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This document is a collection of discussion points and results that I have
encountered or derived while studying the theory of background error
covariances.  The sections are in no particular order.
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1. Inhomogeneity of the ECMWF wavelet transform

1.1
Introduction

The ECMWF wavelet transform is the spatial/univariate part of the control variable
transform, .  It is of the formB1/2

s

B1/2
s χ′ = ΣB ∑

K

j = 1

ψj ⊗ C1/2
j χ′j, (1.1)

where  is the diagonal matrix of grid-point standard deviations.  Other symbols
are associated with the fact that the control vector has contributions from
different bands in the following way

ΣB

χ′ K

χ′ = ( ) . (1.2)

χ′1
χ′2
…
χ′K

Each band is associated with the data assimilation state for a range of scales.  Band
 is represented by control subvector; it is a function of longitude, latitude and

height.  Matrix  is a vertical covariance matrix which operates on, and
represents a different vertical covariance at different horizontal positions. is
wavelet  and is a function of horizontal position.  Fisher (2003) gives some
example plots of wavelet functions, illustrating the different characteristic scales
for a number of bands.  Fisher (2003) also explains the form of (1.1).  The general
idea of this control variable transform is to allow the vertical correlations to be a

j χ′j
C1/2

j χ′j
ψj

j
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function of position (as  above does explicitly), and concurrently, to allow them
to be scale dependent also (as  is a function of band, ).

C1/2
j

C1/2
j j

This section sets out to show that this transform - which implies a covariance
matrix - does not yield correlation functions that are homogeneous.  This is
important in meteorological data assimilation, which requires inhomogeneous
correlation functions.

1.2 Implied
covariance
matrix
formula

The control variable transform,  relates the control vector to an incremental
vector in the same space as the model variables, ie

B1/2
s

x′ = B1/2
s χ′. (1.3)

The control vector is meant to comprise elements that have no forecast error
correlation, and whose variances are unity, thus , where angular brackets
indicate average over possible values.  The covariances that are implied by (1.1) are
then

〈χ′χ′T〉

Bs = 〈x′x′T〉 = B1/2
s BT/2

s . (1.4)

1.3
Convolution
theorem

In order to evaluate (1.4), the transpose of (1.1) is required.  What is the transpose
of the convolution operator?  The need to do a convolution can be avoided by
judicious use of Fourier transforms.  Consider the convolution of a function,,
by another, .  The convolution theorem says that a convolution is simplified in
Fourier space.  In Fourier space a convolution is equivalent to the product of the
two functions' Fourier transforms,  and .  Algebraically

f (x)
g (x)

fˆ (k) gˆ (k)

S(f (x) ⊗ g (x)) = fˆ (k) gˆ (k) , (1.5)

fˆ (k) = Sf (x) , (1.6)

gˆ (k) = Sg (x) , (1.7)
where  is the Fourier transform operator.  Thus using the vector representation of
functions, (1.5) is

S

S(f ⊗ g) = F̂Sg, (1.8)
where  is the diagonal matrix whose diagonal elements are those of the Fourier
transformed vector .  The right hand side of (1.8) is then equivalent to the
product of the Fourier transforms  and  as in (1.5).  This can be applied to (1.1)

F̂
Sf

Sf Sg

B1/2
s χ′ = ΣBS−1 ∑

K

j = 1

Ψj
ˆ SC1/2

j χ′j. (1.9)

The matrix  is akin to  in (1.8); it is the diagonal matrix whose diagonal
elements comprise those of the vector (the hat on  reminds us that this matrix
is in the Fourier representation).

Ψ̂j F̂
Sψj Ψ̂j

1.4 Wavelet
implied
covariances

Putting together (1.4) and (1.9) for the implied covariances of the wavelet scheme
gives

Bs = ΣBS
−1 ∑

K

j = 1

Ψj
ˆ SC1/2

j (ΣBS
−1 ∑

K

j = 1

Ψj
ˆ SC1/2

j )T

,

= ΣBS
−1 (∑K

j = 1

Ψj
ˆ SCjS

TΨj) S−TΣB. (1.10)

The correlation part of this implied covariance is (1.10) without the background
standard deviation terms
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cor = S−1 (∑K

j = 1

Ψj
ˆ SCjS

TΨ̂j) S−T. (1.11)

To look for inhomogeneity it is sufficient to examine the properties of (1.11) in a
simplified set-up.  We choose a 1-d horizontal space,, plus height, , framework.
The spectral transform is taken as the Fourier transform in, whose inverse is the
same as the transpose.  Let wavenumbers be denoted by.  This correlation
operator acting on the input state  is then

r z
r

k
x (r, z)

x′ (r″, z′) = ∫ d k′ exp(ik′r″) ∑
K

j = 1

Ψj
ˆ (k′) ∫ d r′ exp(−ik′r′) ×

∫ d zCj (z′, z; r′) ∫ dk exp(ikr′) Ψj
ˆ (k) ∫ d r exp(−ikr) x (r, z) , (1.12)

where  is the output state.  Let the input state,  be prepared as the
delta-function with its peak at position 

x′ (r″, z′) x (r, z)
r0, z0

x (r, z) = δ (r − r0, z − z0) . (1.13)
On substitution into (1.12), this becomes

x′ (r″, z′) = ∫ d k′ exp(ik′r″) ∑
K

j = 1

Ψj
ˆ (k′) ∫ d r′ exp(−ik′r′) ×

Cj (z′, z0; r′) ∫ dk exp(ikr′) Ψj
ˆ (k) exp(−ikr0) ,

= ∑
K

j = 1
∫ d r′ ∫ dk′Ψj

ˆ (k′) exp(ik′ (r″ − r′)) ×

Cj (z′, z0; r′) ∫ dkΨj
ˆ (k) exp(ik (r′ − r0)) . (1.14)

There are now just two integrals over wavenumber, which can be rewritten in the
following way

∫ dk′Ψj
ˆ (k′) exp(ik′ (r″ − r′)) = Ψj (r″ − r′) , (1.15)

∫ dkΨj
ˆ (k) exp(ik (r′ − r0)) = Ψj (r′ − r0) . (1.16)

Substituting these into (1.14) gives

x′ (r″, z′) = ∑
K

j = 1
∫ d r′Ψj (r″ − r′) Cj (z′, z0; r′) Ψj (r′ − r0) . (1.17)

This may be described in the following way.  The delta-function at is coupled
to a new arbitrary position at via the wavelet function .  This is
multiplied by the vertical correlation function from level to  at the arbitrary
position .  This is multiplied by the wavelet function that couples arbitrary
position  to the new position at , where  is the argument of the output
function.  This is summed over all arbitrary positions and all wavelet bands.  Thus
the value of this correlation between  and  may be thought as having
contributions due to all possible routes between these positions that go via one
other horizontal position at , and through all possible bands.

r0, z0

r′ Ψj (r′ − r0)
z0 z′

r′
r′ r″ r″

r0, z0 r″, z″

r′

1.5 Is this
correlation
function
homogeneous?

The correlation function of (1.17) is not a function of  (ie the horizontal
distance between the delta-function peak, and the argument point, ).  This
means that it is not homogeneous.  This is true even if the vertical correlations lose
their position dependence, ie from (1.17)

r″ − r0

r0, r″
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x′ (r″, z′) = ∑
K

j = 1

Cj (z′, z0) ∫ d r′Ψj (r″ − r′) Ψj (r′ − r0) . (1.18)

