Analysis of Innovations program documentation

May 20, 2017

Ross Bannister, April 2017

/home/ross/DataAssim/Meso/AnalofInnovs/Documentation.lyx

User options

For descriptions of the parameters, see below.

Run mode 1: Test reading and writing 1 forecast data file and auxiliary data

diamet.out 1 working dir

• The model forecast data filename is in hardwired in the code.

Run mode 2: Test reading and outputting observation values

diamet.out 2 working_dir obs_dir num_obs_files \
 obs_list_filename \
 T? u? v? p? q? long_wind_uv? trans_wind_uv? long_wind_radar?

Run mode 3: Read forecasts and observations, compute model observations, and output

diamet.out 3 working_dir obs_dir num_obs_files \
 obs_list_filename \
 inc_w_in_modelobs? \
 T? u? v? p? q? long_wind_uv? trans_wind_uv? long_wind_radar?

- The model forecast data filename is in hardwired in the code.
- The include_w_in_modelob_calc flag (0/1).

Run mode 4 : Read output from run mode 4, compute obs vs model obs, and compute analysis of innovations covariances

diamet.out 4 working_dir \
 num_vert_bins top_height \
 num_horiz_bins max_horiz_dist \
 min_fc_lead_time max_fc_lead_time time_window radar_angle_deg \
 T? u? v? p? q? long_wind_uv? trans_wind_uv? long_wind_radar?

Descriptions of the parameters

working_dir The directory containing the input data (except observations – see below), and to where the outputs are sent.

- obs dir The directory containing the observation files.
- num obs files The number of observation files.
- **obs_list_filename** The file (inside working_dir) that specifies the observation files to be read-in (see below for the format of this file).
- num vert bins The number of vertical bins to consider.
- top height The top height of the top vertical bin (m).
- num horiz bins The number of horizontal bins to consider.
- max horiz dist The distance of the last horizontal bin (m).
- min_fc_lead_time The minimum forecast lead time considered (s) (e.g. if considering 3-hour forecast errors, this might be 2.5).
- max_fc_lead_time The maximum forecast lead time considered (s) (e.g. if considering 3-hour forecast errors, this might be 3.5).
- time window The window within which observations are considered to have common truth (s).
- radar angle deg Radar angle to decide whether beams of ob pairs align (degrees)
- $\operatorname{inc}_{\operatorname{tions}}$ <u>modelobs</u> Include w in model observation calculation (relevant only for Doppler radar observations) (0 or 1)?
- **T**? Deal with temperature (0 or 1)?
- **u?** Deal with zonal wind (0 or 1)?
- **v**? Deal with meridional wind (0 or 1)?
- **p?** Deal with pressure (0 or 1)?
- **q?** Deal with water vapour mixing ratio (0 or 1)?
- **long_wind_uv?** Deal with longitudinal wind (0 or 1) (along direction between two observations), where the longitudinal wind is computed from the u and v observations?
- trans_wind_uv? Deal with transverse wind (0 or 1) (perpendicular to the direction between two observations), where the transverse wind is computed from the u and v observations?
- **long_wind_radar?** Deal with longitudinal wind (0 or 1) (along direction between two observations), where the longitudinal wind is measured from Doppler radar?

Format of the obs list filename file

```
obs_type_1 obs_file_1
obs_type_2 obs_file_2
```

- obs type n is the type of observation for the nth observation file (AMDAR, TEMP, FAAM, RADAR).
- obs file n is the filename of the *n*th observation file (expected to be inside obs dir).
- The file listing these things is expected to be placed in the working dir directory.

Figure 1: Geometry of two positions on the Earth \mathbf{r}_1 and \mathbf{r}_2 .

