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1. Inhomogeneity of the ECMWF wavelet transform

1.1
Introduction

The ECMWEF wavelet transform is the spatial/univariate part of the control var

transform,Béfz. It is of the form

K
B = Zs Y.y ® 'y, (1.2)
j=1

whereXy is the diagonal matrix of grid-point standard deviations. Other sym
are associated with the fact that the control vegtonas contributions fronkK

different bands in the following way
X
v =% (12)

XK

Each band is associated with the data assimilation state for a range of scales
j is represented by control subvecjgrit is a function of longitude, latitude an
height. Matrix C{’? is a vertical covariance matrix which operates ynand

represents a different vertical covariance at different horizontal positipnss

waveletj and is a function of horizontal position. Fisher (2003) gives s
example plots of wavelet functions, illustrating the different characteristic s
for a number of bands. Fisher (2003) also explains the form of (1.1). The g
idea of this control variable transform is to allow the vertical correlations to
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1.2 Implied
covariance
matrix
formula

1.3
Convolution
theorem

1.4 Wavelet
implied
covariances

function of position (a§:1’2 above does explicitly), and concurrently, to allow the
to be scale dependent also(}ﬁ»z is a function of bandg).

This section sets out to show that this transform - which implies a covar
matrix - does not yield correlation functions that are homogeneous. Tt
important in meteorological data assimilation, which requires inhomogen
correlation functions.

The control variable transfornBY? relates the control vector to an incremen
vector in the same space as the model variables, ie

X = By (1.3)
The control vector is meant to comprise elements that have no forecast
correlation, and whose variances are unity, t{)gj,g ™), where angular bracket

indicate average over possible values. The covariances that are implied by (1
then

B = (xXx') = BY?B!? (1.4

In order to evaluate (1.4), the transpose of (1.1) is required. What is the trar
of the convolution operator? The need to do a convolution can be avoid
judicious use of Fourier transforms. Consider the convolution of a funétigy,
by anotherg(x). The convolution theorem says that a convolution is simplifie:
Fourier space. In Fourier space a convolution is equivalent to the product
two functions' Fourier transformis(k) andg (k). Algebraically

S ® gx) = f KK, (1.5
fk = SFx, (1.6)
0k = Sgx), (1.7)

whereS is the Fourier transform operator. Thus using the vector representat
functions, (1.5) is
S(f ® g) = FSg, (1.8)

whereF is the diagonal matrix whose diagonal elements are those of the F
transformed vectoSf. The right hand side of (1.8) is then equivalent to
product of the Fourier transforng andSg as in (1.5). This can be applied to (1.

B = ZS* Zlysc”’l 1 (19)

The matrix‘i’j is akin toF in (1.8); it is the diagonal matrix whose diagor
elements comprise those of the ve@gy (the hat on¥; reminds us that this matri;
is in the Fourier representation).

Putting together (1.4) and (1.9) for the implied covariances of the wavelet sc
gives
K

K T
B, = %S Z scf”(zBS‘l Z\Ifjscj”z),

1=

= %S (Z‘PSCS‘P ST, (1.10)

The correlation part of this implied covariance is (1.10) without the backgr
standard deviation terms



K
cor = 5‘1(2 ¥,sCis'|s T (1.12)
j=1

To look for inhomogeneity it is sufficient to examine the properties of (1.11)
simplified set-up. We choose a 1-d horizontal spacplus heightz, framework.
The spectral transform is taken as the Fourier transformvirtose inverse is the
same as the transpose. Let wavenumbers be denotéd b¥his correlation
operator acting on the input staté, 2) is then

K
X", Z) = j dk exp(ikr”) 3 ¥ (k) j dr’ exp(-ikr’) x
i1

fdzC,- Z,zr) f dk exp(ikr’)‘f’j K J' dr exp(-ikr)x(r, 2), (112

wherex (r”, Z) is the output state. Let the input statér,, 2) be prepared as th
delta-function with its peak at positiop z,

X(r,2) = o(r —rg,2— 2. (113
On substitution into (1.12), this becomes

K
X (", 2) f dk” exp(ik'r”) Z‘f’j (k) f dr” exp(-ik'r’) x
i=1

Ci(Z, 2, 1) j dk exp(ikr’) ¥, (k) exp(-ikro),

K
S [ dr [ dk®; (k) exp(k (7 = 1) x
i=1

C(Z, 7%, 1) f dk¥; (k) exp(ik(r’ — rg)). (1.14)

There are now just two integrals over wavenumber, which can be rewritten
following way

jdk"f’j (K) exp(ik' (r” = 1)) = ¥;(r” - 1), (115

[ dke®; (k) exp(ik (' = o) = Wi (1’ = ro). (1.16)
Substituting these into (1.14) gives

K
X (", 7) =Y, f dr'w;(r” = 1) Ci(Z, z; )W (I’ — r9). (117
=1

This may be described in the following way. The delta-functioy, a is coupled
to a new arbitrary position at via the wavelet function¥;(r’ — rp). This is

multiplied by the vertical correlation function from lewvglto Z at the arbitrary
position r’.  This is multiplied by the wavelet function that couples arbitr
position r’ to the new position at”, wherer” is the argument of the outpt
function. This is summed over all arbitrary positions and all wavelet bands.

the value of this correlation betweeg 7z, andr”, Z’ may be thought as havin
contributions due to all possible routes between these positions that go vi
other horizontal position af, and through all possible bands.

1.5 Is this The correlation function of (1.17) is not a functionr6f— ro (ie the horizontal
correlation distance between the delta-function peak,and the argument point;). This
. means that it is not homogeneous. This is true even if the vertical correlatior
Lunctlon f)their position dependence, ie from (1.17)
omogeneous:



K
X", 2) = Y CZ z) [ dr¥ (" = M)W (" - 1p). (1.18)
=1

The known exception is in the case of only one b#nhd; 1. In this case, the
Fourier transforms of the wavelet functions are constant (say unity). Then,
(2.15) and (1.16), and using orthogonality of exponentials

J'dk’ exp(ik (r” = r) = " =r) = o@” =1') = 6(r" = r"),(119

[ dk exp(ik(r' = ro) = W (" = ro) = 0(" = 19). (1.20)

In (1.19), the fact that a delta-function is even is used in the last equality o
equation. Putting (1.19) and (1.20) into (1.18) gives

X (r”, 2)

C(Z, zp) f dar’o(r’ = "o’ - ry),

C(Z, z9) v, (1.21)
where the kronecker delta-function in (1.21) evaluates to zero, except \

”

r” = rowhere itis unity. This is homogeneous!