The known exception is in the case of only one band, .  In this case, the
Fourier transforms of the wavelet functions are constant (say unity).  Then, from
(1.15) and (1.16), and using orthogonality of exponentials

K = 1

∫ dk′ exp(ik′ (r″ − r′)) = Ψj (r″ − r′) = δ (r″ − r′) = δ (r′ − r″) , (1.19)

∫ dk exp(ik (r′ − r0)) = Ψj (r′ − r0) = δ (r′ − r0) . (1.20)

In (1.19), the fact that a delta-function is even is used in the last equality of that
equation.  Putting (1.19) and (1.20) into (1.18) gives

x′ (r″, z′) = C (z′, z0) ∫ d r′δ (r′ − r″)δ (r′ − r0) ,

= C (z′, z0)δr″,r0
, (1.21)

where the kronecker delta-function in (1.21) evaluates to zero, except where
 where it is unity.  This is homogeneous!r″ = r0

2. The Met Office 'errors-of-the-day' scheme

2.1
Introduction

Barker et al. (2005) suggest a modified form of the variational assimilation cost
function that has an extra contribution associated with flow dependent structures.
These structures or 'errors-of−the-day' (EOTD) are found by an error breeding
technique developed by Toth and Kalnay (1993, 1997), and for this reason these
structures are called bred modes.  They are regarded as the fastest growing modes
in the non-linear forecast system.  The modification to be described below is an
attempt to incorporate flow dependency into the specification of forecast error
covariances in Var.

The way that bred modes are computed is described in the above references, but for
this document we assume that a set of bred modes,, is available for use in the
variational scheme.  Here we look at the modified scheme and at the way that it
changes the implied covariances.

{vk}

The modified cost function has three contributions (Barker et al 2005)

J = JB + JO + JE. (2.1)
 and  are the usual background and observation terms respectively. is the

EOTD term.  The background and observation terms have the same form as the
standard scheme, and the background term uses the same control variables,.  New
control variables, , arise in association with the EOTD term (let there be control
variables for  bred modes, ie ).  In control space,  and  have the
following forms

JB JO JE

χ
χk n

n 1 ≤ k ≤ n JB JE

JB = χTχ,  JE = ∑
n

k = 1

χT
kχk, (2.2)

ie all control variables are mutually uncorrelated and have unit variance. and
 each have blocks that are associated with each Met Office control parameter,

ie streamfunction, unbalanced pressure, velocity potential and relative humidity.
For simplicity, we will concentrate here on only one parameter (say streamfunction,

).  Let  be denoted by the state, and let  and  now represent those portions

χ
{χk}

ψ ψ vp χ χk
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of the original control variables that are concerned only with.  A similar analysis
can be done for the other control parameters. is found from  and  by the
control variable transform

ψ
vp χ {χk}

vp = β0U
0
vU

0
hχ + β1 ∑

n

k = 1

(U1
vU

1
hχk) � vk. (2.3)

The new parameters,  and  are weights,  and  are the spatial
(horizontal and vertical) transforms for the background and EOTD contributions
respectively (  and  are the same as in the standard scheme), is the th EOTD
mode, suitably normalized (these are given) and denotes the Shur (element-by-
element) product.  The need to use a Shur product can be removed by assembling
the components of  into the diagonal elements of the diagonal matrix.  Then
(2.3) can be written

β0 β1 U0
vU0

h U1
vU1

h

U0
v U0

h vk k
�

vk Vk

vp = β0U
0
vU

0
hχ + β1 ∑

n

k = 1

VkU
1
vU

1
hχk, (2.4)

which is easier to work with.

2.2 The control
variable
transform in
matrix form

Barker et al. (2005) use EOTD control vectors, , that are two-dimensional,
having no vertical dependence.  The vertical transform, in (2.4) is then a 'null'
transform; apart from a position dependent scaling, it just copies the two-
dimensional input field to three-dimensions (see section 2.4).  Equation (2.4) has
the following matrix structure

{χk}
U1

v

vp = ( ) .(2.5)

( )β0U0
vU0

h β1V1U1
vU1

h β1V2U1
vU1

h … β1VnU1
vU1

h χ

χ1

χ2

…
χn

 is three-dimensional but  are two-dimensional, as stated above.χ {χk}

2.3 The
implied
covariances

The control vector's elements are uncorrelated and so the implied covariance matrix
of (2.5) is

B = ( ) ,

( )β0U0
vU0

h β1V1U1
vU1

h β1V2U1
vU1

h … β1VnU1
vU1

h
β0U0

h
TU0

v
T

β1U1
h

TU1
v

TV1

β1U1
h

TU1
v

TV2

…

β1U1
h

TU1
v

TVn

= β2
0U

0
vU

0
hU

0
h

T
U0

v

T
+ β2

1 ∑
n

k = 1

VkU
1
vU

1
hU

1
h

T
U1

v

T
Vk. (2.6)

The first term is the implied background error covariance matrix of the standard
Var. scheme, and the remaining terms are modifications due to the extra EOTD
variables.  The modifications are flow dependent, which comes from the bred
vectors in .Vk
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2.4 The EOTD
horizontal and
vertical
transforms

In order to look at the structure functions associated with the EOTD terms in (2.6),
we need to consider the horizontal and vertical transforms, and  which appear
in (2.6).

U1
h U1

v

In the usual formulation, the combination of horizontal transforms,
represents an isotropic covariance matrix in the horizontal, which shall be denoted
by .  The vertical transforms,  and  do not appear together in (2.6) and so
here we need to consider the form of the vertical transform.

U1
hU1

h
T

C U1
h U1

h
T

The vertical transform acts on a two-dimensional field - call this field , (a
function of longitude and latitude) - and outputs a three dimensional field - call this
field  (a function of longitude, latitude and model level).  Each level is
just a copy of the two-dimensional input vector, but multiplied by a longitude and
latitude dependent scalar.  Mathematically this is

x (λ, φ)

x′ (λ, φ, z)

x′ (λ, φ, z) = U1
v (λ, φ) x (λ, φ) ,

= ∑
λ,φ

U1
v (λ′, φ′)δλλ′δφφ′ x (λ′, φ′) . (2.7)

This operator will be used in section 2.5 when investigating (2.6).  In (2.6) its
transpose is also required.  A mechanical means of forming the transpose is to
calculate the operator that links derivatives with respect to the input state,
with those with respect to the output state,  (Bannister 2008b).  By the
chain rule this is

x (λ′, φ′)
x′ (λ, φ, z)

∂
∂ x (λ′, φ′)

= ∑
λφz

∂ x′ (λ, φ, z)
∂ x (λ′, φ′)

∂
∂ x′ (λ, φ, z)

. (2.8)

The operator that is represented by this is the transpose of.  The derivatives in
(2.8) can be found from (2.7)

U1
v

∂ x′ (λ, φ, z)
∂ x (λ′, φ′)

= U1
v (λ, φ)δλλ′δφφ′ (2.9)

Inserting (2.9) into (2.8) gives a form for the transpose operator

∂
∂ x (λ′, φ′)

= ∑
λφz

U1
v (λ, φ)δλλ′δφφ′

∂
∂ x′ (λ, φ, z)

,

= U1
v (λ′, φ′) ∑

z

∂
∂ x′ (λ′, φ′, z)

, (2.10)

which will be used when investigating (2.6).