Radar geometry formulae

Finding the 'longitude' directions between two points

Consider a point at longitude λ_1 , latitude ϕ_1 , and height above sea level z_1 (see Fig. 1). The position vector of this point, \mathbf{r}_1 , in global Cartesian co-ordinates – $(\mathbf{x}^g, \mathbf{y}^g, \mathbf{z}^g)$ in Fig. 1 – is

$$\mathbf{r}_{1} = \begin{pmatrix} (r_{\rm E} + z_{1})\cos\phi_{1}\cos\lambda_{1}\\ (r_{\rm E} + z_{1})\cos\phi_{1}\sin\lambda_{1}\\ (r_{\rm E} + z_{1})\sin\phi_{1} \end{pmatrix},\tag{1}$$

where $r_{\rm E}$ is the radius of the Earth. The local unit vectors at \mathbf{r}_1 forming a local Cartesian co-ordinate system (eastward, northward, upward) are rows of the following transform matrix

$$\mathbf{T}_{1} = \begin{pmatrix} -\sin\lambda_{1} & \cos\lambda_{1} & 0\\ -\sin\phi_{1}\cos\lambda_{1} & -\sin\phi_{1}\sin\lambda_{1} & \cos\phi_{1}\\ \cos\phi_{1}\cos\lambda_{1} & \cos\phi_{1}\sin\lambda_{1} & \sin\phi_{1} \end{pmatrix}.$$
(2)

Similar formulae exist for point \mathbf{r}_2 .

To find the unit vector that exists at \mathbf{r}_1 and describes the horizontal wind component that is longitudinal between \mathbf{r}_2 and \mathbf{r}_1 , first define the difference (see Fig. 1),

$$\boldsymbol{\Delta} = \mathbf{r}_2 - \mathbf{r}_1, \tag{3}$$

which projects onto the local unit vectors at \mathbf{r}_1 as follows

$$\mathbf{v}_1 = \mathbf{T}_1 \mathbf{\Delta}.\tag{4}$$

We wish to describe a horizontal unit vector linking \mathbf{r}_1 and \mathbf{r}_2 . Eliminating the vertical component of \mathbf{v}_1 and normalising

$$\hat{\mathbf{l}}_{1} = \mathcal{N} \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{v}_{1} \right] = \mathcal{N} \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{T}_{1} \mathbf{\Delta} \right],$$
(5)

where \mathcal{N} is an instruction to normalise. Given a local wind vector at \mathbf{r}_1 (call \mathbf{u}_1), the 'longitudinal' component (i.e. the component in the direction of \mathbf{r}_2) is then $u_1^{\text{long}} = \hat{\mathbf{l}}_1^{\text{T}} \mathbf{u}_1$. The corresponding longitudinal value at \mathbf{r}_2 is $u_2^{\text{long}} = \hat{\mathbf{l}}_2^{\text{T}} \mathbf{u}_2$.

Finding the transverse directions between two points

The transverse direction at \mathbf{r}_1 (call $\hat{\mathbf{t}}_1$) is found with the following

$$\hat{\mathbf{t}}_1 = -\hat{\mathbf{l}}_1 \times \hat{\mathbf{z}}_1,\tag{6}$$

where $\hat{\mathbf{z}}_1$ is the local upward unit vector. The transpose component of the wind at \mathbf{r}_1 is then $u_1^{\text{trans}} = \hat{\mathbf{t}}_1^{\text{T}} \mathbf{u}_1$, and at \mathbf{r}_2 is $u_2^{\text{trans}} = \hat{\mathbf{t}}_2^{\text{T}} \mathbf{u}_2$.

Finding the location of the radar scatterer

Given that \mathbf{r}_1 is the location of a radar instrument, which receives a back-scatter from an airmass of specified elevation angle (θ), azimuthal angle (φ , measured clockwise from N), and range (r), what is the longitude, latitude, and height of the airmass (at \mathbf{r}_2)?

