and (d)).

5 Discussion and conclusions

We have demonstrated how well the three Schur product-type localization schemes described
in Sect. 2 are able to simultaneously remove (assumed) spurious correlations from �nite-size
ensembles and maintain the balance properties of the unlocalized ensemble. The three schemes
have not been designed to speci�cally conserve balance, but have been considered before in the
literature. They are based on (i) a decomposition of the moderation matrix in a spectral basis,
(ii) a simpli�ed version of SENCORP [3] and (iii) the ECO-RAP method [1]. Results are derived
from a number of test ensembles of forecasts from the Met O�ce's MOGREPS system, adapted
for convective-scale. This work shows how the balance properties of a localized covariance matrix
can be extracted by constructing the 'localized ensemble' (Tab. 1) which has that covariance
matrix and by studying the geostrophic balance (GB) and hydrostatic balance (HB) properties
and comparing them to those of the 'dynamical ensemble' (the unlocalized ensemble).

Localization a�ects balances because multiplying by a moderation function that reduces with
distance a�ects �elds and gradients of �elds in di�erent ways [12] and balance is often de�ned
as the equalization of a �eld (e.g. wind) and the derivative of another �eld (e.g. pressure).
Longer localization length-scales ease this problem, but reduce the e�cacy of the localization
scheme. Although we could have reduced these problems by making a change of variable, and
then localizing (e.g. [22]), we chose to localize directly in the model variables (u, v, p and T ) as
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Figure 11: Geostrophic balance diagnostic for the four pro�le cases detailed in Tab. 3. In all
panels, the continuous lines are for the unlocalized system (Exp. 0), the dotted lines are for
the spectrally localized system (Exp. 1), the dash-dotted lines are for the SENCORP localized
system (Exp. 3), and the dashed lines are for the ECO-RAP localized system (Exp. 14).
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Figure 12: Hydrostatic balance diagnostic for the four pro�le cases detailed in Tab. 3. In all
panels, the continuous lines are for the unlocalized system (Exp. 0), the dotted lines are for
the spectrally localized system (Exp. 1), the dash-dotted lines are for the SENCORP localized
system (Exp. 3), and the dashed lines are for the ECO-RAP localized system (Exp. 14).
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we wanted to test the adaptive schemes rather than a change of variables. Adaptive localization
schemes o�er a possibility to overcome this problem as the degree of localization is dependent
on the �ow itself and not just on a prescribed moderation function. For instance a scheme might
introduce moderation functions with longer length-scales locally where the ensemble correlations
themselves show a longer length-scale, as we believe is the case for the two adaptive schemes
here (SENCORP and ECO-RAP). Maintaining balance is found to be particularly di�cult for
HB, which is obeyed far more strongly than GB in the �ows studied.

Out of the candidates there is no one scheme that maintains both GB and HB closely, but we
do �nd that a particular con�guration of ECO-RAP is the best scheme overall, which minimises
inappropriate imbalance, but still is able to �lter far-�eld correlations. Horizontal and vertical
'in�uence parameters' were invented for the C◦Q matrix. These were introduced for e�ciency,
but their use proved to be essential for ECO-RAP to give best results. SENCORP localizes very
e�ectively, but it also destroys the balance properties the most.

We do acknowledge certain weaknesses of the tests performed in this paper. Weaknesses in
the implementation of the schemes are as follows. The spectral and ECO-RAP schemes rely on
a truncation in the horizontal and vertical wavenumber spectra which introduces artefacts in
the implied moderation functions, such as non-reducing values in the vertical direction. We also
�nd negative moderation function values although these a�ect mainly the far-�eld where the
moderation functions are smaller anyway (we presume that the negative values are a consequence
of truncation also). In parts of the schemes where length-scales have a prescribed element
(spectral and ECO-RAP) we have used the same length-scales for all variables for simplicity.
Even though, as stated above, the simpli�ed SENCORP scheme is poor at maintaining balance,
this result may say little about the performance of the full SENCORP scheme (see footnote
5). There are also potential weaknesses in the balance diagnostics, which are local measures of
balance only and so susceptible to grid-scale noise (non-local balance diagnostics are considered,
e.g., by [29], but they do not consider localization). Without implementing the schemes in a
realistic ensemble data assimilation/forecasting system there is no quantitative indication of
�rstly how close the localized GB and HB diagnostics should be to the unlocalized diagnostics,
and secondly how much localization is su�cient. It is hoped though that this work can help
guide operational developers to the best localization scheme that can be trialled.
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