2.5
Examination
of a bred
vector
contribution to
B

In this section we look at the structure functions associated with one of the EOTD
terms in (2.6), by using the forms of the operators defined in section 2.4.  This may
help us understand how the EOTD modifications work.  The contribution to the
implied covariances (2.6) of theth bred vector is, .  Acting on
an input state,  to give an output state , this operator can be
expanded as follows

k β2
1VkU1

vU1
hU1

h
T
U1

v
T
Vk

x (λ, φ, z) x′ (λ′, φ′, z′)

x (λ′, φ′, z′) = β2
1vk (λ′, φ′, z′) U1

v (λ′, φ′) ×

∑
λφ

C (λ′, φ′; λ, φ) U1
v (λ, φ) ∑

z

vk (λ, φ, z) x (λ, φ, z) . (2.11)

The structure functions can be considered by letting this covariance operator act on
a delta function at position , , , ieλ0 φ0 z0

x (λ, φ, z) = δλλ0
δφφ0

δzz0
,let  
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x (λ′, φ′, z′) = β2
1vk (λ′, φ′, z′) U1

v (λ′, φ′) C (λ′, φ′; λ0, φ0) U1
v (λ0, φ0) vk (λ0, φ0, z0) .

(2.12)
This gives the implied covariance between a point at, ,  with another at , ,

 due to the th EOTD term.  The following points can be made.
λ0 φ0 z0 λ′ φ′

z′ k

• The implied covariance is subject to three contributions: (i) a standard
correlation model, , which is a decaying function of the
horizontal distance between the two points, (ii) flow dependent modulation
functions that are each a function of the start and end points,

 and , and (iii) a parameter
.

C (λ′, φ′; λ0, φ0)

vk (λ′, φ′, z′) U1
v (λ′, φ′) U1

v (λ0, φ0) vk (λ0, φ0, z0)
β2

1

• In this formulation where the  control variables are not a function of,
the standard correlation model, , is a function of the
horizontal distance between the two points, but not on the vertical distance.
Thus all levels in (2.12) have unit correlation at a single horizontal location.

{χk} z
C (λ′, φ′; λ0, φ0)

• Apart from the lack of vertical correlation, which can be solved by adding
dependence to the , this result is similar to the Riishøjgaard flow-
dependent background error covariance model (Riishøjgaard 1998), but with
one other difference.  In Riishøjgaard's model, the prescribed correlations
are modulated by a function that is the difference between the background
state at positions , ,  and , , , but here it is modulated by the Bred
vector values at these positions.

z
{χk}

λ0 φ0 z0 λ′ φ′ z′

3. Why does the NMC method give twice the covariance
values of background errors?

3.1 What is the
NMC method?

The 'National Meteorological Center' (NMC) method is a means of estimating the
statistics of forecast errors by analysing the statistics of forecastdifferences.  The
covariance matrix of forecast errors is defined by the outer product

B = 〈(x − xt) (x − xt)
T〉 , (3.1)

where  is the state of interest and is the unknown true state.  This is the
background error covariance matrix (the so-called-matrix) used in data
assimilation.  The true state is never known, and so (3.1) is impossible to calculate.
Parrish and Derber (1992) introduced a way of approximating (3.1) by instead
analysing the differences between two forecasts initialised 24 hours apart, but valid
at the same time, e.g.

x xt

B

B ≈
1
2

〈(x48 − x24) (x48 − x24)
T〉 , (3.2)

where  is a 48-hour forecast and  is a 24-hour forecast.  It is assumed that the
differences  are a surrogate for , and have similar error structures.
Here we look at the details that lead to this assumption.  In particular we show that
forecast differences have twice the covariance of forecast errors - and hence the
factor of ½ in (3.2).  Here is a complicated argument towards this factor of ½ (a
simpler argument is given in Bannister (2008a).

x48 x24

x48 − x24 x − xt

3.2 The
problem

Let two forecasts be  and , both valid at the same time.  Each has a forecast
random error,  and , and a bias,  and .  Hólm et al. (2002) discuss the
relationship between the probability density function (PDF) of the difference
between these forecasts (as characterised by (3.2) when the PDF is Gaussian) and
the PDFs of each forecast (as characterised by (3.1) where is a short-range

x48 x24

ε48 ε24 b48 b24

x
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forecast).  Each forecast can be written as

x48 = xt + ε48 + b48, (3.3)

x24 = xt + ε24 + b24. (3.4)
The difference between the forecasts is .
By assuming that the biases are the same, the difference simplifies to

δx = x48 − x24 = ε48 − ε24 + b48 − b24

δx = x48 − x24 = ε48 − ε24. (3.5)
It is a reasonable assumption that the biases are the same since (i) both forecasts are
valid at the same time, and (ii) each forecast has initial conditions - each taken from
analyses - 24 hours apart, thus eliminating any diurnal cycle in analysis biases.
This is the reason why the 24 hour difference is used in the NMC method (in data
assimilation, the background state is often a six-hour forecast, and so some centres
use the difference between a 30-hour and a six-hour forecast).  We review the
question: how is the PDF of  related to the PDFs of  and ?δx ε48 ε24

3.3 The PDFs A Gaussian has the following form (for the vector error quantity )µ

P (µ) ∝ exp−
µTE−1µ

2
, (3.6)

where  is the error covariance.  Let the PDF of errors in the two forecasts be
 and .  Assuming that they are equal and Gaussian, let the bias-

corrected PDFs have error covariance , just like in (3.6)

E
P48 (ε48) P24(ε24)

E

P48(ε48) ∝ exp−
εT

48E−1ε48

2
, (3.7)

P24(ε24) ∝ exp−
εT

24E−1ε24

2
, (3.8)

E = 〈ε1εT
1〉 = 〈ε2εT

2〉 . (3.9)
This gives  .  Let the PDF of the forecast difference be

.  Let this also be Gaussian and have error covariance 
P48 (ε) = P24(ε) ≡ P (ε)

PD (δx) ED

PD (δx) ∝ exp−
δxTE−1

D δx
2

, (3.10)

ED = 〈δxδxT〉 . (3.11)

3.4 The
relationship
between the
PDFs

The relationship between  and  is the following (Hólm et al. 2002)P (ε) PD (δx)

PD (δx) = ∫
∞

−∞
d ε48P (ε48) P (ε24 | δx = ε48 − ε24) . (3.12)

This is the combined probability density of the 48-hour forecast error is and the
24-hour forecast error is  given that the difference between the forecasts is
(see (3.5)).  This is integrated over all possibilities of.  By using (3.5), and by
simplifying the notation , (3.12) is

ε48

ε24 δx
ε48

ε48 → ε

PD (δx) = ∫
∞

−∞
d εP (ε) P (ε − δx) ,

= ∫
∞

−∞
dεP (ε) P (δx − ε) , (3.13)

where in the last line, the even property of is used.  Thus the PDF of the forecast
difference is a convolution of the PDF of each forecast with itself.

P
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3.5 Use of the
convolution
theorem of
Fourier
transforms

Since (3.13) is a convolution, the relationship between and  can be investigated
further using the convolution theorem of Fourier transforms.  By indicating the
Fourier transform of each PDF with a 'hat', and by using as the argument in
Fourier space, the convolution theorem applied to (3.13) is expressed as

PD P

k

P̂D (k) = 2πP̂2 (k) . (3.14)
The squared function on the right hand side is a consequence of the fact that the
convolution of  in (3.13) is carried out with itself.  Equation (3.14) is a one-
dimensional result.  For simplicity, we shall prove results in a one-dimensional
phase space and extend conclusions to arbitrary dimensions (the extension to
arbitrary dimensions may be made trivially by working in a phase space
representation where the error covariances are diagonal; the multidimensional
problem then reduces to the product of many one-dimensional problems).  As a
consequence of working in one-dimension, the error covariance in (3.7) and (3.8)
may be written as the scalar , and  in (3.10) may be written as .

