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1 Introduction
Sections 1 to 10 will cover probability theory, integration, and a bit of statis-
tics (roughly in that order). The second part (Sect. 11-13) –not part of
these notes– will explain an important technique in statistics called Monte
Carlo simulations. This introduction will motivate probability theory and
statistics a little bit, and in particular why we need concepts from measure
theory and integration, which is often perceived as abstract and complicated.

Probability

It is not easy to explain what probability theory is about without sounding
tautological. One might say that it allows to quantify uncertainty or chance,
but then what do we mean by “uncertainty” or “chance”?

De Moivre’s seminal textbook “The Doctrine of Chances” [dM67] is widely
considered as the first textbook on probability theory, and the theory has
undergone enormous developments since then. In particular, there is an ax-
iomatic framework which has been universally adopted and which we will
discuss in this course. But even though De Moivre’s book was first published
in 1718, there is still some debate as to the interpretation of probability
theory, or in other words, to what this nice axiomatic framework actually
pertains. Different interpretations of probability have been put forward, but
somewhat fortunately to the student, the differences matter little as far as
the mathematics is concerned. Nonetheless, we will briefly mention the most
prominent interpretations of probability (see the Wikipedia page on “Proba-
bility Interpretations” for more information).
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The classical definition of probability put forward by Laplace ([Lap95]),
“consists in reducing all the events of the same kind to a certain number
of cases equally possible, that is to say, to such as we may be equally
undecided about in regard to their existence.” These cases equally pos-
sible might be termed elementary events, and the probability of any
event A is the number of elementary events it contains, divided by the
number of all elementary events. Evidently, this definition assumes
that for any given problem, (i) the number of elementary events is fi-
nite, and (ii) every event can be expressed as the union of elementary
events. We will see below that this theory is not powerful enough to
deal with certain questions we are interested in.

Frequentism Frequentism considers experiments which can, at least in prin-
ciple, be repeated as often as desired under constant external condi-
tions. Internal phenomena however may lead to variable outcomes
under repetition. Whether these phenomena are fundamentally deter-
ministic (like throwing a coin) or inherently random (like radioactive
decay) is irrelevant. The probability of an outcome is then defined to
be the limiting observed frequency of this outcome. But the probability
is only well defined if the observed frequencies actually converge, and
it is very difficult to provide useful criteria as to when this is the case
(other than just saying that they have to converge). We see that this
theory struggles to explain exactly what experiments it applies to.

Subjectivism Subjectivism maintains that probabilities express the degree
of belief a certain individual has as to whether a certain statement
about the real world is true or not. For example, I think it is likely,
but not certain, that the Riemann hypothesis is correct. It is not nec-
essary that the individual actually uses probabilities; as Savage [Sav71]
and others have shown, these probabilities can be inferred or “elicited”
from the individual’s behaviour. In other words, any possible action an
individual may take in the face of an uncertain event can be explained
by means of a number, interpreted as that individual’s subjective prob-
ability of the event. The proof of this fact however assumes that the
individual acts rationally in a sense specified by Savage’s axioms, and
these axioms are not altogether unobjectionable. In fact, there is strong
evidence that people’s behaviour under uncertainty can deviate consid-
erably from these axioms.

Just for illustrative purposes, here is a little example showing how the elici-
tation of (subjective) probabilities might work in practice. You can play this
game with a friend of yours (if you have a few pounds to spare).

2



Example 1.1. The statement is: “At the time of his death, Isaac Newton
had lost all but one of his teeth.” This statement is known to be false; Apart
from his primary teeth, Newton lost only one tooth during his lifetime, but
you don’t reveal this to your friend at this point. You merely say that you
know the answer. You offer your friend to pay her p pounds if the statement
is correct, q pounds if it is not correct, and she can choose the numbers p and
q, but she will have to pay 1

2
(p2 + q2) pounds back to you in order to play

the game. Once your friend has chosen p and q, you reveal the answer and
exchange the money. You can convince yourself of the following facts, which
support the interpretation of p and q as your friend’s subjective probabilities
for and against the statement:

1. There is an incentive for your friend to play the game, as there is a way
to make at least 25 pence for sure.

2. There is an incentive for your friend to state two numbers p, q which
are nonnegative and so that p + q = 1, any deviation from this will
incur a certain loss.