In the local co-ordinate system of the radar, the position of the airmass is

$$\mathbf{s} = \begin{pmatrix} r\cos\theta\sin\varphi\\ r\cos\theta\cos\varphi\\ r\sin\theta + z_1 \end{pmatrix}.$$
(7)

This needs to be converted into global co-ordinates, and added to \mathbf{r}_1 to give \mathbf{r}_2

$$\mathbf{r}_2 = \mathbf{r}_1 + \mathbf{T}_1^{\mathrm{T}} \mathbf{s},\tag{8}$$

where $\mathbf{T}_1^{\mathrm{T}}$ is the inverse of the orthogonal matrix \mathbf{T}_1 in (2). From \mathbf{r}_2 it is possible to then compute λ_2 , ϕ_2 , and z_2 . This uses the version of (1) that applies to \mathbf{r}_2 rather than \mathbf{r}_1 (in global co-ordinates):

$$x_2^{\rm g} = (r_{\rm E} + z_2) \cos \phi_2 \cos \lambda_2 \tag{9}$$

$$y_2^{\rm g} = (r_{\rm E} + z_2) \cos \phi_2 \sin \lambda_2 \tag{10}$$

$$z_2^{\rm g} = (r_{\rm E} + z_2) \sin \phi_2. \tag{11}$$

To find λ_2 , divide (10) by (9)

$$\frac{y_2^{\rm g}}{x_2^{\rm g}} = \tan \lambda_2$$

This will give an angle $-\pi \leq \lambda_2 < \pi$. If $x_2 < 0$ then π should be added to λ_2 as follows

$$\lambda_{2} = \begin{cases} \arctan(y_{2}^{g}/x_{2}^{g}) & x_{2}^{g} > 0 \\ \pi + \arctan(y_{2}^{g}/x_{2}^{g}) & x_{2}^{g} < 0 \\ \pi/2 & x_{2}^{g} = 0, \ y_{2}^{g} > 0 \\ -\pi/2 & x_{2}^{g} = 0, \ y_{2}^{g} < 0 \end{cases}$$
(12)

Square, then sum (10) and (9)

$$\begin{aligned} x_2^{g^2} + y_2^{g^2} &= (r_E + z_2)^2 \cos^2 \phi_2 \\ &= (r_E + z_2)^2 (1 - \sin^2 \phi_2) \\ \text{so } \sin^2 \phi_2 &= 1 - \frac{x_2^{g^2} + y_2^{g^2}}{(r_E + z_2)^2} \\ &= \frac{(r_E + z_2)^2 - x_2^{g^2} - y_2^{g^2}}{(r_E + z_2)^2} \\ \text{so } \sin \phi_2 &= \frac{\sqrt{(r_E + z_2)^2 - x_2^{g^2} - y_2^{g^2}}}{r_E + z_2} \end{aligned}$$

Combining this result with (11) gives

$$z_2^{\mathrm{g}} = \sqrt{(r_{\mathrm{E}} + z_2)^2 - x_2^{\mathrm{g}^2} - y_2^{\mathrm{g}^2}},$$

which can be solved for z_2

$$z_2 = \sqrt{z_2^{g^2} + x_2^{g^2} + y_2^{g^2}} - r_{\rm E}.$$
(13)

The remaining variable is ϕ_2 , which comes from (11)

$$\phi_2 = \arcsin \frac{z_2^{\rm g}}{r_{\rm E} + z_2}.\tag{14}$$

Finding the projection vector for the radial wind at the scatterer's position

The vector linking \mathbf{r}_2 (the position of the scatterer in global co-ordinates) with \mathbf{r}_1 (the position of the radar in global co-ordinates) is $\mathbf{T}_1^{\mathrm{T}}\mathbf{s}$ in (8). The projection vector (call $\hat{\mathbf{R}}$) used to find the radial wind at the scatterer's position is $\mathbf{T}_1^{\mathrm{T}}\mathbf{s}$ projected onto the local co-ordinates at \mathbf{r}_2 , and then normalised for unit length as follows

$$\hat{\mathbf{R}} = \mathcal{N} \left(\mathbf{T}_2 \mathbf{T}_1^{\mathrm{T}} \mathbf{s} \right), \tag{15}$$

where \mathbf{T}_2 is defined as (2), but for position \mathbf{r}_2 instead of \mathbf{r}_1 .