P

E
σ ED σD

If  of Gaussian form is then , then the Fourier transform
may be found from the general result

P (ε) P (ε) = exp(−ε2 / 2σ)

″ exp(−αx2)             
1
4πα

exp(−k2 / 4α) ,   α > 0″. (3.15)→
FT

←
IFT

By applying (3.15) to Fourier transform the one-dimensional Gaussian PDFs
 gives , .  Putting this into (3.14) gives(α = 1/ 2σ) P̂ (k) = exp(−k2σ / 2) / 2π / σ

P̂D (k) = σ exp(−k2σ) . (3.16)
This is a way of performing the convolution.  Equation (3.16) needs to be
transformed back to the real phase space, by applying (3.15) in reverse to do the
inverse Fourier transform  giving(1/ 4α = σ,  α = 1 / 4σ)

PD (δx) = πσ exp−
δx 2

4σ
∝ exp−

δx2

2⋅2σ
, (3.17)

ie .  Extending this result to multidimensional phase space givesσD = 2σ

ED = 2E. (3.18)
The forecast difference statistics have twice the covariance as the forecast error
statistics.  This is why the factor of ½ is present in (3.2).

4. Imposing homogeneity and isotropy of structure functions
with a Fourier transform

4.1 The
spectral
representation

Consider the function, which can be written in terms of its Fourier transform,as
follows

x x˜

x (r) =
1
A ∑

k

x˜ (k)  expik ⋅ r. (4.1)

Here  is the wavevector,  is the position vector and is the
area of the two-dimensional domain.  Let  be the covariance between the
field  at positions  and  as follows (assume that has zero mean at each
position) 

k = (kx, ky) r = (x, y) A
B (r, r′)

x r r′ x

B (r, r′) = 〈x (r) x∗ (r′)〉 , (4.2)
where the angled brackets indicate average and the indicates complex conjugate∗
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(this is normally ommited as fields have real values, but here complex numbers are
introduced as a result of the Fourier transform in (4.1)).  Substitute (4.1) into (4.2)

B (r, r′) = 〈
1
A ∑

k

x˜ (k)  expik ⋅ r  
1
A ∑

k′
x˜ (k′)  exp−ik′ ⋅ r′〉 ,

=
1
A ∑

k,k′
〈x˜ (k) x˜ (k′)〉  expik ⋅ r  exp−ik′ ⋅ r′. (4.3)

In (4.3),  is the covariance in spectral representation.  It is convenient to
write , where  is a separation.  Equation (4.3) becomes

〈x˜ (k) x˜ (k′)〉
r′ = r + s s

B (r, r + s) =
1
A ∑

k,k′
〈x˜ (k) x˜ (k′)〉  expik ⋅ r  exp−ik′ ⋅ (r + s) . (4.4)

Equation (4.4) is the starting point for the discussion on homogeneity below.

4.2
Homogeneity

Homogeneity is the property of structure (or correlation) functions whose shape
does not depend upon position.  This means that if is homogeneous there would
be no  dependence.  Consider the case when the covariance in the spectral
representation is diagonal, ie let

B
r

〈x˜ (k) x˜ (k′)〉 = V s (k)δkk′. (4.5)
Substituting (4.5) into (4.4) gives

B (r, r + s) =
1
A ∑

k,k′
V s (k)δkk′  expik ⋅ r  exp−ik′ ⋅ (r + s) ,

=
1
A ∑

k

V s (k)  expik ⋅ r  exp−ik ⋅ (r + s) ,

=
1
A ∑

k

V s (k)  exp−ik ⋅ s. (4.6)

In (4.6) the dependence on has disappeared.  Hence imposing a covariance that is
diagonal in spectral space implies homogeneity in real space.  This is a method
often used in covariance modelling to impose homogenity.  The term is
called the variance spectrum.  Equation (4.6) is now the starting point for the
discussion on isotropy below.

r

V s (k)

4.3 Isotropy Isotropy is the property of structure (or correlation) functions whose shape is a
function only of the distance between two points and not on the relative orientation.
In terms of the separation vector, an isotropic structure function is one that depends
only on  ( ).s = | s |

How isotropy can be imposed can be seen by taking the continuous limit.  Then, the
summation in (4.6) becomes an integral in spectral space as follows

B (r, r + s) =
1
A ∫kx,ky

dkx dky V s (k)  exp−ik ⋅ s,

=
1
A ∫k,φk

dk dφk k V s (k)  exp−ik ⋅ s,

=
1
A ∫k

dk k ∫
2π

φk = 0
dφk V s (k)  exp−ik ⋅ s. (4.7)

In the last two lines, the integral over spectral space has been written in polar co-
ordinates where ,  is the angle between and the -axis.  The integration
limits for the  variable has been given explicitly ( to .  Let the wave and

k = | k | φk k kx

φk 0 2π)
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position vectors be written as the following

k = (k cosφk,  k sinφk) ,  s = (s cosφs,  s sinφs) , (4.8)
where  is the angle between and the -axis (the  and  axes are coincident).
The scalar product in (4.6) is then (using the cosine formula)

φs s sx sx kx

k ⋅ s = ks (cosφk cosφs + sinφk sinφs) = ks cos(φk − φs) . (4.9)
Substituting (4.9) into (4.7) gives

B (r, r + s) =
1
A ∫k

dk k ∫
2π

φk = 0
dφk V s (k)  exp− [iks cos(φk − φs)] . (4.10)

Consider the case when the covariance in the spectral representation is itself
isotropic, ie, .  ThenV s (k) = V s (k)

B (r, r + s) =
1
A ∫k

dk k ∫
2π

φk = 0
dφk V s (k)  exp− [iks cos(φk − φs)] ,

1
A ∫k

dk  kV s (k)  ∫
2π

φk = 0
dφk  exp− [iks cos(φk − φs)] . (4.11)

It should be easy to see that any integral of the form

∫
2π

φ = 0
f [cos(φ − θ)] , (4.12)

is independent of  for any function  (all  does is to shift the start phase of the
integral).  This means that (4.11) is independent of.  Hence imposing a
covariance that is isotropic in spectral space is also isotropic in real space.  Further
details can be found in Berre (2000).

θ f θ
φs

5. A simplified Kalman filter (reduced rank Kalman filter)

5.1 What is a
simplified
Kalman filter

Fisher (1998) has developed a framework for a reduced rank Kalman filter (RRKF)
for use in a variational environment.  A RRKF in this context may be regarded as a
modification to the existing -matrix in Var. that allows the dynamical evolution of
a subspace of the state vector.  The particular way that this is done by Fisher, and
the approximations that are made, are outlined below.

B

5.2 Definition
of the
subspace by
Hessian
singular
vectors

The first stage is to identify the subspace that will be treated with explicit flow
dependence.  Let the dimension of the subspace be, which can be chosen
arbitrarily, but restricted in practice by cost.  Fisher defines the subspace by the
most rapidly growing Hessian singular vectors.  The reason why they are chosen to
be singular vectors of the Hessian will become evident later.  In order to write
down the problem that must be solved, we introduce two norms, which we assume
are available.

K
K

• Let the covariance matrix  be the error covariance of the analysis of the
previous cycle.  In order for Fisher's method to work, it must be possible to
act with the matrix  (or an approximation of it).

Pa

Pa−1

• Let the matrix  be the norm used to measure the size of a perturbation.  It
must be possible to act with the matrix .