Why the classical interpretation of probability is insuffi-
cient

For the remainder of the introduction, we will discuss why the classical in-
terpretation of probability, which has a finite number of events with equal
probability as a basis, is insufficient. In fact, any theory with a finite number
of events is insufficient, whatever their probability. We will see that measure
theoretic probability is the right answer to this problem, so the following is
really a motivation to study measure theory and integration.

Consider the following model of a fair coin: A binary sequence is a se-
quence x1, x2, . . . where xk = 0 or 1 only for all k. We identify 1 with “Head”
and 0 with “Tail”. Let Ω := the set of all binary sequences. A generic element
is written as ω = (ω1, ω2, . . .). An event is a subset of Ω. A probability P is
a function which assigns a number between 0 and 1 to events so that

1. P(Ω) = 1,

2. P(A ∪B) = P(A) + P(B) whenever the events A and B are disjoint.

These assumptions are reasonable for any probability. In the present exam-
ple, we assume

1. P({ω ∈ Ω;ωk = 1}) = p for any k (and this implies P({ω ∈ Ω;ωk =
0}) = 1− p),
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2. Different throws are independent.

The second condition means the following: Whenever x1, . . . , xn is a binary
sequence of finite length, then

P({ω ∈ Ω;ω1 = x1, . . . , ωn = xn}) = p
∑n
k=1 xk(1− p)n−

∑n
k=1 xk .

Based on these assumptions, we can now work out things like

P(No. of “Heads” in 10 throws) = p10

etc. In other words, we can deal with events that depend on finitely many
throws, only. But now let Sn =

∑n
k=1 ωk = No. of “Heads” in n throws, and

consider the statement

Sn
n
→ p as n→∞. (1.1)

This statement, known as the Law of Large Numbers, “should hold”, but
cannot be analysed in a “finite” framework, since the very existence of the
limit is a random event, depending on more than just finitely many throws
(in fact, neither the value of the limit nor its existence depends on the first
n throws, however large n is).

To see where the problem lies, let us delve into this a little further. We
assume p = 1

2
for simplicity. Fix some ε > 0 and consider the events Ak :=

{all ω so that |Sk
k
− 1

2
| > ε}. You might know from your previous studies

that
P(Ak) ≤

C

k

for some constant C depending on ε. In fact, with a little more work you can
show that

P(Ak) ≤ C · λk (1.2)

for some C > 0 and λ < 1, both depending on ε. Either estimate shows that
Sk
k

will concentrate about 1/2 with increasing probability. But this does not
imply that the statement (1.1) holds for any ω. In fact, if ω is so that the
statement (1.1) holds, then ω can be a member of only finitely many Ak! So
we need to investigate the eventB := {all ω which are in infinitely many Ak}.
If we can show that this event has probability zero no matter how we pick ε,
then the statement (1.1) is true for all ω, except perhaps for some ω’s in a
set of probability zero.

The most challenging bit in this discussion is the construction of the event
B. Consider first Bn := An∪An+1∪ . . .. This is the event that {|Skk −

1
2
| > ε}
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for some k ≥ n. Now if there is an ω which is a member of Ak for infinitely
many k’s, then it must be in all Bn’s; hence B ⊂ Bn for any n, and therefore

P(B) ≤ P(Bn) for all n = 1, 2, . . . .

We aim to show that the probability of Bn goes to zero. Now by Equa-
tion (1.2)

P(An ∪ An+1 ∪ . . . ∪ An+m) ≤
n+m∑
k=n

λk =
λn − λn+m+1

1− λ
<

λn

1− λ
.

The left hand side is increasing in m and bounded (by one or in fact by the
right hand side) and therefore convergent, hence

lim
m→∞

P(An ∪ An+1 ∪ . . . ∪ An+m) ≤ λn

1− λ
. (1.3)

And here is the point: We would like to use that the left hand side is in fact
P(Bn), that is

lim
m→∞

P(An ∪ An+1 ∪ . . . ∪ An+m)
?
= P(An ∪ An+1 ∪ . . .) = P(Bn). (1.4)

Assuming this is correct for the moment and using it in Equation (1.3), we
obtain

P(Bn) ≤ λn

1− λ
→ 0 if n→∞,

and we can conclude that the statement (1.1) holds for all sequence of heads
and tails which are not in B, but this happens probability zero.

