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1 The Sherman-Morrison-Woodbury formula

The S-M-W formula (1) is commonly used in data assimilation. Here we quote it and then demonstrate that it
is correct.

Aim

Prove that the following identity holds:

PfH
T
(
R+HPfH

T
)−1

=
(
P−1f +HTR−1H

)−1
HTR−1. (1)

Proof

Take the inverse brackets to the other side of the equation:(
P−1f +HTR−1H

)
PfH

T ?
= HTR−1

(
R+HPfH

T
)
.

Take the Pf inside the bracket on the left hand side, and take the R−1 inside the bracket on the right hand side:(
I+HTR−1HPf

)
HT ?

= HT
(
I+R−1HPfH

T
)
.

Subtract HT from each side:
HTR−1HPfH

T ?
= HTR−1HPfH

T. X
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2 The Kalman gain as a maximum a-posteriori

A gain operator translates an innovation to an analysis increment. Here we will derive the Kalman gain operator
from the standard cost function used in data assimilation. The cost function is

J [δx] =
1

2
δxTP−1f δx+

1

2
(y − h(xb)−Hδx)

T
R−1 (y − h(xb)−Hδx) , (2)

where x = xb + δx and h(x) ≈ h(xb) +Hδx. The �rst derivative is the column vector ∇δxJ of derivatives with
element i ∂J/∂δxi:

∇δxJ = P−1f δx−HTR−1 (y − h(xb)−Hδx) . (3)

At the analysis (the point δx = δxa where the cost function is at a minimum), this gradient is zero:

P−1f δxa −HTR−1 (y − h(xb)−Hδxa) = 0.

Factorising the δxa: (
P−1f +HTR−1H

)
δxa = HTR−1 (y − h(xb)) .

Rearranging gives the analysis increment:

δxa = xa − xb =
(
P−1f +HTR−1H

)−1
HTR−1 (y − h(xb))

= K (y − h(xb)) (4)

where K =
(
P−1f +HTR−1H

)−1
HTR−1. (5)

The Kalman gain is usually given in another form, which is found from (5) using the S-M-W formula (1):

K = PfH
T
(
R+HPfH

T
)−1

. (6)

An alternative derivation of the Kalman gain is given in Sect. 4, which is based on the `minimum variance'
principle.

3 The analysis error covariance matrix

The background, analysis, and observations are all imperfect quantities. First write each in terms of a truth and
an error, and note the de�nitions of the background, analysis, and observation error covariance matrices:

xb = xt + εb, Pf =
〈
εbε

T
b

〉
, (7a)

xa = xt + εa, Pa =
〈
εaε

T
a

〉
, (7b)

y = h(xt) + εo, R =
〈
εoε

T
o

〉
. (7c)

Substitute these into the gain result (4):

xa − xb = K (y − h(xb))

xt + εa − (xt + εb) = K (h(xt) + εo − h(xt + εb))

≈ K (h(xt) + εo − h(xt)−Hεb))

εa − εb ≈ K (εo −Hεb)) (8)

or εa ≈ εb +K (εo −Hεb)) .
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Analysis error covariance is
〈
εaε

T
a

〉
. We develop this and assume that the background and observation errors

are uncorrelated:〈
εaε

T
a

〉
=

〈
[εb +K (εo −Hεb))] [εb +K (εo −Hεb))]

T
〉

=
〈
εbε

T
b

〉
+
〈
εb (εo −Hεb))

T
KT
〉
+
〈
K (εo −Hεb)) ε

T
b

〉
+
〈
K (εo −Hεb)) (εo −Hεb))

T
KT
〉

=
〈
εbε

T
b

〉
+
〈
εbε

T
o

〉
KT −

〈
εbε

T
b

〉
HTKT +K

〈
εoε

T
b

〉
−KH

〈
εbε

T
b

〉
+

K
〈
εoε

T
o

〉
KT −K

〈
εoε

T
b

〉
HTKT −KH

〈
εbε

T
0

〉
KT +KH

〈
εbε

T
b

〉
HTKT

=
〈
εbε

T
b

〉
−
〈
εbε

T
b

〉
HTKT −KH

〈
εbε

T
b

〉
+

K
〈
εoε

T
o

〉
KT +KH

〈
εbε

T
b

〉
HTKT.