W
W−1

Let the time of the previous data assimilation cycle be  and the time of the
present analysis be .  States that have no time label are valid at  by
default.

t = −T
t = 0 t = 0

Let the tangent linear model,  act on perturbations at time  and giveM0 ← −T t = −T
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a perturbation at time t = 0

δx = M0 ← −Tδx (−T) . (5.1)
If  were known, then the size of  according to the -norm would be δx (−T) δx W J1

J1 = δxTW−1δx = δxT (−T) MT
0 ← −TW−1M0 ← −Tδx (−T) . (5.2)

The Hessian singular vectors are defined as those  that maximise  subject
to the constraint that  is distributed according to , ie

δx (−T) J1

δx (−T) Pa

δxT (−T) Pa−1
δx (−T) − const = 0, (5.3)

for an arbitrary constant, ' '.  The constrained optimisation problem may
therefore be posed as

const

∇x(−T) [J1 − λ (δxT (−T) Pa−1
δx (−T) − const)] = 0, (5.4)

where  is the Lagrange multiplier.  Applying the derivative operator and setting
the solutions to  (with associated Lagrange multiplier ) gives

λ
δxk λk

MT
0 ← −TW−1M0 ← −Tδxk (−T) = λkP

a−1
δxk (−T) , (5.5)

which is a generalised eigenvalue problem.  The  are the Hessian singular
vectors.  The set of vectors  are eigenvectors of the matrix

 and are equivalently the right singular
vectors of the matrix .  Let .  Those  with
the largest  define the subspace whose background errors be treated explicitly by
the RRKF.

δxk (−T)
Pa−1/2δxk (−T)

(W−1/2M0 ← −TPa1/2)T (W−1/2M0 ← −TPa1/2)
W−1/2M0 ← −TPa1/2

sk = M0 ← −Tδxk (−T) sk

λk

A general perturbation at ,  has a part  that lies in that subspace, which
can be found as a linear combination of the.  Identification of this subspace can
be simplified by first constructing an orthogonalized and normalized set of vectors,

 (e.g. by the Gramm-Schmidt procedure).  Then

t = 0 δx δxs

sk

s˜ k

δxs = S̃δa, (5.6)
where  is the  matrix of  vectors (the vector space has dimensions) and

 is the -element vector of (as yet unknown) coefficients.  Orthogonalization
should be done with respect to an inner product that non-dimensionalises the
components (e.g. the  inner product) such that .  The benefit of
first orthogonalising the vectors is to allow  to be found easily from 

S̃ n × K s˜ k n
δa K

W−1 S̃TW−1S̃ = I
δa δx

δa = S̃TW−1δx. (5.7)
Note that  contains only information about the part of that is spanned by the
singular vector subspace.  Hence in general, is not recovered with (5.6).  This
means that .  However,  can be used as a filter to remove parts
of the space which is not spanned by the singular vectors, i.e. .
The part of  that is not within the singular vector subspace is the residual 

δa δx
δx

S̃S̃TW−1 ≠ I S̃S̃TW−1

δxs = S̃S̃TW−1δx
δx δx¯ s

δx¯ s = δx − δxs. (5.8)
This is orthogonal to  under the  norm, which may be proved as followsδxs W−1

δx¯ T
s W−1δxs = (δx − δxs)

T W−1δxs,

= (δx − S̃S̃TW−1δx)T W−1S̃S̃TW−1δx,

= δxT (I − S̃S̃TW−1)T W−1S̃S̃TW−1δx,

= δxT (W−1S̃S̃TW−1 − W−1S̃S̃TW−1S̃S̃TW−1)T δx,

= δxT (W−1S̃S̃TW−1 − W−1S̃S̃TW−1)T δx,

= 0,  as required.

Note that there are other ways of defining a subspace.  In Sec. 5.8, we include an
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appendix on how ensembles could be used in this manner.

5.3 The
background
cost function
in the new
subspace

The usual background cost function in VAR is

Jb =
1
2

(δx − δxb)T B−1 (δx − δxb) , (5.9)

where ,  and  is a reference (or guess) state.  The-
matrix in (5.9) is static.  Equation (5.9) may be written in terms of the components

 and  by substituting (5.8) into (5.9).  This gives three parts: (i) the part that
involves only the special subspace that has been identified from the singular
vectors, (ii) the part that couples this subspace with the rest of the state, and (iii) the
part that involves only the rest of the state

δx = x − xg δxb = xb − xg xg B

δxs δx¯ s

K

Jb =
1
2

(δxs − δxb
s)

T B−1 (δxs − δxb
s) + (δx¯ s − δx¯ b

s)
T B−1 (δxs − δxb

s) +

1
2

(δx¯ s − δx¯ b
s)

T B−1 (δx¯ s − δx¯ b
s) . (5.10)

This cost function is identical to (5.9).  The RRKF is constructed by imposing a
flow dependent error covariance matrix for the first two terms  but
keeping the static -matrix in the last term

(B → Pf)
B

Jb →
1
2

(δxs − δxb
s)

T Pf −1
(δxs − δxb

s) + α (δx¯ s − δx¯ b
s)

T Pf −1
(δxs − δxb

s) +

1
2

(δx¯ s − δx¯ b
s)

T B−1 (δx¯ s − δx¯ b
s) . (5.11)

The factor , added by Fisher (1998), is to help ensure that  is convex.α Jb

5.4 Control
variable
transforms
stage

It is usual in VAR to make a change of variable from model variables in to
control variables, which are conventionally named.  In the RRKF there are two
control variable transforms ( and ) as follows

δx
χ

X L

δx = LXχ, (5.12)
where  is an orthogonal matrix  (see below) and  is the usual control
variable transform used in VAR where .  Substituting
(5.12) into (5.11) and using the property mentioned above gives

X XX T = I L
LX (LX)T = LL T = B

Jb =
1
2

(χs − χb
s)

T XTLTPf −1
LX (χs − χb

s) + α (χ̄s − χ̄b
s)

T XTLTPf −1
LX (χs − χb

s) +

1
2

(χ̄s − χ̄b
s)

T (χ̄s − χ̄b
s) , (5.13)

where , ,  and .  The
matrix  is not present in standard VAR, but is introduced in (5.12) to isolate the
special subspace identified in section 5.2 from the remainder.  As it stands, (5.13)
looks complicated to treat.  Let

χs = XTL−1δxs χb
s = XTL−1δxb

s χ̄s = XTL−1δx¯ s χ̄b
s = XTL−1δx¯ b

s

X

Pf
χ

−1
= XTLTPf −1

LX, (5.14)
then (5.13) is

Jb =
1
2

(χs − χb
s)

T Pf
χ

−1
(χs − χb

s) + α (χ̄s − χ̄b
s)

T Pf
χ

−1
(χs − χb

s) +

1
2

(χ̄s − χ̄b
s)

T (χ̄s − χ̄b
s) , (5.15)

and we shall seek to determine explicitly the part of  that is important.Pf
χ

−1

It is possible to define a suitable  using a sequence of HouseholderX
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transformations (see Sec. 5.6).

5.5
Determination
of Pf

χ
−1

The key to simplifying (5.15) is in the design of .  Let  be designed such that:X X

•  acting on any vector in the subspace  gives a vector that is non-zero
only in the first  elements
XT L−1sk

K

XTL−1sk = ( ) , (5.16)

α1

…
αK

0
…
0

• and  acting on a vector in the orthogonal complement gives a vector that
is non-zero only in the remaining  elements.