2. The Met Office 'errors-of-the-day' scheme

2.1
Introduction

Barker et al. (2005) suggest a modified form of the variational assimilation
function that has an extra contribution associated with flow dependent struc
These structures or ‘errors-of-the-day' (EOTD) are found by an error bre
technique developed by Toth and Kalnay (1993, 1997), and for this reason
structures are called bred modes. They are regarded as the fastest growing
in the non-linear forecast system. The modification to be described below
attempt to incorporate flow dependency into the specification of forecast
covariances in Var.

The way that bred modes are computed is described in the above references,
this document we assume that a set of bred mdugs,is available for use in the
variational scheme. Here we look at the modified scheme and at the way
changes the implied covariances.

The modified cost function has three contributions (Barker et al 2005)
J=UJ+J+ J (2.1)

Js andJo are the usual background and observation terms respectikelg. the
EOTD term. The background and observation terms have the same form
standard scheme, and the background term uses the same control vatiaims,
control variablesy,, arise in association with the EOTD term (let thera bentrol
variables fom bred modes, i@ < k < n). In control space]g andJg have the
following forms

n
Bo=21 = Y (22)
k=1
ie all control variables are mutually uncorrelated and have unit variap@nd
{x«} each have blocks that are associated with each Met Office control para
ie streamfunction, unbalanced pressure, velocity potential and relative hun
For simplicity, we will concentrate here on only one parameter (say streamfun
y). Lety be denoted by the statg and lety andy, now represent those portior
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of the original control variables that are concerned only withA similar analysis
can be done for the other control parametegsis found fromy and{y.} by the
control variable transform

n
Vo = BoUlUny + B1 Y (UiUnz) © Vi (2.3)
k=1

The new parametersi, and g, are weights,USUS and UlU} are the spatial
(horizontal and vertical) transforms for the background and EOTD contribu
respectively 09 andUp are the same as in the standard schewp& thekth EOTD

mode, suitably normalized (these are given) amnotes the Shur (element-by
element) product. The need to use a Shur product can be removed by asse¢
the components ofy into the diagonal elements of the diagonal matfix Then

(2.3) can be written

n
Vo = BoUlUnx + B1 Y VilUiUi, (2.4)
k=1

which is easier to work with.

2.2 The contro|Barker et al. (2005) use EOTD control vectofg,}, that are two-dimensional

variable
transform in
matrix form

2.3 The
implied
covariances

having no vertical dependence. The vertical transfairin (2.4) is then a 'null’
transform; apart from a position dependent scaling, it just copies the
dimensional input field to three-dimensions (see section 2.4). Equation (2.
the following matrix structure

BoUUR BiVAUIUR | B1VLUSUR b BiVaURUR || X

Vp = X1{.(2.5)

x is three-dimensional byg,} are two-dimensional, as stated above.

The control vector's elements are uncorrelated and so the implied covariance
of (2.5) is

BoUOUR | BiVIURUR | BIVLURUR | ... | BaVRURUR || BoURTUY
o BUETULTY,
BLUETULTY,
BUETULTY,
T T n T .T
= BIUNRUR U + A7 D VUIURUL U V. (2.6)
k=1

The first term is the implied background error covariance matrix of the star
Var. scheme, and the remaining terms are modifications due to the extra |
variables. The modifications are flow dependent, which comes from the
vectors inVy.
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2.4 The EOTD In order to look at the structure functions associated with the EOTD terms in

horizontal an
vertical
transforms

2.5
Examination
of a bred
vector
contribution to
B

d we need to consider the horizontal and vertical transfdgfandU? which appear

in (2.6).

In the usual formulation, the combination of horizontal transfortud:’
represents an isotropic covariance matrix in the horizontal, which shall be de
by C. The vertical transform4)} and U%T do not appear together in (2.6) and
here we need to consider the form of the vertical transform.

The vertical transform acts on a two-dimensional field - call this fi¢kd ¢), (a
function of longitude and latitude) - and outputs a three dimensional field - cal
field X' (4, ¢, 2) (a function of longitude, latitude and model level). Each leve
just a copy of the two-dimensional input vector, but multiplied by a longitude
latitude dependent scalar. Mathematically this is

X (4 ¢, 2 = UL 9)X(A, ),
= D UG, ¢) Oy X (X', ¢). 2.7
g

This operator will be used in section 2.5 when investigating (2.6). In (2.€
transpose is also required. A mechanical means of forming the transpost
calculate the operator that links derivatives with respect to the inputxstétep’)
with those with respect to the output stade€l, ¢, 20 (Bannister 2008b). By the
chain rule this is

d _ Z IX (4, ¢, 2) d
IXW, @) it IXW, ¢) IX (A, ¢, 2)

The operator that is represented by this is the transpddg ofhe derivatives in
(2.8) can be found from (2.7)

X (A, ¢, 2

(2.8)

= Us( ¢) 010y 2.9
aX(l’, ¢/) ( ¢) MW Yp¢ ( )
Inserting (2.9) into (2.8) gives a form for the transpose operator
J 1 J
— = > Uy(4, ¢)0y0py———
X ) %‘; v(4, ) 01104y X D2
UL ) Y e (2.10)
\ ’ = gx, (A,,, ¢,, Z), .

which will be used when investigating (2.6).