So what is the problem with Equation (1.4)? We clearly have

P(An ∪ An+1 ∪ . . . ∪ An+m) ≤ P(Bn).

so all we can say is that

lim
m→∞

P(An ∪ An+1 ∪ . . . ∪ An+m) ≤ P(Bn),

but there is no apriori reason why there should be equality here. If we want
relations like (1.4) to be correct, we have to add this as an assumption. In
other words, we will only work with probabilities where this is correct. But
there is then another question: Is this consistent with our assumptions (a)
and (b) made at the beginning of this section, and the other properties we
would like a probability to have? This is a nontrivial question which we will
address in this chapter (the answer is “yes”).
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Statistics

Statistics works with real data, that is, quantitative observations from real
world experiments. The aim is to explain the data by means of models,
mostly probabilistic models. So when compared to probability theory, in
a sense we go in the opposite direction. Rather than investigating a given
probability model (e.g. a fair coin) we ask the question: is there a probability
model consistent with given data? For example, suppose we observe the two
data sets

{H,H, T,H, T,H, T, T,H} (1.5)
{H,H,H,H, T, T, T, T,H} (1.6)

alledgedly coming from tossing a fair coin. Is this data consistent with the
model of a fair coin? You might observe that both data sets contain 5 heads
and 4 tails. In that sense, the data sets are not entirely atypical for nine
tosses of a fair coin. But you might also observe that the H’s and T ’s are
sprinkled quite evenly across the first data set while in the second, there
seem to be unusually long runs of heads and tails. So the first data set might
plausibly come from a fair coin but not the second. Statistics is about making
these conclusions more quantitative.

2 Sigma algebras and probability measures
In this section, we discuss probabilities and events, that is the sets we want
to assign probabilities to. We start with some fundamental definitions. Let
Ω, A, B be sets. Familiarity with the notations A ⊂ Ω, A ∪ B, A ∩ B, ∅ is
assumed. Further

A \B := {x ∈ A;x /∈ B}, read “A without B”
Ac := Ω \ A, read “Complement of A in Ω” .

The notation Ac is used if Ω is clear from the context. If the elements of a
set A are again sets, we call A a system or family of sets.

Definition 2.1. Let Ω be a set. A system A of subsets of Ω is called an
algebra if

1. ∅ ∈ A

2. A ∈ A ⇒ Ac ∈ A.

3. A1, . . . , An ∈ A ⇒
⋃n
k=1Ak ∈ A.
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Further, A is a sigma algebra if

4. A1, A2, · · · ∈ A ⇒
⋃∞
k=1Ak ∈ A.

An algebra formalises the intuition behind “events”. Considering sigma al-
gebras rather than just algebras, that is where 3 holds for countably many
An rather than just finitely many, is important as we have seen in the intro-
duction. Members of A are called events or measurable sets.

Definition 2.2. Let A be an algebra. A function P : A −→ [0, 1] is a
probability if it satisfies

1. Normalisation: P(Ω) = 1

2. Additivity: If A1, . . . , An ∈ A, with Ai ∩ Aj = ∅ for i 6= j, then∑n
k=1 P(Ak) = P(

⋃n
k=1Ak).

3. Continuity at ∅: If A1, A2, . . . ∈ A, with A1 ⊃ A2 ⊃ . . . and ∩Aj = ∅,
then P(Ak)→ 0 for k →∞.

Again, the intuition is clear. The continuity at ∅ is important for techni-
cal reasons, as we have seen in the introduction (the connection will be made
clear in Exercise 2.2). It is possible to construct examples of a probability
on an algebra that is not continuous at ∅. Note that a probability satisfies
P(∅) = 0 (Exercise 2.2).

Definition 2.3. A pair (Ω,A) with Ω a set and A a sigma algebra is called
a measurable space. A triple (Ω,A,P) with Ω a set, A a sigma algebra, and
P a probability is called a probability space.

Note that algebras are very much smaller than sigma algebras, so it should
be much easier to define P just on an algebra (examples later).