The expectations evaluate to the error covariance matrices de�ned above, giving an expression that can be
factorised:

Pa = Pf −PfH
TKT −KHPf +KRKT +KHPfH

TKT.

= Pf −PfH
TKT −KHPf +K

(
R+HPfH

T
)
KT. (9)

We know that the Kalman gain has the form (6), which can be substituted into the above (remembering that
the covariance matrices are symmetric, i.e. Pf = PT

f and R = RT):

Pa = Pf −PfH
T
(
R+HPfH

T
)−1

HPf −

PfH
T
(
R+HPfH

T
)−1

HPf +

PfH
T
(
R+HPfH

T
)−1 (

R+HPfH
T
) (

R+HPfH
T
)−1

HPf

= Pf − 2PfH
T
(
R+HPfH

T
)−1

HPf +PfH
T
(
R+HPfH

T
)−1

HPf

= Pf −PfH
T
(
R+HPfH

T
)−1

HPf

=
[
I−PfH

T
(
R+HPfH

T
)−1

H
]
Pf

= [I−KH]Pf . (10)

Notice that, because of the minus sign, Pa is a smaller valued matrix than Pf . Pa has been found on the basis
of the gain having form (6). There is an alternative form of this analysis error covariance matrix, which uses
form (5) of the Kalman gain. Substitute (5) into (10) and develop:

Pa =
[
I−

(
P−1f +HTR−1H

)−1
HTR−1H

]
Pf

=
(
P−1f +HTR−1H

)−1 [(
P−1f +HTR−1H

)
−HTR−1H

]
Pf

=
(
P−1f +HTR−1H

)−1 [
P−1f

]
Pf

=
(
P−1f +HTR−1H

)−1
. (11)

4 The Kalman gain as a `minimum variance' gain

The update equation with an unspeci�ed gain, G is

xa − xb = G(y − h(xb)), (12)
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which is rather like (8) in Sect. 3. As was done in Sect. 3 we use this to de�ne an error equation, and then an
error covariance equation using de�nitions (7). Assuming that forecast and observation errors are uncorrelated,
the analysis error covariance equation is the same as (9) in Sect. 3 but with K→ G :

Pa = Pf −PfH
TGT −GHPf +G

(
R+HPfH

T
)
GT

= Pf − 2GHPf +G
(
R+HPfH

T
)
GT.

Note that each term has to be symmetric, so the second and third terms of the �rst line must be identical, so
they have been combined in the second line. The total variance is the trace of the above:

Tr (Pa) = Tr (Pf)− 2Tr (GHPf) + Tr
(
G(R+HPfH

T)GT
)
. (13)

We will now �nd the particular gain matrix that minimises this trace. We do this by �nding the matrix
∂Tr (Pa) /∂G, which is a matrix that is the same shape as G. We will decompose (13) into its components,
and then �nd a particular matrix element of the derivative matrix. Decomposing (13) into its components (and
letting C ≡ HPf and D ≡ HPfH

T +R as shorthand):

Tr (Pa) = Tr (Pf)− 2
∑
i,j

GijCji +
∑
i,j,k

GijDjkGik. (14)

We will consider the derivative ∂Tr (Pa) /∂Gi′j′ as contributions from the three terms in (14). Labelling the
three contributions with subscripts in brackets, the �rst term has zero contribution as it does not depend upon
G:

∂Tr (Pa)(1)

∂G
= 0. (15)

The second term can be developed as follows:

∂Tr (Pa)(2)

∂Gi′j′
= −2

∑
i,j

δii′δjj′Cji = −2Cj′i′

= −2(HPf)j′i′ = −2(HPf)
T
i′j′

so
∂Tr (Pa)(2)

∂G
= −2PfH

T. (16)

The third term requires the product rule for di�erentiation and can be developed as follows:

∂Tr (Pa)(3)

∂Gi′j′
=

∑
i,j,k

∂Gij
∂Gi′j′

DjkGik +
∑
i,j,k

GijDjk
∂Gik
∂Gi′j′

=
∑
i,j,k

δii′δjj′DjkGik +
∑
i,j,k

GijDjkδii′δkj′

=
∑
k

Dj′kGi′k +
∑
j

Gi′jDjj′ .