In this section we look at the structure functions associated with one of the E
terms in (2.6), by using the forms of the operators defined in section 2.4. Thi
help us understand how the EOTD modifications work. The contribution tc
implied covariances (2.6) of theh bred vector isg2VULURUE UL'V,. Acting on

an input statex (4, ¢, z) to give an output stat€ (1, ¢’, Z), this operator can b

expanded as follows
X(, ¢, Z) = B, ¢, D) UL (F, ¢) X

S CW, ¢4 §)Us(h @) D (h, ¢, DX(A, ¢, 2). (2.11)
A z

The structure functions can be considered by letting this covariance operator
a delta function at positioh, ¢, z, i€

let X(A, ¢, 2 = 05304302
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X, ¢, 2) = B X, ¢, YU (X, ¢)C X, ¢ Ao, do) Uy (o, Po) Vi (Ror s Z0) -

(2.12)

This gives the implied covariance between a poing,atg, Zo with another at’, ¢,
Z due to thékth EOTD term. The following points can be made.

* The implied covariance is subject to three contributions: (i) a stan
correlation modelC (1, ¢; A, ¢o), Which is a decaying function of thi
horizontal distance between the two points, (i) flow dependent module
functions that are each a function of the start and end po
Vi X, ¢, HULW, ¢) and U (Ao, ¢o) Vi (Ao, 9o, Z0), and (i) a parameter

1.

* In this formulation where théy,} control variables are not a function f
the standard correlation modeC (1, ¢’; Ao, ¢o), IS a function of the
horizontal distance between the two points, but not on the vertical disti
Thus all levels in (2.12) have unit correlation at a single horizontal locati

» Apart from the lack of vertical correlation, which can be solved by addil
dependence to théy}, this result is similar to the Riishgjgaard flov
dependent background error covariance model (Riishgjgaard 1998), bu
one other difference. In Riishgjgaard's model, the prescribed correle
are modulated by a function that is the difference between the backgi
state at positiong, ¢, o andl’, ¢’, Z, but here it is modulated by the Bre
vector values at these positions.

3. Why does the NMC method give twice the covariance
values of background errors?

3.1 What is the The 'National Meteorological Center' (NMC) method is a means of estimatin
NMC method? statistics of forecast errors by analysing the statistics of fordiféssences. The

3.2 The
problem

covariance matrix of forecast errors is defined by the outer product

B = ((x - x)(x - X)), (31
where x is the state of interest ang is the unknown true state. This is ftl
background error covariance matrix (the so-calBdnatrix) used in data
assimilation. The true state is never known, and so (3.1) is impossible to cal
Parrish and Derber (1992) introduced a way of approximating (3.1) by in:
analysing the differences between two forecasts initialised 24 hours apart, bu
at the same time, e.g.

1
B = §<(X48 ~ Xoq) (Xag — X2)') (3.2)

wherex,g is a 48-hour forecast ang, is a 24-hour forecast. It is assumed that
differencesx,s — X»4 are a surrogate for — x;,, and have similar error structure
Here we look at the details that lead to this assumption. In particular we sho
forecast differences have twice the covariance of forecast errors - and her
factor of %2 in (3.2). Here is a complicated argument towards this factor of
simpler argument is given in Bannister (2008a).

Let two forecasts bg,g andx,,, both valid at the same time. Each has a fore
random errorgsg ande,y, and a biashyg andb,,. HOIM et al. (2002) discuss th
relationship between the probability density function (PDF) of the differe
between these forecasts (as characterised by (3.2) when the PDF is Gaussi
the PDFs of each forecast (as characterised by (3.1) whéyea short-range
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3.3 The PDFs

3.4 The
relationship
between the
PDFs

forecast). Each forecast can be written as
Xag = X + e48 + Dy, (33

Xog = X¢ + &4 + b24. (34)

The difference between the forecast®NS= Xug — Xo4 = &ag — €24 + Dag — boa.
By assuming that the biases are the same, the difference simplifies to

OX = X4 — Xo4 = €48 — €24 (35

It is a reasonable assumption that the biases are the same since (i) both forec
valid at the same time, and (ii) each forecast has initial conditions - each takel
analyses - 24 hours apart, thus eliminating any diurnal cycle in analysis b
This is the reason why the 24 hour difference is used in the NMC method (ir
assimilation, the background state is often a six-hour forecast, and so some
use the difference between a 30-hour and a six-hour forecast). We revie
question: how is the PDF ék related to the PDFs efg ande,,?

A Gaussian has the following form (for the vector error quanjity

TEfl
P(u) o exp—‘%, (36)

whereE is the error covariance. Let the PDF of errors in the two forecas
Pag(e49) and Poy(e24). Assuming that they are equal and Gaussian, let the
corrected PDFs have error covariaiggust like in (3.6)

eroE e
Pig(esg) o= exp————2 5 2 (3.7)
s Ele
Paa(€20) o exp—%‘, (3.8)
E = (ee1) = (e2e2). (39

This givesP(e) = Poy(e) = P(e) . Let the PDF of the forecast difference
R (0x). Let this also be Gaussian and have error covariagce

OX"Eglox
2 9
Ep = (OxoX'). (3.11)

Py (0X) =< exp— (3.10

The relationship betwed?(¢) andR; (0x) is the following (H6Im et al. 2002)

P (0x) = J.:) deggP (eag) P24 | OX = €4 — €24). (312

This is the combined probability density of the 48-hour forecast eregg @d the
24-hour forecast error i, given that the difference between the forecastixis
(see (3.5)). This is integrated over all possibilities,gf By using (3.5), and by
simplifying the notatiorzsg — ¢, (3.12) is

Ry (0X) = f:, deP(e)P(e — 0X),

_ j‘” deP(e)P(0X — ¢), (313

where in the last line, the even propertyPat used. Thus the PDF of the forec:
difference is a convolution of the PDF of each forecast with itself.



