Wave breaking in the ABC model

Wave breaking will appear as a convergence of eddy momentum flux in the zonal momentum equations of the model. Write the wind variables as the sum of a zonal mean and a perturbation:
(1) u = u + δu,  v = v + δv,  w = w + δw,  ρ̃’ = ρ̃ + δρ̃’,  b’ = b + δb’, 
(do not confuse primes with deltas - here primes are deviations from the reference and deltas are deviations from the zonal mean). Note that δu = 0 (this is true for all quantities). In all of the following, suppose that the zonal mean satisfies the following balances:
(2) C(ρ̃)/(x) = fv and C(ρ̃)/(z) = b
(geostrophic and hydrostatic balance respectively).

Eddy momentum flux and the zonal wind

Substituting (1↑) into the zonal momentum equation and using (2↑) gives:
(∂(u + δu))/(t) + B(u + δu)(∂(u + δu))/(x) + (w + δw)(∂(u + δu))/(z) + C(∂(ρ̃ + δρ̃’))/(x) − f(v + δv)  =  0,  (∂(u + δu))/(t) + B(u + δu)(∂(u + δu))/(x) + (w + δw)(∂(u + δu))/(z) + C(δρ̃)/(x) − δv  =  0.
Now take the zonal mean and develop the result:
(∂(u + δu))/(t) + B(u + δu)(∂(u + δu))/(x) + (w + δw)(∂(u + δu))/(z) + C(δρ̃)/(x) − δv  =  0,  (u)/(t) + Bδu(δu)/(x) + δw(δu)/(z) + w(u)/(z)  =  0.

Eddy momenum flux and the vertical wind

Substituting (1↑) into the vertical momentum equation and using (2↑) gives:
(∂(w + δw))/(t) + B(u + δu)(∂(w + δw))/(x) + (w + δw)(∂(w + δw))/(z) + C(∂(ρ̃ + δρ̃’))/(z) − b − δb  =  0,  (∂(w + δw))/(t) + B(u + δu)(∂(w + δw))/(x) + (w + δw)(∂(w + δw))/(z) + C(δρ̃)/(z) − δb  =  0.
Now take the zonal mean and develop the result:
(∂(w + δw))/(t) + B(u + δu)(∂(w + δw))/(x) + (w + δw)(∂(w + δw))/(z) + C(δρ̃)/(z) − δb  =  0,  (w)/(t) + Bδu(δw)/(x) + δw(δw)/(z) + w(w)/(z)  =  0.

Eddy momentum flux and buoyancy

Substituting (1↑) into the buoyancy equation:
(∂(b + δb’))/(t) + B(u + δu)(∂(b + δb’))/(x) + (w + δw)(∂(b + δb’))/(z) + A2(w + δw) = 0.
Now take the zonal mean and develop the result:
(∂(b + δb’))/(t) + B(u + δu)(∂(b + δb’))/(x) + (w + δw)(∂(b + δb’))/(z) + A2(w + δw)  =  0,  (b)/(t) + Bδu(δb)/(x) + δw(δb)/(z) + w(b)/(z) + A2w  =  0.

The continuity equation

Substituting (1↑) into the continuity equation gives:
(∂(ρ̃ + δρ̃’))/(t) + B(∂(ρ̃ + δρ̃’)(u + δu))/(x) + (∂(ρ̃ + δρ̃’)(w + δw))/(z) = 0.
Now take the zonal mean and develop the result:
(∂(ρ̃ + δρ̃’))/(t) + B(∂(ρ̃ + δρ̃’)(u + δu))/(x) + (∂(ρ̃ + δρ̃’)(w + δw))/(z)  =  0,  (ρ̃)/(t) + B(∂(δρ̃δu))/(x) + (∂(δρ̃δw))/(z) + (∂(ρ̃w))/(z)  =  0.