

Trapped lee waves

Miguel Teixeira

Examples

$$N^2(z) = \frac{g}{\theta_0} \frac{d\overline{\theta}}{dz}$$

Scorer parameter

$$l(z) = \left(\frac{N^2}{U^2} - \frac{1}{U} \frac{d^2 U}{dz^2}\right)^{1/2}$$

Linear theory

- •2D flow
- •Earth's rotation unimportant
- Stationary flow
- Linearization

$$\frac{d^2w}{dz^2} + (l^2 - k^2)w = 0$$

$$k^2 < l^2$$

$$w(x, z) = a\cos(kx + mz)$$

$$k^2 > 1$$

$$w(x,z) = ae^{-nz}\cos(kx)$$

If *l* decreases with height, waves with wavenumber *k* my propagate at low levels but not at high levels ⇒ Trapped lee waves

Examples: 2-layer atmospheres Scorer (1949) Vosper (2004) Case 2 Case 1 $l_1=0$

Simplest case

Surface waves at density interface

Phase speed:
$$c = \sqrt{\frac{g' \tanh(kH)}{k[1 + \tanh(kH)]}}$$

Resonance condition: c=U

$$\tanh(k_L H) = \frac{k_L H}{Fr^{-2} - k_L H}$$

$$Fr = \frac{U}{\sqrt{g'H}}$$

 $k_L H$ is only a function of Fr

Wavelength of trapped lee waves: $\lambda_L =$

$$\lambda_L = \frac{2\pi}{k_L}$$

Last Tuesday

Visible, 2/6/2015, 10.35 UTC

2/6/2015, 18 UTC

2/6/2015, 12 UTC

9/12/2013, ~12 UTC

9/12/2013, ~12 UTC

9/12/2013, ~18 UTC

9/12/2013, 12 UTC

Evaluate Froude number

$$\theta \sim 290 \text{ K} \Rightarrow g' = g \Delta \theta / \theta \sim 0.24 \text{ m/s}^2$$

H ~ 1.5 km

 $U \sim 13 \text{ m/s}$

 $\lambda_R/H \sim 6.5 \Rightarrow \lambda_R \sim 10 \text{ km}$

At least right order of magnitude!

Summary

- It is easy to estimate the wavelength of trapped lee waves
- Simplest case is when these waves propagate at temperature inversion
- Then wavelength over inversion height only function of Fr

Estimates may fail for many reasons:

- Non-stationary flow
- Inversion not sharp enough
- Effects of stratification above or below inversion.
- Variation of wind speed with height