3.5 Use of the Since (3.13) is a convolution, the relationship betw@geandP can be investigatec

convolution
theorem of
Fourier

transforms

further using the convolution theorem of Fourier transforms. By indicating
Fourier transform of each PDF with a 'hat', and by ugiras the argument ir
Fourier space, the convolution theorem applied to (3.13) is expressed as

Po(k) = 27P?(K). (3.14)

The squared function on the right hand side is a consequence of the fact tl
convolution of P in (3.13) is carried out with itself. Equation (3.14) is a ol
dimensional result. For simplicity, we shall prove results in a one-dimens
phase space and extend conclusions to arbitrary dimensions (the extens
arbitrary dimensions may be made trivially by working in a phase s
representation where the error covariances are diagonal; the multidimen
problem then reduces to the product of many one-dimensional problems).
consequence of working in one-dimension, the error covartanmncg3.7) and (3.8)
may be written as the scatarandEp in (3.10) may be written as,.

If P(¢e) of Gaussian form is theR(¢) = exp(—¢2/20), then the Fourier transforn
may be found from the general result

FT

2 - 1 2
” - — —k“/ 4a o”. 31
exp(—ax”) E Vara exp( ), a > 31y

By applying (3.15) to Fourier transform the one-dimensional Gaussian |
(a = 1/20) gives P (k) = exp(—K20/2)/\/2zlo. Putting this into (3.14) gives

Po(k) = o exp(—k 0). (3.16)

This is a way of performing the convolution. Equation (3.16) needs t
transformed back to the real phase space, by applying (3.15) in reverse to
inverse Fourier transforifl/4a = o, a = 1/40) giving

Ry (0X) = V7o exp—— exp——, (317
2-20
ieop = 20. Extending this result to multidimensional phase space gives
Ep = 2E. (318

The forecast difference statistics have twice the covariance as the forecas
statistics. This is why the factor of ¥z is present in (3.2).

4. Imposing homogeneity and isotropy of structure functions
with a Fourier transform

4.1 The
spectral

representation

Consider the functior, which can be written in terms of its Fourier transfokras
follows

x(r) = %\ZX(k) expik - r. (4.1)
K

Herek = (ki ky) is the wavevector, = (X, y) is the position vector andl is the
area of the two-dimensional domain. [Bfr, r’) be the covariance between tl
field x at positionsr andr’ as follows (assume that has zero mean at eac
position)

B(r, r') = (x(r)x (r)y, (4.2)
where the angled brackets indicate average and itidicates complex conjugat
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4.2
Homogeneity

4.3 Isotropy

(this is normally ommited as fields have real values, but here complex numbe
introduced as a result of the Fourier transform in (4.1)). Substitute (4.1) into (-

B(r,r) = (%\ Y x(k) expik - 1 %AZX(k’) exp-ik’ - r’),
K K

= %Z(f((k)f((k’» expik - r exp_ik’ -1, (43)
k,k’

In (4.3),(x (k)% (k")) is the covariance in spectral representation. It is convenie
writer” = r + s, wheresis a separation. Equation (4.3) becomes

B(r,r +9 = %Z(f((k)f((k’)} expik - r exp-ik' - (r + 9. (4.4
kK

Equation (4.4) is the starting point for the discussion on homogeneity below.

Homogeneity is the property of structure (or correlation) functions whose ¢
does not depend upon position. This means tiaisfhomogeneous there woul
be nor dependence. Consider the case when the covariance in the sj
representation is diagonal, ie let

(%K) = V°(K) O (4.5
Substituting (4.5) into (4.4) gives

B(r,r + 9 %sz(k)ékk’ expik - r exp-ik - (r +9),
kK

%sz(k) expik - r exp-ik - (r +9),
k

%\sz(k) exp-ik - s. (4.6)
k

In (4.6) the dependence orhas disappeared. Hence imposing a covariance tt
diagonal in spectral space implies homogeneity in real space. This is a n
often used in covariance modelling to impose homogenity. The (k) is
called the variance spectrum. Equation (4.6) is now the starting point fo
discussion on isotropy below.

Isotropy is the property of structure (or correlation) functions whose shape
function only of the distance between two points and not on the relative orient
In terms of the separation vector, an isotropic structure function is one that de
only ons (= |s]).

How isotropy can be imposed can be seen by taking the continuous limit. The
summation in (4.6) becomes an integral in spectral space as follows

B(r,r + 9

1 s .
- J‘kx’kydkxdkyv (k) exp-ik - s

_ l k s .

= AJ'k’(Pkdkd(p KVS(K) exp-ik - s,

_ l 2 ky /s e

= Ajkdkk j¢k:0d¢ VS(K) exp-ik - s (4.7
In the last two lines, the integral over spectral space has been written in pol

ordinates wher& = |k|, ¢¥ is the angle betwednand thek,-axis. The integration
limits for the ¢* variable has been given explicitl) fo 27). Let the wave anc
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position vectors be written as the following
k = (k cosg®, ksing"), s = (scos¢®, ssing®, (4.8)

whereg® is the angle betweemand thes-axis (thes, andk, axes are coincident)
The scalar product in (4.6) is then (using the cosine formula)

k - s = ks(cosg® cosg® + sing“sing®) = kscos(¢* — ¢5.  (4.9)
Substituting (4.9) into (4.7) gives
B(r,r +9 = lJ' dk k J'ZJ[ dg*Vo(k) exp-[iks cos(¢® — ¢9]. (4.10)
Ak #k=0

Consider the case when the covariance in the spectral representation i
isotropic, ie (k) = V*(k). Then

B(r,r + s %\J‘kdkk .fj:od‘l’kvs(k) exp-[iks cos(¢* — ¢°)],

%J.kdk KVS (k) IZ:Od¢k exp-[iks cos(¢* — ¢ . (4.11)

It should be easy to see that any integral of the form

27
[ flcostp — )], (4.12)

is independent of for any functionf (all & does is to shift the start phase of t
integral). This means that (4.11) is independentpdf Hence imposing ¢
covariance that is isotropic in spectral space is also isotropic in real space.
details can be found in Berre (2000).

5. A simplified Kalman filter (reduced rank Kalman filter)

5.1 What is a Fisher (1998) has developed a framework for a reduced rank Kalman filter (R

simplified
Kalman filter

5.2 Definition
of the
subspace by
Hessian
singular
vectors

for use in a variational environment. A RRKF in this context may be regarde
modification to the existing-matrix in Var. that allows the dynamical evolution
a subspace of the state vector. The particular way that this is done by Fishi
the approximations that are made, are outlined below.