Definition 2.4. Let A be an arbitrary family of subsets of Ω. Then σ(A) is
defined as the smallest σ-algebra containing A.

In Exercise 2.1 you will show that this concept is well defined.

Theorem 2.5 (The Measure Extension Theorem, also known as MET or
Hahn-Carathéodory theorem). Let A be an algebra and P a probability on A.
Then there exists a unique probability P̃ on σ(A) with P̃|A = P|A. Further,
if A ∈ σ(A), then for any ε > 0 there exist disjoint sets A1, . . . , An ∈ A with
P̃(A4

⋃n
k=1Ak) ≤ ε.

Sketch of a proof, see e.g. [Hal74]. For any Y ⊂ Ω, putP∗(Y ) = inf
∑∞

k=1 P(Ak),
inf taken over A1, A2, · · · ∈ A, with Y ⊂

⋃
k Ak. Now
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1. P∗|A = P|A (“≤” is trivial).

2. Consider the family of sets M: a set A ⊂ Ω is a member of M if
∀E ⊂ Ω it holds that P∗(E) ≥ P∗(E ∩ A) + P∗(E \ A). One then
proves thatM is a σ−algebra withM⊃ A.

3. P∗ is a measure onM.

4. The approximation result is relatively straightforward from the defini-
tion of P∗.

We fix the uniqueness part, which is true under weaker conditions:

Theorem 2.6 (Uniqueness of probabilities). Let A be a family of sets so
that for any two sets A1 ∈ A, A2 ∈ A, also A1 ∩ A2 ∈ A. (This is true for
instance if A is an algebra.) Further, let P,Q be two probabilities on σ(A),
the sigma algebra generated by A. Then if P(A) = Q(A) for any set A ∈ A,
they agree on σ(A).

For a proof see [Bre73], Proposition 2.23. The following theorem en-
sures that there exists a probability on the unit interval which on any subin-
terval is given by the length of that subinterval. For a proof, see for in-
stance [JP00], Chapter 7.

Theorem 2.7 (The Lebesgue measure). A halfopen interval on [0, 1] is a
set of the form [a, b[, where 0 ≤ a < b ≤ 1. Let A be the family of sets
which are unions of finitely many disjoint halfopen intervals. Then A is an
algebra. To each A ∈ A we assign λ(A) := the total length of A. This is a
probability on A (the continuity at ∅ requires proof, see for instance [JP00]
for a somewhat more general statement). It now follows from Theorem 2.5
that λ can be extended to a probability on σ(A), which is the Borel algebra
(see Definition 3.1).

Exercises for Section 2

Exercise 2.1. Let Ω be a set.

1. Show that the power set 2Ω is a sigma algebra.

2. Show that S1∩S2 is a sigma algebra for any two sigma algebras S1,S2.

3. Use the previous two items to show that σ(A) in Definition 2.4 makes
sense, i.e. there exist sigma algebras containing A, and among these
there exists a smallest possible one.
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Exercise 2.2. Let Ω be a set, A an algebra, P : A → [0, 1] a set function
satisfying properties 1 and 2 in Definition 2.2.

1. Show that P(∅) = 0.

2. Show that property 3 in Definition 2.2 is equivalent to sigma additivity:
If A1, A2, . . . is a sequence of sets in A with Ai ∩Aj = ∅ for any i 6= j,
and if

⋃
k Ak ∈ A as well, then

∑∞
k=1 P(Ak) = P(

⋃
k Ak).

3. Show that property 3 in Definition 2.2 is equivalent to continuity from
above: If A1, A2, . . . ∈ A, with A1 ⊃ A2 ⊃ . . . and ∩Aj = A with
A ∈ A, then P(Ak)→ P(A) for k →∞.

4. Show that property 3 in Definition 2.2 is equivalent to continuity from
below: If A1, A2, . . . ∈ A, with A1 ⊂ A2 ⊂ . . . and ∪Aj = A with
A ∈ A, then P(Ak)→ P(A) for k →∞.

5. Show that for any series A1, A2, . . . of disjoint sets in A, we have
P(An)→ 0 (in fact, P(An) must be summable).

3 Measurable Functions and Integration
A probability can be seen as a generalised form of volume. As with the
standard volume in Euclidean space, it is possible to integrate functions
against probabilities. We want to define an integral which, to some extent,
can be interchanged with pointwise limits of functions. Let (Ω,A,P) be a
probability space.