Matrix D is symmetric so we can swap the indices (do this in the �rst term only and then replace summation
variable k → j), which proves that the two terms are identical:

∂Tr (Pa)(3)

∂Gi′j′
=

∑
j

Djj′Gi′j +
∑
j

Gi′jDjj′ = 2
∑
j

Gi′jDjj′ = 2(GD)i′j′

= 2
(
G(HPfH

T +R)
)
i′j′

so
∂Tr (Pa)(3)

∂G
= 2G(HPfH

T +R). (17)
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Adding-up the three terms gives the total derivative:

∂Tr (Pa)

∂G
=

∂Tr (Pa)(1)

∂G
+
∂Tr (Pa)(2)

∂G
+
∂Tr (Pa)(3)

∂G

= 0− 2PfH
T + 2G(HPfH

T +R). (18)

Setting this to zero for the turning point gives:

G = K = PfH
T
(
R+HPfH

T
)−1

, (19)

which is the Kalman gain, as derived by the maximum a-posteriori, (6) in Sect. 2.
Does this correspond to a maximum or a minimum total variance? In order to �nd out, we return to the

expanded forms of the derivatives above and di�erentiate again. The �rst two derivative terms, (15) and (16),
have zero contribution as they do not depend on G. Di�erentiating the third term:

∂2Tr (Pa)(3)

∂Gi′j′∂Gi′′j′′
= 2

∑
j

δi′i′′δjj′′Djj′ = 2δi′i′′Dj′′j′ = 2δi′i′′Dj′j′′ . (20)

This is a four-dimensional matrix (a hyper cuboid shape), or alternatively a matrix of matrices. Its elements are
zero valued, except where i′ = i′′ (so a block diagonal matrix of matrices), and the matrix stored at that point
is D. D is a positive-de�nite matrix and so (20) is also positive-de�nite. This means that the choice G = K
represents the minimum total variance.

5 The Hessian

The Hessian is the matrix of second derivatives of the cost function (2). The incremental cost function, linearised
about xb is given as (2), where x = xb + δx. The �rst derivative is the column vector ∇δxJ of derivatives with
element i ∂J/∂δxi:

∇δxJ = P−1f δx−HTR−1 (y − h(xb)−Hδx) .

The second derivative is the matrix ∇2
δxJ of second derivatives with elements i, j ∂2J/(∂xi∂xj):

∇2
δxJ = P−1f +HTR−1H. (21)

Note that this is the inverse of the analysis error covariance matrix (11).

6 A further identity

Aim

Prove that the following identity holds:(
R+HPfH

T
)−1

= R−1
(
R−HPaH

T
)
R−1. (22)
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Proof

First note the form of the S-M-W formula (1). Since Pf in this identity is really an arbitrary invertible square
matrix, we may replace Pf → −Pa:

−PaH
T
(
R−HPaH

T
)−1

=
(
HTR−1H−P−1a

)−1
HTR−1, (23)

or rearranged:
−
(
HTR−1H−P−1a

)
PaH

T = HTR−1
(
R−HPaH

T
)
. (24)

We also know the relationship between Pa and Pf (11). Inverting (11) gives P−1a (which is the Hessian (21)):

P−1a = P−1f +HTR−1H. (25)

Now develop (22) to show that it is correct (start by left multiplying by HT):

HT
(
R+HPfH

T
)−1 ?

= HTR−1
(
R−HPaH

T
)
R−1

use (24):
?
= −

(
HTR−1H−P−1a

)
PaH

TR−1

use (25):
?
= −

(
HTR−1H−P−1f −HTR−1H

) (
P−1f +HTR−1H

)−1
HTR−1

?
= P−1f

(
P−1f +HTR−1H

)−1
HTR−1

use (1):
?
= P−1f PfH

T
(
R+HPfH

T
)−1

?
= HT

(
R+HPfH

T
)−1

. X
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