The first stage is to identify the subspace that will be treated with explicit
dependence. Let the dimension of the subspac&,bahich can be chosel
arbitrarily, but restricted in practice by cost. Fisher defines the subspace Ky
most rapidly growing Hessian singular vectors. The reason why they are cho
be singular vectors of the Hessian will become evident later. In order to
down the problem that must be solved, we introduce two norms, which we a:
are available.

 Let the covariance matri®? be the error covariance of the analysis of 1
previous cycle. In order for Fisher's method to work, it must be possib
act with the matrix@® " (or an approximation of it).

» Let the matriXW be the norm used to measure the size of a perturbatio
must be possible to act with the mawik™.

Let the time of the previous data assimilation cyclé be —T and the time of the
present analysis be= 0. States that have no time label are valid at 0 by
default.

Let the tangent linear modéWl, . _t act on perturbations at time= -T and give
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a perturbation at time = 0

oX = MOF,T(SX(—T). (5.1
If Ox(—T) were known, then the size &f according to th&V-norm would bel;
Ji = XWX = X' (-T)Mg W Mg 10X (=T). (5.2)

The Hessian singular vectors are defined as tho&eT) that maximisel; subject
to the constraint thaix (-T) is distributed according te? ie

OX" (=T)P* "ox(=T) — const = 0, (53)

for an arbitrary constantconst. The constrained optimisation problem m
therefore be posed as

Vi 131 — 20X <T)P* 'ox(=T) — consy] = 0, (5.4)

wherel is the Lagrange multiplier. Applying the derivative operator and se!
the solutions t@x, (with associated Lagrange multiplig) gives

M3 TW Moo 0% (=T) = AP 'oxc(-T), (55)
which is a generalised eigenvalue ?roblem. okeg—T) are the Hessian singule
vectors. The set of vectorB*” ox(-T) are eigenvectors of the matri
(W Y2My . PHT (W Y2M, . P and are equivalently the right singul
vectors of the matrisV Y2M,. P™. Lets, = My 10% (=T). Thoses, with

the largest, define the subspace whose background errors be treated explici
the RRKF.

A general perturbation at= 0, dx has a pardx, that lies in that subspace, whic
can be found as a linear combination of ghe Identification of this subspace ce
be simplified by first constructing an orthogonalized and normalized set of ve:
% (e.g. by the Gramm-Schmidt procedure). Then

s = Sa, (56)

whereS is then x K matrix of§ vectors (the vector space hagimensions) and
oa is theK-element vector of (as yet unknown) coefficients. Orthogonaliza
should be done with respect to an inner product that non-dimensionalise

components (e.g. th&/~! inner product) such th& WS = |. The benefit of
first orthogonalising the vectors is to alléa to be found easily frormix
da = S'wlsx. (5.7)

Note thatda contains only information about the partdfthat is spanned by th
singular vector subspace. Hence in genébais not recovered with (5.6). Thi
means tha8S'W™ = |. However SS'W can be used as a filter to remove pa
of the space which is not spanned by the singular vectorsixi.es SSTW6x.
The part obx that is not within the singular vector subspace is the residyial

0% = OX — X (5.8)
This is orthogonal tdx under theV ! norm, which may be proved as follows
ORIW 10%s = (0% — Ox)" W 10X,
(0x — S8'Wox)" WISSTW o,
ox" (1 — S8'wWHTw 1SS W sx,
OX" (W SS'W — WSS W SSTW T o,
= X" (W'SS'W™ - wiSS'w ) ox,

= 0, as required.
Note that there are other ways of defining a subspace. In Sec. 5.8, we incli

-12-



5.3 The
background
cost function
in the new
subspace

5.4 Control
variable
transforms
stage

appendix on how ensembles could be used in this manner.

The usual background cost function in VAR is
J, = %(6x — M)TBH(0x — 0xXY), (5.9)

wheredx = x — x9, ox° = x° — x9 andx? is a reference (or guess) state. Bae
matrix in (5.9) is static. Equation (5.9) may be written in terms of the compoil
Oxs anddxs by substituting (5.8) into (5.9). This gives three parts: (i) the part
involves only the special subspace that has been identified frold #iegular
vectors, (ii) the part that couples this subspace with the rest of the state, and |
part that involves only the rest of the state

Jy = %((»(s — X)) BT (0% — OXD) + (0% — OXD) B (0xs — OX9) +

%(axs — 0D B (0% — %Y. (5.10)

This cost function is identical to (5.9). The RRKF is constructed by imposi
flow dependent error covariance matrix for the first two tef®s— P") but
keeping the statiB-matrix in the last term

J > %(chs — OTP T (0% — OX) + a (0% — 0O)TP (0% — 0%Y) +

%((m — 0xDTB (0% — 0%D). (5.12)
The factora, added by Fisher (1998), is to help ensure Ihat convex.

It is usual in VAR to make a change of variable from model variablex ito
control variables, which are conventionally namedIn the RRKF there are tw«
control variable transform&(andL) as follows

ox = LXy, (5.12)

whereX is an orthogonal matriXX™ = | (see below) andl is the usual control
variable transform used in VAR wheleX (LX)" = LLT = B. Substituting
(5.12) into (5.11) and using the property mentioned above gives

1 -1 -1
Jo = 5 (s - 2 XTLTP LX (s — 29 + a (s — 2" X'LTPT LX (4s — #) +

i

>0 = 29" (s = 79 (513
whereys = XTL™0xs, 42 = XTL720x2, 7 = X'L~%0%s and72 = X'L™x2. The
matrix X is not present in standard VAR, but is introduced in (5.12) to isolate

special subspace identified in section 5.2 from the remainder. As it stands,
looks complicated to treat. Let

-1 -1
Pl " = X'L'P' LX, (5.14)

then (5.13) is
J= 30— AP e D+l - TP G D
1 b1, b
50 = %) (s = %s)- (5195
and we shall seek to determine explicitly the paFt,fCE)]f that is important.