Definition 3.1. 1. On R we define the Borel-algebra B as the smallest
σ−algebra containing all open sets (see 2.4).

2. A function f : Ω −→ R is measurable or a random variable if f−1(B) ∈
A for all B ∈ B.

The definition of a random variable guarantees that sets such as {ω ∈
Ω; a < f(ω) < b} = f−1(]a, b[) can be assigned a probability to. To prove
that a function is measurable, it is enough to check that {ω; f(ω) > a} ∈ A
for any a ∈ R (see Exercise 3.2).

Theorem 3.2. 1. If fn, n ∈ N are random variables, so are the pointwise
lim sup fn, lim inf fn, lim fn (if the last exists).

2. If f (k), k = 1, . . . , d are random variables and φ : Rd → R is a contin-
uous function, then the function ψ : ω → φ(f (1)(ω), . . . , f (d)(ω)) is a
random variable.
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Proof. To prove item 1, pick a ∈ R. Then {ω; supk fn+k(ω) > a} =
⋃
k{ω; fn+k(ω) >

a} ∈ A, so supk fn+k is measurable for every n by the remark after Defini-
tion 3.1. infk fn+k is similar (take

⋂
k{. . . }). But

lim inf
n

fn = sup
n

inf
k
fn+k,

lim sup
n

fn = inf
n

sup
k
fn+k.

So they are measurable. If limn fn exists, it is equal to lim sup and lim inf.
To prove the second item, we note that the statement is true if f (1), . . . , f (d)

are simple functions. Further, we will show later on that every nonnegative
random variable is the pointwise limit of simple functions, and this is easily
seen to extend to general (not necessarily nonnegative) random variables.
We can conclude that ψ is the pointwise limit of simple functions and thus
a random variable by item 1.

The integral

We want to define an integral
∫
fdP for random variables, which we will also

write as E(f), generalising the expectation value.
But first a remark about limits and increasing sequences. A sequence

{xn, n ∈ N} of real numbers is called increasing if x1 ≤ x2 ≤ . . .. If {xn}
is increasing, then xn → x and xn ↑ x have the same meaning, namely
that x = supn xn. Note that x might be infinite, but if it is not, we have
x = limn→∞ xn. (We stress that per definition, the limit of a sequence is
always finite.) If {xn} is not increasing though, then xn ↑ x is meaningless,
while xn → x means that x = limn xn.

For a sequence {fn, n ∈ N} of real valued functions on some set Ω, the
limits limn fn = f and fn → f are understood pointwise (unless otherwise
stated), that is limn{fn(ω)} = f(ω) and also fn(ω)→ f(ω) for every ω ∈ Ω.
The sequence {fn} is called increasing if {fn(ω), n ∈ N} is an increasing
sequence for every ω ∈ Ω, and we write fn ↑ f if fn(ω) ↑ f(ω) for every
ω ∈ Ω.

The integral of a random variable can be constructed along the following
steps. See [Kle14, Hal74, Doo94, Dud89] for details.

1. For A ∈ A, define the indicator function

1A(ω) =

{
1 if ω ∈ A
0 else.
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2. A random variable f : Ω → R is simple if it assumes finitely many
values, say {f1, . . . , fn} ⊂ R. We can write

f =
k∑
l=1

fl · 1Bl

with Bl = f−1({fl}) for all l = 1, . . . k. Note that Bl ∈ A for all
l = 1, . . . k because f is assumed measurable.

3. With f, g simple, so are f · g, αf + βg, α, β ∈ R, max{f, g} and |f |
(these operations are understood pointwise).

4. Every nonnegative random variable f : Ω → R≥0 is the pointwise
monotone increasing limit of simple functions.

Proof. Define gn : R≥0 → R≥0

gn(x) =


k + l

2n
if k + l

2n
< x ≤ k + l+1

2n

for k = 1 . . . n− 1, l = 0 . . . 2n − 1

n if x > n.

Clearly gn(x) ↑ x, ∀ x ∈ R≥0. Now put fn := gn ◦ f , then clearly fn is
simple and fn ↑ f .

