
C++ Aide Memoir
Ross Bannister, March 2004/April 2004/

May 2011

Reserved Words
asm, auto, break, case, char,

class, const, continue, default,
delete, do, double, else, enum,
extern, float, for, friend, goto,
if, inline, int, interrupt, long,
main, naked, new, operator,
private, protected, public,
register, return, short, signed,
sizeof, static, struct, switch,
template, this, typedef, union,
unsigned, virtual, void,
volatile, while.

Main Body of Code

Function declarations (not definitions)
Global variable declarations
Type definitions
Enumerator definitions (named integer

constants)
Structure definitions
Union definitions
int main()

{ statements; ...return integer; }

integer=0 (normal ending)

Data Types

Primitive data types

char (1 byte integer for characters)
int (2-byte signed integer)
float (4-byte real)
double (8-byte real)

• Logical types are represented as
integers (0=false, other value=true)

• Variables can be initialized in the
declaration.

Type modifiers

const (definition of constants)
long (double length integer)
unsigned (unsigned integer)
static (in functions, maintains value

between calls)

Casting (type conversion)

int (floatvariable)

Forcing numerical values

9.99f (forcing to type float)
999L (forcing to long (4-byte) integer)

Derived Data Types

Type definitions
typedef variable_type NAME;

• variable_type contains a primitive type
with type modifiers.

• NAME becomes a pseudonym for
variable_type for variable declaration:

NAME variable_name;

Enumerators
enum name

{ integer_identifier1 [= value1],

 integer_identifier2 [= value2],
... }

[enum_variable_names];

• In the program, a variable (declared as
type enum_variable_name) can be set
to one of the identifiers. If values are
omitted then they take on incremental

integers, starting with 0. Further
declarations can be made later using
name as the type.

Structures

• Structures are user defined composite
types, defined by:

struct struct_name

{ member_declarations; }
[variable_names];

• Member_declarations are variable
declarations (primitive, arrays,
derived, pointers, etc.).

• Other variables of this type can be
declared:

struct struct_name variable_name;

• It is possible to have arrays of derived
data types.

• Members of the structure are
referenced by:

variable_name.member_name

Union
union name

{ member_declarations; }

[struct_variable_names];

• As struct , but all members share the
same memory.

Comments

/* ... */ (multi-line comments)
// ... (single-line comments)

Operators

Arithmetic operators

+, -, *, / (ordinary arithmetic
operators)

% (remainder)
++, -- (increment, decrement)

Logical operators

&& (and), || (or), ̂ (xor), ! (not)

Relational operators
==, !=, <, >, <=, >=

Compound assignment operators
expression1 operator =

expression2;

is equivalent to
expression1 = expression1 operator

expression2;

Control structures

If ... else
if (expression) {statement1;} else

{statement2;}

The else branch is optional
This is equivalent to
expression1 ? statement1 :

statement2

Switch
switch (integer_expression)

{ case integer1:

 statements1;

 break;

 case integer2:

 statements2;

 break;

 default:

 statements3;

}

While
while (logical_expression)

{ statements; }

do ... while

do
{ statements; }
while (logical_expression);

For
for (statement1; expression;

statement2)

{ statements; }

is equivalent to
statement1;

while (expression)

{ statements;

 statement2; }

Common loop usage
for (i=1; i<=100; i++)

{ statements; }

• If statement1 or statement2 is missing,
nothing is executed in their place.

• If expression is missing it is true by
default.

• Statement1 can include a declaration
of the loop variable (it continues to
exist after the loop has finished).

Exiting and skipping loops

break (exit the loop)
continue (skip to next cycle (statement2

is still evaluated in for loop)

• The above can be used in while , do

... while and for loops.

Arrays

Declaration
type array_name [size];

type array_name [sizex][sizey];

type array_name [size] = {value0,
value1, ... };

type array_name [sizex][sizey] =
{{value00, value01, ... },
 {value10, value11, ... },
 { ... } };

• Array elements start at 0 and end at
size-1 .

• size , sizex , sizey , etc. can be
omitted when declaring and
initializing are combined (values are
implied).

• Arrays are implicitly pointers to the
start of the array.