It is possible to define a suitablX using a sequence of Householc
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transformations (see Sec. 5.6).

5.5 The key to simplifying (5.15) is in the designXf LetX be designed such that:
Determination « XT acting on any vector in the subspacés, gives a vector that is non-zer
of Pf—l only in the firstk elements
x
ai
XL = [, (5.16)
0
0

« andX" acting on a vector in the orthogonal complement gives a vector
is non-zero only in the remainimg— K elements.

How this design specification & can be achieved is covered in section 5.6. -
vectorL 1ox, spans the space defined by keectorsL s, and consequently
and 42 comprise only the firsK elements and this must be maintained in

minimization ofJs. This means that in (5.15), only the fikst cqumnﬁ’ﬂ need
to be known. Following Fisher (1998) let

-1
Z=P S (5.17)

whereS is then x K matrix whose columns are tlsgandZ is then x K result
after acting with the inverse of the flow-dependent error covariance matrix. L
develop this expression using the definition (5.14) along the way

-1
Z =P LxxLls

X'z = X"L'PLXXTLlS,

i~ T, -1
=P, IX'L™'S, (5.18
T T e T -1
X(nxn)L(nxn)Z(nxK) = PX(nxK)I(Kxn)x(nxn)l—(nxn)s(nxK)’
wherei is the compound operator
I(Kxn) = (I(KXK)O(Kxan))- (5-19)

This operator is included to remove the superfluous zero-elements fori rowk
of XTL™'S (by the design oK). In (5.19) and in the line after (5.18), labels he
been added to the matrices to indicate their dimensions. Equation (5.18) allc
to write

XLZdXL 'yt = Pl (5.20)
where the operator inverted is a calculdble K matrix, which we assume is nor
singular. Note that (5.20) is for only part of the inverse covariance matrix and
not symmetric. The matrix yet unknownXsL "Z which, as shown below, is a by
product the Hessian singular vector calculation shown in section 5.2. Firstly, t
definition ofZ, (5.17)

XLz = X"L'P's, (5.21)
the right hand side of which can be found from (5.5), as follows. Let columns

new matrix,S_r, be thos& states at = —T that evolve into the columns 8f(the
columns ofS 7 are the stated, (-T) in (5.5)

S = MOe—TS—T- (522)
This is useful in the derivation to follow. First write (5.5) in complete matrix fol
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5.6 Design oiX

T -1 _ patl
Mo W Mo 1St = P° StA, (5.23

whereA is the diagonal matrix df,. Also important is the propagation of the err
covariances (ignoring the model error contribution)

P' = Mg tP"MJ. 1. (5.24)

These equations can be manipulated to give the matrix in (5.21) required to
(5.20). Starting from (5.23)

PMg. sW'SA™? = s+,
Moc tPMg W 'SA™ = Mo 1S,
PW7'sA™ = g,
wisat = ps
XL 'wlsa™ = XLP s,
= X'L'Z by (5.21)

Pl = X'L'Wisa (XL 9" by (5.20) (5.25)

The right hand side of (5.25) is known and thus all relevant elements ¢
background cost function (5.15) are calculable.

It remains to be shown hoM can be formulated to achieve property (5.16). Fis
(1998) states that this is achieved with a sequence of Householder transform
A single Householder transformatidn, (e.g. Press et al. 1986) may be written
follows

.

uu
P=1-2—, 5.26
oG (5.26)

where

u=Xx5%IX| e. (5.27)

The vectorx is arbitrary anc; is a vector which is zero valued except for the fi
element, which has unit value (the properties of the Householder transforn
hold for a general single element being chosen instead, although here we
choose the first elementp is useful because it has the following useful properti

» The Householder transformation is orthogonal
T
uu’ uu’
| — 2—||I - 2—] ,
u'u u'u
uu’ uuTuu’
| — 4? + 4#,
u'u uTuuTu

PP’

uu’

=| - 4— + 4—

u'u u'u

* When acting on the state which is used to definB in (5.26) and (5.27),
the result is a vector with all but the first element zero

= 1. (5.28)

.
Px = (I — 2#)&
u'u
- T
_ (I LU +T|x| e) )x,
u'u

B (I LU F X el)T)
a 2XX F 2 |X| x)
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uxX'x ¥ x| Xp)
2XTX F 2 |X| X,

=X- U,

= * |X]| e (5.29

* When acting on a stafe which is orthogonal to the statewhich is used to
define P in (5.26) and (5.27), the result is a vector with zero in the 1

element
Note u'x = X'X T |X| €]%,
= F |X| Xl, (530)
uu’
then Px = (I - 2—))‘(,
u'u
X| X (X F |X]| e
R 2| | Xq( IX| e)

2X'X F 2 |X| X

COIXPR T IX] XX E IX] X — Ky [ X%y
XX F |X| X, )

(5.31)

This does not have weight in element 1. To show this, do a scalar produet v

IXIPRe F IX] X% * X] KX — g [XP

XX F |X| X B
In these equationg; andx; are the first components Bfandx respectively. The
first property give®® = PT = P These properties can be combined to diva
the following way. DefiningR® = LS, let X'"R® be a vector of two
components

ePx = 0, (532

XTRO = (’3), (533

whereA is aK x K matrix consistent with the required property of (5.16). In f
by the way thaX" is to be formedA will turn out to be upper triangular. Let
X'R? = p... B... RPR®. (5.34)
EachPR transformation is Householder-like according to the following, e.dg?for
u’
u'u
wherer{? is the first column oR© ande{” is then-element vector with all but the

first element zero (which is unity). This generates a new meffix= P,R©
which has the form

aw®=b—z F®u=r9—ﬂﬁﬁh (535

ri? r ol LR

0 ry r ... r
0 r¥ r® ... R
RY =| . .. .. .| (5.36)
0 rd rd ... r&
0 ry r ... r®

having only the first element non-zero of the first column (sice designed in
terms of the first column oR©®. The aim now is to act withm— 1 xn -1
element Householder operator RfY excluding the first row and first column
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0