5. For f simple, define ∫
f dP =

n∑
k=1

fkP(Bk).

6. Prove that the integral is linear, monotone (i.e. f ≤ g ⇒
∫
f dP ≤∫

g dP) and |
∫
f dP| ≤

∫
|f | dP.

7. If f is a nonnegative random variable and {fn} is a sequence of simple
functions and fn ↑ f (e.g. as in setp 4), then {

∫
fn dP} is an increasing

sequence of real numbers and

sup
n

∫
fn dP = sup

g

∫
g dP, (3.1)

where “supg” is over all simple g with f ≥ g. This will be proved in
exercise 3.3. We define

∫
f dP as either side of Equation (3.1). This

might be a nonnegative real number or ∞. But if
∫
f dP < ∞, then∫

fn dP→
∫
f dP for n→∞.
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8. For a general random variable f : Ω → R, put f+ := max{f, 0},
f− := f+ − f (now f+, f− are nonnegative) and set∫

f dP :=

∫
f+ dP−

∫
f− dP

if at least one them is finite. If both are finite, f is called integrable.

We stress that the integral of a nonegative random variable is always well
defined (but maybe infinite). In particular

∫
|f | dP is always well defined

for any random variable f , and f is integrable if and only if
∫
|f | dP <∞.

Lemma 3.3 (Properties of the integral). The integral enjoys the properties
in step (6) if both

∫
|f |dP <∞ and

∫
|g|dP <∞.

Proof. The linearity and the monotonicity for integrals over nonnegative sim-
ple functions is assumed proved in step 6. The additivity for integrals over
nonnegative functions f, g is shown by observing that if fn, gn, n ∈ N are
nonnegative simple functions with fn ↑ f and gn ↑ g, then fn + gn ↑ f + g
with fn + gn nonnegative and simple. The additivity of the integral in this
case then follows from the additivity of the integral for nonnegative simple
functions and step 7 above. To show the monotonicity for integrals over non-
negative functions f ≤ g, we take nonnegative simple functions fn, gn, n ∈ N
with fn ↑ f and gn ↑ g. Now note that hn = max{fn, gn} is also nonnegative
and simple with hn ↑ g, and further fn ≤ hn. It follows from step 7 that∫
fdP ≤

∫
gdP. To prove the additivity in the general case, observe first

that |f + g| ≤ |f |+ |g| and hence
∫
|f + g|dP <∞ by the monotonicity for

nonnegative functions. From the identity

(f + g)+ + f− + g− = (f + g)− + f+ + g+

we obtain by the additivity for nonnegative random variables that∫
(f + g)+dP +

∫
f−dP +

∫
g−dP =

∫
(f + g)−dP +

∫
f+dP +

∫
g+dP.

Note that by integrability, all the terms in this identity are finite. Rear-
ranging and using the definition of the integral for general f and g gives the
result. To prove the monotonicity in the general case, we use the linearity
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(in the line marked with (∗)) to obtain∫
fdP =

∫
f+dP−

∫
f−dP

≤
∫
f+dP +

∫
f−dP

=

∫
(f+ + f−)dP (∗)

=

∫
|f |dP.

Similarly, one proves that −
∫
fdP ≤

∫
|f |dP which gives the result.

Interchange of integral with a.s. limits

The most important reason for introducing this integral (as opposed to using
the Riemann integral) is the nice behaviour of the integral under pointwise
limits.

Theorem 3.4 (Monotone Convergence). Suppose {fn, n ∈ N} is an increas-
ing sequence of nonnegative random variable, and fn ↑ f . Then∫

fn dP ↑
∫
f dP. (3.2)

Proof. According to step 4, for every n ∈ N there exists a sequence {fn,m,m ∈
N} of simple nonegative random variable with limm→∞ fn,m = fn. Let gn =
max{fk,l, k, l ≤ n}. This is a increasing sequence of simple functions. On the
one hand,

gn ≤ fn ≤ f for all n. (3.3)

On the other hand if we fix ε > 0 and ω ∈ Ω we can find n and m ≥ n so
that

f(ω) ≤ fn(ω) + ε/2

fn(ω) ≤ fn,m(ω) + ε/2

and since m ≥ n we have
fn,m ≤ gm.