XT

n − K

How this design specification of can be achieved is covered in section 5.6.  The
vector  spans the space defined by the vectors , and consequently,
and  comprise only the first  elements and this must be maintained in the
minimization of .  This means that in (5.15), only the first  columns of need
to be known.  Following Fisher (1998) let

X
L−1δxs K L−1sk χs

χb
s K

JB K Pf
χ

−1

Z = Pf −1
S, (5.17)

where  is the  matrix whose columns are the and  is the  result
after acting with the inverse of the flow-dependent error covariance matrix.  Let us
develop this expression using the definition (5.14) along the way

S n × K sk Z n × K

Z = Pf −1
LXXTL−1S,

XTLTZ = XTLTPf −1
LXXTL−1S,

= Pf
χ

−1
Iˆ XTL−1S, (5.18)

XT
(n × n)L

T
(n × n)Z(n × K) = Pf

χ
−1

(n × K)Iˆ (K × n)X
T
(n × n)L

−1
(n × n)S(n × K),

where  is the compound operatorIˆ

Iˆ (K × n) = (I (K × K)0(K × n − K)) . (5.19)
This operator is included to remove the superfluous zero-elements for rows
of  (by the design of ).  In (5.19) and in the line after (5.18), labels have
been added to the matrices to indicate their dimensions.  Equation (5.18) allows us
to write

i > K
XTL−1S X

XTLTZ (Iˆ XTL−1S)−1 = Pf
χ

−1
, (5.20)

where the operator inverted is a calculable  matrix, which we assume is non-
singular.  Note that (5.20) is for only part of the inverse covariance matrix and so is
not symmetric.  The matrix yet unknown is  which, as shown below, is a by-
product the Hessian singular vector calculation shown in section 5.2.  Firstly, by the
definition of , (5.17)

K × K

XTLTZ

Z

XTLTZ = XTLTPf −1
S, (5.21)

the right hand side of which can be found from (5.5), as follows.  Let columns of a
new matrix, , be those  states at  that evolve into the columns of (the
columns of  are the states  in (5.5)

S−T K t = −T S
S−T δxk (−T)

S = M0 ← −TS−T. (5.22)
This is useful in the derivation to follow.  First write (5.5) in complete matrix form
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MT
0 ← −TW−1M0 ← −TS−T = Pa−1

S−TΛ, (5.23)
where  is the diagonal matrix of .  Also important is the propagation of the error
covariances (ignoring the model error contribution)

Λ λk

Pf = M0 ← −TPaMT
0 ← −T. (5.24)

These equations can be manipulated to give the matrix in (5.21) required to solve
(5.20).  Starting from (5.23)

PaMT
0 ← −TW−1SΛ−1 = S−T,

M0 ← −TPaMT
0 ← −TW−1SΛ−1 = M0 ← −TS−T,

PfW−1SΛ−1 = S,

W−1SΛ−1 = Pf −1
S,

XTLTW−1SΛ−1 = XTLTPf −1
S,

= XTLTZ ,by (5.21)

∴ Pf
χ

−1
= XTLTW−1SΛ−1 (Iˆ XTL−1S)−1  . (5.25)by (5.20)

The right hand side of (5.25) is known and thus all relevant elements of the
background cost function (5.15) are calculable.

5.6 Design of X It remains to be shown how can be formulated to achieve property (5.16).  Fisher
(1998) states that this is achieved with a sequence of Householder transformations.
A single Householder transformation,, (e.g. Press et al. 1986) may be written as
follows

X

P

P = I − 2
uuT

uTu 
, (5.26)

where

u = x ∓ |x | e1. (5.27)
The vector  is arbitrary and  is a vector which is zero valued except for the first
element, which has unit value (the properties of the Householder transformation
hold for a general single element being chosen instead, although here we always
choose the first element).   is useful because it has the following useful properties.

x e1

P

• The Householder transformation is orthogonal

PPT = (I − 2
uuT

uTu ) (I − 2
uuT

uTu )
T

,

= I − 4
uuT

uTu 
+ 4

uuTuuT

uTu uTu
,

= I − 4
uuT

uTu 
+ 4

uuT

uTu
= I . (5.28)

• When acting on the state, which is used to define in (5.26) and (5.27),
the result is a vector with all but the first element zero

x P

Px = (I − 2
uuT

uTu ) x,

= (I − 2
u (x ∓ |x | e1)T

uTu ) x,

= (I − 2
u (x ∓ |x | e1)T

2xTx ∓ 2 | x | x1
) x,
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= x − 2
u (xTx ∓ |x | x1)
2xTx ∓ 2 | x | x1

,

= x − u,

= ± | x | e1. (5.29)
• When acting on a state, which is orthogonal to the state, which is used to

define  in (5.26) and (5.27), the result is a vector with zero in the first
element

x¯ x
P

 uTx¯ = xTx¯ ∓ |x | eT
1x¯ ,Note

= ∓ | x | x¯ 1, (5.30)

 Px¯ = (I − 2
uuT

uTu ) x¯ ,then

= x¯ ± 2
|x | x¯ 1 (x ∓ |x | e1)
2xTx ∓ 2 | x | x1

,

=
|x|2x¯ ∓ |x | x1x¯ ± |x | x¯ 1x − x¯ 1 | x|2e1

xTx ∓ |x | x1
. (5.31)

e1This does not have weight in element 1.  To show this, do a scalar product with 

eT
1Px¯ =

|x|2x¯ 1 ∓ |x | x1x¯ 1 ± |x | x¯ 1x1 − x¯ 1 | x|2

xTx ∓ |x | x1
= 0, (5.32)

In these equations,  and  are the first components of and  respectively.  The
first property gives .  These properties can be combined to give in
the following way.  Defining , let  be a vector of two
components

x¯ 1 x1 x¯ x
P = PT = P−1 X

R(0) = L−1S XTR(0)

XTR(0) = ( ) , (5.33)A
0

where  is a  matrix consistent with the required property of (5.16).  In fact,
by the way that  is to be formed,  will turn out to be upper triangular.  Let

A K × K
XT A

XTR(0) = PK… Pk… P2P1R
(0). (5.34)

Each  transformation is Householder-like according to the following, e.g. for Pl P1

P1R
(0) = (I − 2

uuT

uTu ) R(0),  u = r(0)
1 − |r(0)

1 | e(n)
1 , (5.35)

where  is the first column of  and  is the -element vector with all but the
first element zero (which is unity).  This generates a new matrix
which has the form

r(0)
1 R(0) e(n)

1 n
R(1) = P1R(0)

R(1) = ( ) , (5.36)

r(1)
11 r(1)

12 r(1)
13 … r(1)

1K

0 r(1)
22 r(1)

23 … r(1)
2K

0 r(1)
32 r(1)

33 … r(1)
3K

… … … … …
0 r(1)

k2 r(1)
k3 … r(1)

kK

… … … … …
0 r(1)

n2 r(1)
n3 … r(1)

nK

having only the first element non-zero of the first column (since is designed in
terms of the first column of .  The aim now is to act with a
element Householder operator on  excluding the first row and first column

P1

R(0) n − 1 × n − 1
R(1)
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P2R
(1) = ( ) R(1),  u = r(1)

2 − |r(1)
2 | e(n − 1)

1 , (5.37)
1 0

0 I − 2uuT

uTu 

where the partitioned-off part of  is a  matrix,  is the -
element second column of  (excluding the first component) and  is the

-element vector with all but the first element zero (which is unity).  This
generates a new matrix  which has the form