1
01 —2ur

where the partitioned-off part &% is an — 1 x n — 1 matrix, r$” is then — 1-
element second column &? (excluding the first component) arff Y is the
n — 1-element vector with all but the first element zero (which is unity). 1
generates a new matfiX? = P,R® which has the form

rd r3 ord iR
0 r@ r@ ... r

0 0 rg ...
R =1 . . ... (5.38)

0 0 r@ ... r@

PR = RY, u =1y -’ e, (5.37)

0 0 r@ ... r@
Thekth operatorP, has the form

0
0| — 2ul

uu

(k-1

ARV = cu=rnE Yo Prel Y, (639

where the partitioned-off part & is an — k + 1 x n — k + 1 matrix, r<" b is

the n — k + 1-element kth column of R®"?P (excluding the firstk — 1

components) ané{" **? is then — k + 1-element vector with all but the firs
element zero (which is unity). After al operators have acted, the result
RK = XTRO

r? ri3 i3 LR
r9 r3 ... Y

) 0 0 r® ... r§
R =1 . .. - (5.40)

0 0 0 .. r&

o

O 0 o0 .. O
where the top section is the matAxin (5.33), and the bottom section compris
zeros.

It should also be shown thdX"™ = |. From (5.34) this is easy to show given tf
each pair has the property thip, = |
P{P... ... APx... B... PPy = I (5.41)

It remains to be shown that the string of Householder operBtorsh... PP,
acting on a staté® (which is orthogonal to all columns Bf?) gives a state that i
zero in the firsK elements. AlPy are formed in the same way as shown above
with respect to th&® matrices).

First letr®® = P;r©. Sincer© is orthogonal ta{® (the latter is the vector used i
define P, in (5.35)), and by property (5.32), the vectt? has zero in the firsi
element. Next, let® = P, By a similar argument, if vector formed from tt
lastn— 1 components of ¥ is orthogonal to the vector formed from the last1

components of$" (the latter is the vector used to defiBein (5.37)), and by
property (5.32), the vectaf® will have zero in the first two elements. Because
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5.7 Summary
of the RRKF

5.8 Appendix
on the use of
ensembles to
define the
subspace

first element ofP,r© is always zero, the remainimg- 1-component inner produc
in question is equal to the ful-component inner product as the first elemt
contributes zero. The orthogonality test is therefore satisfied if the follouvin
component inner product is zero

PrOTPre = rO'plpr = r@hP = o (5.42)

This is satisfied because the vectft is orthogonal ta¥® by definition. These
arguments continue for afl operators. The final result is a vector of zeros in
first K components.

There are a number of issues relating to the RRKF.

« The analysis error estimation in the Hessian singular vector calculation
be inadequate. The modes that actually dominate the background el
t = 0 may not be those that dominate the singular vector calculatic
t = -T. For example, the actual fastest growing modes may be
constrained by the previous cycle's analysis, and so not be given promi
in the Hessian singular vector calculation, or the modes that do emerge
the Hessian singular vector calculation may saturate in the non-linear s
and be overtaken by other modes.

e The number of modes used (10-25) may be inadequate. Ehrendorfe
Bouttier (1998) find that in some studies as many as 100 singular vecto
needed to account for just over half of the forecast error over two ¢
Furthermore, the blending of flow dependent and static error covaria
may lead to physically unrealistic structure functions (Beck and Ehrend
2005).

* No account is taken of model error in the propagation of covaric
information from the previous analysis to the current background, althc
Beck and Ehrendorfer (2005) show how model error can be added.

* The RRKF makes fresh estimates of the flow-dependent subspace for
cycle, and so the propagation of flow dependent information through
system is largely new for every cycle.

« The method is only as good as the knowledge of the Hessian in the He
singular vector calculation (Barkmeijer et al. 1998).

6. Homogeneous structure functions in real and spectral-

spaces

6.1 Real spaceAn error covariance that gives separable structure functions in real space

written as a convolution. A convolution in 1-D has the form
900 = [ dxCe6)f (), (6.1)
If f (X) = d(X — Xg), then the result of (1) is
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6.2 Spectral
space

g = [ dXCx X)d(X ~ Xo),

= C(X %), (6.2)
which is the structure function associated with the source gppint

Let our 2-D structure functions be the separable in horizontal and vertical posi

R(r; ro, 20)Z(Z 1o, Z), (6.3)
wherer (2) is the horizontal (vertical) position. The real-space correlation moc
thus

g(r,2 = f f dr' dZR(r; v, 2)Z(z ', )T (", Z). (6.9
This can be written in the more familiar way using the matrix notation
g = Cf. (6.5)

In spectral space, first write andg as linear combinations of horizontal bas
functions

f(r,2 = [ dKfK, 2R, K), (6.6)

9(r, 2 = [ dkgK, 2R (r, K). (6.7)

In these equationsk is the horizontal wavenumber. Note the orthogona
relations of the horizontal basis functions,

[ AR, KR, K) = 0k - K), (6.8)
Inserting (6.6) and (6.7) into (6.4) gives,

[ dkgK, 2R (r, k) = [ [dr dZR(; 1, 2)Z(z 1, 2)

[ dKF K, )R, K). (6.9)
Multiplying (6.9) by, (r, k) and integrating ovar gives
[dr [dkaK, 2R, KR k) = [dr [ [drdZRe; 1, 2)Z@z 1, 2)

[ dKf (K, )R (r, KR (', k). (6.10)
Orthogonality (6.8) results in the left hand side simplifying,
ok, 2 = f dr ff dr'dZR(r; v, 2)Z(z v’, 2)

[ dKF K, 2)Fn(r, KR, K). (6.11)

This is the correlation (6.4), but in spectral space. Rearrange the order
integrals in (6.11)

ok, 2 = f dk’[f dr ff dr'dZR(r; v, 2)Z(z v’, Z) x x
Fa(r, R (r, K] F(K, Z). (6.12)
The term in large brackets constitutes the covariance model operator in sj

space. The question now is: is this model separable in spectral space? This
to show by acting with (6.12) on the state

fK,2) = 0K - ky)o(Z - 2). (6.13
If the resultg(k, 2) is separable, then we have proved the result

gk 2 = [dr [drRE; T, )R ORI, KZE T, 2). (614
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This is not separable in general - (6.14) is not of the form of a product of a fur
that depends upoky, but notz, with another that depends upgnbut notk. If Z
becomes horizontally homogeneous (ie is no longer a functiof) dfen (6.14)
becomes

g2 = [dr [drRIr, )R (L KR k) X Z(Z 20, (615
which is separable in spectral space.