Using and accessing
array_name [index]
array_name [indexx][indexy]

Characters and Strings

String declaration and setting

Declaration (with optional initialization)
char string_name [] = {char1,

char2, ..., \0};

char string_name [] = "literal
string";

• Strings are arrays of characters.
• Characters, e.g. char1 , go inside

single quotes.
• Characters inside single quotes

evaluate to their ASCII code.
• In the first example declaration above,

the last character must be \0 (see
below). This is implied in the second
example declaration.

• Literal strings go inside double quotes.
• Literal string arguments can be given

in double quotes. This sets up an
array and passes the pointer to the start
of the array.

• In the above the array length is
implied.

• After declaration, strings cannot be set
directly using literal strings (use
strcpy of standard library string.h).

strcpy (string_name, "literal
string");

Special characters

\" double quotes
\' single quote
\\ backslash
\n newline
\0 null (padding)

Input and Output

Keyboard and screen (cout and cin)
#include <iostream.h>
...
cout << exp1 << exp2 ...;
cin >> var1 >> var2 ...;

Keyboard and screen (formatted)

Output to screen:
#include <stdio.h>
...
printf (format_string, exp1, exp2,

...);

Input from keyboard:

scanf (format_string, &exp1, &exp2
, ...);

• The variable arguments for scanf are
addresses (&). The & is implicit for
pointers or arrays.

• See below for the format_string

description.

Format string description

Example used with printf :
printf ("\nThe result for %i is

%f", int_var, double_var);

• The %i and %f are examples of format
specifiers.

• Format specifiers have a general form,
%[flags][width][.precision]

 [size]type .
• Only the type part has been used in the

example.
• Useful types are given below.

%c character
%s string
%d or %i signed integer
%u unsigned integer
%f floating point
%e or %E exponential format
%g or %G computer chooses %f / %e

%x hex (lower case letters a-f)
%X hex (upper case letters A-F)
%p pointer

File IO (formatted)

Open a file:
#include <stdio.h>
...
FILE* file_var = NULL;
...
file_var = fopen

(file_name_string, mode_string);

• file_var is a pointer to a FILE type.

• mode_string is specified below.
• file_var remains NULL (logically

false) if opening is unsuccessful.

"r" reading (file exists)
"w" writing (file may or may not exist)
"r+" reading and writing (file exists)
"w+" reading and writing (file may or

may not exist)
Output to file:
fprintf (file_var, format_string,

exp1, exp2, ...);

Input from file:
fscanf (file_var, format_string, &

exp1, &exp2 , ...);

• The use of fprintf and fscanf is just
like printf and scanf (above), but
with the extra file_var parameter.

• See above for the format_string

description.

Closing a file:
fclose (file_var);

Functions

Declaration
type function_name (arg_type1

arg_name1, arg_type2 arg_name2,
...);

• The declaration appears in the header
of each file that uses the function.

• The function type and the argument
types are primitive data types (with
modifiers if necessary), typedefs,
enumerators, structures or unions, etc.

• The argument names may be omitted.
• For no arguments, use empty

parenthesis. If the function has no
type then declare as type void (the
function is then called as a statement).

Definition
type function_name (arg_type1

arg_name1, arg_type2 arg_name2,
...)

{ local variable declarations;

 statements;

 return value;

}

• The definition appears after the 'main'
function definition.

• The function ends when a return

statement is found (this can appear
many times anywhere in the
definition) or at the end.

• No return is required if the function
is of type void .

• Global variables are used by inserting
:: immediately before the variable
name (needed only if local variable
exists with the same name).

• Parameters are call-by-value.
• Call-by-address is achieved by passing

pointers as parameters (see below).
This allows any changes of formal
parameters (inside the function) to
affect the actual parameters (outside).

• All arrays are implicitly pointers to the
start of the array.

• Arrays may be passed by using the
bare array_name as the actual
parameters and array_name[] in the
list of formal parameters.

• For arrays of more than 1-D, the
dimensions should be specified.

Pointers

Pointer declaration and null setting

Declaration (with optional setting to the

null pointer)
type* pointer_name = NULL;
type *pointer_name = NULL;

Pointers are always 4 bytes long.

Pointer creation and deletion
pointer_name = new type;
delete pointer_name;

To delete an entire array
delete[] array_name;

Accessing information

To access a pointer's target
*pointer_name

If the pointer is to a structure
(*pointer_name).variable_name

To return a pointer to a variable (useful
for call-by-address)

&variable_name

Allocation check
(pointer_name)

will return true if it is an allocated
pointer