P2 n − 1 × n − 1 r(1)
2 n − 1

R(1) e(n − 1)
1

n − 1
R(2) = P2R(1)

R(2) = ( ) . (5.38)

r(1)
11 r(1)

12 r(1)
13 … r(1)

1K

0 r(2)
22 r(2)

23 … r(2)
2K

0 0 r(2)
33 … r(2)

3K

… … … … …
0 0 r(2)

k3 … r(2)
kK

… … … … …
0 0 r(2)

n3 … r(2)
nK

The th operator, , has the formk Pk

PkR
(k − 1) = ( ) R(k − 1),  u = r(k − 1)

k − |r(k − 1)
k | e(n − k + 1)

1 , (5.39)
I 0

0 I − 2uuT

uTu 

where the partitioned-off part of  is a  matrix,  is
the -element th column of  (excluding the first
components) and  is the -element vector with all but the first
element zero (which is unity).  After all  operators have acted, the result is

Pk n − k + 1 × n − k + 1 r(k − 1)
k

n − k + 1 k R(k − 1) k − 1
e(n − k + 1)

1 n − k + 1
K

R(k) = XTR(0)

R(k) = ( ) . (5.40)

r(1)
11 r(1)

12 r(1)
13 … r(1)

1K

0 r(2)
22 r(2)

23 … r(2)
2K

0 0 r(3)
33 … r(3)

3K

… … … … …
0 0 0 … r(k)

KK

… … … … …
0 0 0 … 0

where the top section is the matrix in (5.33), and the bottom section comprises
zeros.

A

It should also be shown that .  From (5.34) this is easy to show given that
each pair has the property that 

XXT = I
PT

k Pk = I

PT
1 PT

2 … PT
k … PT

KPK… Pk… P2P1 = I . (5.41)

It remains to be shown that the string of Householder operators
acting on a state,  (which is orthogonal to all columns of ) gives a state that is
zero in the first  elements.  All  are formed in the same way as shown above (ie
with respect to the  matrices).

PK… Pk… P2P1

r¯ (0) R(0)

K Pk

R(k)

First let .  Since  is orthogonal to  (the latter is the vector used to
define  in (5.35)), and by property (5.32), the vector has zero in the first
element.  Next, let .  By a similar argument, if vector formed from the
last  components of  is orthogonal to the vector formed from the last
components of  (the latter is the vector used to define in (5.37)), and by
property (5.32), the vector  will have zero in the first two elements.  Because the

r¯ (1) = P1r¯ (0) r¯ (0) r(0)
1

P1 r¯ (1)

r¯ (2) = P2r¯ (1)

n − 1 r¯ (1) n − 1
r(1)

2 P2

r¯ (2)
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first element of  is always zero, the remaining -component inner product
in question is equal to the full-component inner product as the first element
contributes zero.  The orthogonality test is therefore satisfied if the following-
component inner product is zero

P1r¯ (0) n − 1
n

n

(P1r¯ (0))T P1r
(0)
2 = r¯ (0)TPT

1 P1r
(0)
2 = r¯ (0)Tr(0)

2 = 0. (5.42)
This is satisfied because the vector is orthogonal to  by definition.  These
arguments continue for all operators.  The final result is a vector of zeros in the
first  components.

r¯ (0) r(0)
2

K
K

5.7 Summary
of the RRKF

There are a number of issues relating to the RRKF.

• The analysis error estimation in the Hessian singular vector calculation may
be inadequate.  The modes that actually dominate the background error at

 may not be those that dominate the singular vector calculation at
.  For example, the actual fastest growing modes may be well

constrained by the previous cycle's analysis, and so not be given prominence
in the Hessian singular vector calculation, or the modes that do emerge from
the Hessian singular vector calculation may saturate in the non-linear system
and be overtaken by other modes.

t = 0
t = −T

• The number of modes used (10-25) may be inadequate.  Ehrendorfer and
Bouttier (1998) find that in some studies as many as 100 singular vectors are
needed to account for just over half of the forecast error over two days.
Furthermore, the blending of flow dependent and static error covariances
may lead to physically unrealistic structure functions (Beck and Ehrendorfer
2005).

• No account is taken of model error in the propagation of covariance
information from the previous analysis to the current background, although
Beck and Ehrendorfer (2005) show how model error can be added.

• The RRKF makes fresh estimates of the flow-dependent subspace for every
cycle, and so the propagation of flow dependent information through the
system is largely new for every cycle.

• The method is only as good as the knowledge of the Hessian in the Hessian
singular vector calculation (Barkmeijer et al. 1998).

5.8 Appendix
on the use of
ensembles to
define the
subspace

6. Homogeneous structure functions in real and spectral-
spaces

6.1 Real spaceAn error covariance that gives separable structure functions in real space can be
written as a convolution.  A convolution in 1-D has the form

g (x) = ⌠⌡ dx′C (x; x′) f (x′) , (6.1)

If , then the result of (1) isf (x) = δ (x − x0)
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g (x) = ⌠⌡ dx′C (x; x′)δ (x′ − x0) ,

= C (x; x0) , (6.2)
which is the structure function associated with the source point .x0

Let our 2-D structure functions be the separable in horizontal and vertical positions

R (r; r0, z0) Z (z; r0, z0) , (6.3)
where  is the horizontal (vertical) position.  The real-space correlation model is
thus

r (z)

g (r, z) = ⌠⌡ ⌠⌡ d r′ d z′R (r; r′, z′) Z (z; r′, z′) f (r′, z′) . (6.4)

This can be written in the more familiar way using the matrix notation

gå = Cfå . (6.5)

6.2 Spectral
space

In spectral space, first write and  as linear combinations of horizontal basis
functions

f g

f (r, z) = ⌠⌡ dk′f¯ (k′, z) Fh (r, k′) , (6.6)

g (r, z) = ⌠⌡ d k′g¯ (k′, z) Fh (r, k′) . (6.7)

In these equations, is the horizontal wavenumber.  Note the orthogonality
relations of the horizontal basis functions,

k

⌠⌡ d rF∗
h (r, k) Fh (r, k′) = δ (k − k′) , (6.8)

Inserting (6.6) and (6.7) into (6.4) gives,

⌠⌡ dk′g¯ (k′, z) Fh (r, k′) = ⌠⌡ ⌠⌡ d r′ d z′R (r; r′, z′) Z (z; r′, z′)

⌠⌡ dk′f¯ (k′, z′) Fh (r′, k′) . (6.9)

Multiplying (6.9) by  and integrating over  givesF∗
h (r, k) r

⌠⌡ d r ⌠⌡ dk′g¯ (k′, z) F∗
h (r, k) Fh (r, k′) = ⌠⌡ d r ⌠⌡ ⌠⌡ d r′ d z′R (r; r′, z′) Z (z; r′, z′)

⌠⌡ dk′f¯ (k′, z′) F∗
h (r, k) Fh (r′, k′) . (6.10)

Orthogonality (6.8) results in the left hand side simplifying,

g¯ (k, z) = ⌠⌡ d r ⌠⌡ ⌠⌡ d r′ d z′R (r; r′, z′) Z (z; r′, z′)

⌠⌡ dk′f¯ (k′, z′) F∗
h (r, k) Fh (r′, k′) . (6.11)

This is the correlation (6.4), but in spectral space.  Rearrange the order of the
integrals in (6.11)

g¯ (k, z) = ⌠⌡ dk′ [⌠⌡ d r ⌠⌡ ⌠⌡ d r′ d z′R (r; r′, z′) Z (z; r′, z′) × ×

F∗
h (r, k) Fh (r′, k′)]   f¯ (k′, z′) . (6.12)