6.3 Conclusion A correlation that is separable in real space (and has vertical structure functio

are horizontally homogeneous) is also separable in spectral space.

7. How do observations affect background error covariance
lengthscales?

7.1
Introduction

7.2 Simple
analysis

It is often reported that the correlation lengthscale of background errors is re
in the presence of observations (Ingleby 2001). This note discusses the mec
of how this occurs. We look at the simpler problem of analysing how the pre:
of a single observation affects the correlation lengthscale of the analysis
rather than the correlation lengthscale of the subsequent forecast (it is reasor
expect that the qualitative characteristics of the analysis will be carried forwe
the subsequent forecast).

Consider a background error covariance matix, Let it be homogeneous an
isotropic, so that its representation in spectral space is diagonal (and depen
total wavenumber only). Its spectral representation shall be used below. L
observation system be denoted by the Jacoblamnd let the error covariance ¢
the observations bR. The error covariance matrix of the analysed statés the
inverse Hessian

A=B'+HR™H™ (7.1)

The space in which the analysis state, Bamatrix and the right-space &f is

usually spatial. It is more convenient for this analysis to look @b spectral
space. Let the following operators be the forward and inverse Fourier tran
operators

Forward FT: F 1 (7.2)

Inverse FT: F. (7.3

The Fourier transform is orthogon@ = F. In one-dimension, the matri;
elements of- are proportional to simple plane waves

Frg = \/_1N expiXnKgs (7.9
for N grid-points. The spectral-space version of (8.5 iSF
FTAF = FF (B + HRH)'F,
= (F'B'F + FFH'R'HF),
= ([F'BFI™" + [HF]" R [HF]) . (7.5

The reason for converting to spectral space is for simplicity - we shall as
homogeneity throughout (and so the covariances in spectral space are diagor
we can infer lengthscales from the variance spectra - see below.
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The background term in spectral spd€&BF, is diagonal, with diagonal elements
[F'BFlyq = 05(Q). (7.6)

Consider (7.5) with just one observation of grid-pbinThe Jacobian is then

H =(00001000000000), (7.7

with the '1' at positioh. The operatoHF, which is the single row Jacobian actir
on a spectral-space state, is made up of elements

1 .
[HF]lq = m exp|x|kq. (78)
By taking the transpose operator to include an additional complex conj
operation, the operatpHF]T R [HF] is then

- 1 . 1 1 .
[[HFITR [HFIlg = 7= expixkq o5 < U SXPixkic

expix (kg —
_ expix (ke kq)’ (7.9
No?y
whereaogy is the observation standard deviation. Enforcing a homogeneous n
the contribution,[HF]T R[HF], is diagonal. Ignoring off-diagonal elemen

(setting them to zero), leaves the diagonal elements

_ 1
HFI"R ' [HF]ly = = 71
[[HF] [HF]]gq NoZ, (7.10)
which is a constant. Wavenumber comporeot (7.5) is thus
1 1\t
[F'AF]gq = (— + —) :
o \og(@  Noy
-1
_ [Nod, + 08(@) _  0B(9)Nody,
- | = (711
08(q) Nody, Nod, + 08(0)

Equation (7.11) says that those modes of the background state that have
variance, i (q) << No?,, will be unaffected by the observation. Those mo
that have a large variance,dg(q) >> No3,, will have its variance reduced to
value, at mostNo?3,. This is illustrated in Fig. 7.1. The variance of the lon
modes (small wavenumbers) have reduced in value. As this has not affect
small modes (large wavenumbers), this has the effect to broaden the corn
spectra associated with the variance spectra in Fig. 7.1. This will shorte
lengthscale in positional space. In other words, the longer scales are analyse
than smaller scales, because they started with larger variaBce in
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Figure 7.1: Variance spectri@:matrix in spectral space (continuous curi4)y,
(straight dotted line) andl-matrix in spectral space (dash-dotted line).

7.3 Numerical By dropping the homogeneity assumption, off-diagonal elements in (7.9) wi

study -
dropping
homogeneity

present. This is result in @&ymatrix that has a reduced lengthscale, but only in
vicinity of the observation. This can be shown numerically.

Consider the one-dimensional systéing{ x < 1) with a number of observation
near the middle of the domain. Let observaiianake a direct measurement
position x. The row in the Jacobian will be zero apart from the elem
corresponding to grid-points immediately bef@x@ and afterx,) the observation.
These will have elements

X=X and X~%

1_ )
X2 — X1 X2 — Xg

(7.12)

by assuming linear interpolation.

In this numerical study, we need not invoke spectral space, and deal with
matrices directly. We use 30 points and 5 observations near the centre
domain. The background error covariances have the simple form

of

SR — 7.1
1+ (AX/L? (713
whereAx is distancegg = 0.1 and the correlation length parametee 0.2, and

we invoke periodic boundary conditions for a well-behaved background
covariance matrix. The analysis error covariance matrix is then,

B : COV(AX) =

A=@B'+HRH™. (7.14)

Plotted in Fig. 7.2 are the background error and analysis error correlation mat
COR; = Xg'BZg, (7.15)
COR, = ZAATL (7.16)

whereX; is the background error standard deviation maigix= ogl, andX, is the
analysis error standard deviation matrix.
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Figure 7.2: The background error correlations from (7.13) and (7.15) (left) ant
analysis error correlations from (7.14) and (7.16) after the assimilation of fiy
observations near the centre of the domain.

The analysis state shows clearly the reduction of correlation lengthscale
analysis in the vicinity of the observation locations.
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