The term in large brackets constitutes the covariance model operator in spectral
space.  The question now is: is this model separable in spectral space?  This is easy
to show by acting with (6.12) on the state

f¯ (k′, z′) = δ (k′ − k0)δ (z′ − z0) . (6.13)
If the result,  is separable, then we have proved the resultg¯ (k, z)

g¯ (k, z) = ⌠⌡ d r ⌠⌡ d r′R (r; r′, z0) F∗
h (r, k) Fh (r′, k0) Z (z; r′, z0) . (6.14)
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This is not separable in general - (6.14) is not of the form of a product of a function
that depends upon, but not , with another that depends upon, but not .  If
becomes horizontally homogeneous (ie is no longer a function of) then (6.14)
becomes

k z z k Z
r′

g¯ (k, z) = ⌠⌡ d r ⌠⌡ d r′R (r; r′, z0) F∗
h (r, k) Fh (r′, k0) × Z (z; z0) , (6.15)

which is separable in spectral space.

6.3 Conclusion A correlation that is separable in real space (and has vertical structure functions that
are horizontally homogeneous) is also separable in spectral space.

7. How do observations affect background error covariance
lengthscales?

7.1
Introduction

It is often reported that the correlation lengthscale of background errors is reduced
in the presence of observations (Ingleby 2001).  This note discusses the mechanism
of how this occurs.  We look at the simpler problem of analysing how the presence
of a single observation affects the correlation lengthscale of the analysis state,
rather than the correlation lengthscale of the subsequent forecast (it is reasonable to
expect that the qualitative characteristics of the analysis will be carried forward in
the subsequent forecast).

7.2 Simple
analysis

Consider a background error covariance matrix,.  Let it be homogeneous and
isotropic, so that its representation in spectral space is diagonal (and depend upon
total wavenumber only).  Its spectral representation shall be used below.  Let the
observation system be denoted by the Jacobian,, and let the error covariance of
the observations be.  The error covariance matrix of the analysed state,, is the
inverse Hessian

B

H
R A

A = (B−1 + HTR−1H)−1 . (7.1)
The space in which the analysis state, the-matrix and the right-space of is
usually spatial.  It is more convenient for this analysis to look at in spectral
space.  Let the following operators be the forward and inverse Fourier transform
operators

B H
A

 F−1, (7.2)Forward FT:

 F. (7.3)Inverse FT:

The Fourier transform is orthogonal, .  In one-dimension, the matrix
elements of  are proportional to simple plane waves

FT = F−1

F

Fmq =
1
N

expixmkq, (7.4)

for  grid-points.  The spectral-space version of (8.1) is N FTAF

FTAF = FT (B−1 + HTR−1H)−1 F,

= (FTB−1F + FTHTR−1HF)−1 ,

= ([FTBF]−1 + [HF]T R−1 [HF])−1 . (7.5)
The reason for converting to spectral space is for simplicity - we shall assume
homogeneity throughout (and so the covariances in spectral space are diagonal) and
we can infer lengthscales from the variance spectra - see below.
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The background term in spectral space, , is diagonal, with diagonal elementsFTBF

[FTBF]qq = σ2
B (q) . (7.6)

Consider (7.5) with just one observation of grid-point .  The Jacobian is thenl

H = (0 0 0 0 1 0 0 0 0 0 0 0 0 0) , (7.7)
with the '1' at position.  The operator , which is the single row Jacobian acting
on a spectral-space state, is made up of elements

l HF

[HF]1q =
1
N

expixlkq. (7.8)

By taking the transpose operator to include an additional complex conjugate
operation, the operator  is then[HF]T R−1 [HF]

[[HF]T R−1 [HF]]qk =
1
N

exp−ixlkq ×
1
σ2

Ob
×

1
N

expixlkk,

=
expixl (kk − kq)

Nσ2
Ob

, (7.9)

where  is the observation standard deviation.  Enforcing a homogeneous model,
the contribution, , is diagonal.  Ignoring off-diagonal elements
(setting them to zero), leaves the diagonal elements

σOb

[HF]T R−1 [HF]

[[HF]T R−1 [HF]]qq =
1

Nσ2
Ob

, (7.10)

which is a constant.  Wavenumber component  of (7.5) is thusq

[FTAF]qq = ( 1
σ2

B (q)
+

1
Nσ2

Ob
)−1

,

= (Nσ2
Ob + σ2

B (q)
σ2

B (q) Nσ2
Ob

)−1

=
σ2

B (q) Nσ2
Ob

Nσ2
Ob + σ2

B (q)
. (7.11)

Equation (7.11) says that those modes of the background state that have a small
variance, ie , will be unaffected by the observation.  Those modes
that have a large variance, ie , will have its variance reduced to a
value, at most .  This is illustrated in Fig. 7.1.  The variance of the longer
modes (small wavenumbers) have reduced in value.  As this has not affected the
small modes (large wavenumbers), this has the effect to broaden the correlation
spectra associated with the variance spectra in Fig. 7.1.  This will shorten the
lengthscale in positional space.  In other words, the longer scales are analysed more
than smaller scales, because they started with larger variance in .

σ2
B (q) << Nσ2

Ob

σ2
B (q) >> Nσ2

Ob

Nσ2
Ob

B
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Figure 7.1: Variance spectra: -matrix in spectral space (continuous curve), 
(straight dotted line) and -matrix in spectral space (dash-dotted line).

B Nσ2
Ob

A

7.3 Numerical
study -
dropping
homogeneity

By dropping the homogeneity assumption, off-diagonal elements in (7.9) will be
present.  This is result in an-matrix that has a reduced lengthscale, but only in the
vicinity of the observation.  This can be shown numerically.

A

Consider the one-dimensional system ( ) with a number of observations
near the middle of the domain.  Let observation make a direct measurement at
position .  The row in the Jacobian will be zero apart from the elements
corresponding to grid-points immediately before and after  the observation.
These will have elements

0 ≤ x ≤ 1
i

x
(x1) (x2)

1 −
x − x1

x2 − x1

x − x1

x2 − x1
, (7.12)and

by assuming linear interpolation.

In this numerical study, we need not invoke spectral space, and deal with small
matrices directly.  We use 30 points and 5 observations near the centre of the
domain.  The background error covariances have the simple form

B : COVB (∆x) =
σ2

B

1 + (∆x / L)2
, (7.13)

where  is distance,  and the correlation length parameter , and
we invoke periodic boundary conditions for a well-behaved background error
covariance matrix.  The analysis error covariance matrix is then,

∆x σB = 0.1 L = 0.2

A = (B−1 + HTR−1H)−1 . (7.14)
Plotted in Fig. 7.2 are the background error and analysis error correlation matrices,

CORB = Σ−1
B BΣ−1

B , (7.15)

CORA = Σ−1
A AΣ−1

A , (7.16)
where  is the background error standard deviation matrix , and  is the
analysis error standard deviation matrix.

ΣB ΣB = σBI ΣA
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   0.856
   0.713
   0.569
   0.425
   0.282

Background error correlations                                                          Analysis error correlations

Figure 7.2: The background error correlations from (7.13) and (7.15) (left) and the
analysis error correlations from (7.14) and (7.16) after the assimilation of five

observations near the centre of the domain.

The analysis state shows clearly the reduction of correlation lengthscale in the
analysis in the vicinity of the observation locations.
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