Taking these three estimates together gives

f ≤ gm + ε.
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This fact together with the estimate (3.3) proves

gn ↑ f.

The result now follows from the definition of the integral in Step 7.

Note that the right hand side in Equation (3.2) might be infinity. Further,
the theorem remains true if the function f assumes the value ∞, but we
haven’t quite defined the integral for such functions (the extension is not
difficult). Also, it actually suffices that

∫
fndP ≥ 0 rather than fn ≥ 0 for

the theorem to hold, see [Dud89].

Theorem 3.5 (Fatou Lemma). If {fn} is a sequence of nonnegative random
variable then ∫

lim inf fn dP ≤ lim inf

∫
fn dP. (3.4)

Before proving this, a little example for illustration.

Example 3.6. We will later see that on Ω = [0, 1] equipped with the Borel
algebra (i.e. the sigma algebra generated by all open sets on [0, 1]) one can
define a probability by the formula P(A) =

∫
A

dx. The integral with respect
to P is of course the standard Lebesgue integral on the unit interval (or the
Riemann integral if the integrand is continuous). Define

fn(x) = n · 1[0, 1
n

](x).

Now lim inf fn = lim fn = 0, and hence the left hand side of Equation (3.4)
is zero. But

∫
fn(x) dx = 1 and therefore lim inf

∫
fn(x) dx = 1, hence

the right hand side is one. This helps me to remember which direction the
inequality goes in Fatou’s lemma. Further, the example demonstrates that
the integral is in general not exchangeable with pointwise limits. Some addi-
tional condition (like monotonicity in Theorem 3.4) is necessary. A different
but still sufficient condition will be discussed presently.

Proof of Fatou’s Lemma. Since

inf
k
fn+k ≤ fn+l for all l ∈ N,

we get by integrating that∫
inf
k
fn+k dP ≤

∫
fn+l dP for all l ∈ N,
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so we take the inf over l and obtain∫
inf
k
fn+k dP ≤ inf

k

∫
fn+k dP. (3.5)

We now want to take the limit n→∞ on both sides of this inequality. Note
that infk fn+k is a monotone sequence in n of nonegative functions, and hence

lim
n

∫
inf
k
fn+k dP =

∫
lim
n

inf
k
fn+k dP =

∫
lim inf

n
fn+k dP

by monotone convergence and the definition of lim inf. On the right hand
side, taking the limit simply gives lim infn

∫
fn dP.

The next theorem shows that the integral can be interchanged with point-
wise limits provided the sequence of functions is bounded. The boundedness
condition replaces the monotonicity condition in the Monotone Convergence
Theorem (note that the sequence in Example 3.6 is neither bounded nor
monotone).

Theorem 3.7 (Bounded Convergence). Let {fn, n ∈ N} be a sequence of
random variable with |fn| ≤ C, and fn → f for n→∞. Then f is integrable
and

∫
fn dP −→

∫
f dP.

A more general version of this theorem goes under the name Dominated
Convergence Theorem, in which the condition |fn| ≤ C is replaced with
|fn| ≤ g where g is an integrable function. The conclusions are the same.

Proof. Clearly |f | ≤ C as well so we get
∫
|f | dP ≤ C, proving that f is

integrable. Since fn + C, and f + C are nonnegative, we can apply Fatou
and get (after subtracting the constant again from both sides)∫

f dP ≤ lim inf
n

∫
fn dP.

The same can be done with −fn and −f ; we get∫
−f dP ≤ lim inf

n

∫
−fn dP = − lim sup

n

∫
fndP,

or after multiplying with −1:∫
f dP ≥ lim sup

n

∫
fn dP.

In summary, we have shown that

lim inf
n

∫
fn dP ≥

∫
f dP ≥ lim sup

n

∫
fn dP,

completing the proof.
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Definition 3.8 (Equivalence of random variables).

1. Let f1, f2 : Ω→ R functions (not necessarily measurable). We say

f1 = f2 almost surely (a.s.)

or f1 and f2 are equivalent if f1(ω) = f2(ω) for all ω in a measurable set
Ω1 with P(Ω1) = 1. (One can check that this is indeed an equivalence
relation.)

2. If f is an integrable random variable, we can put∫
f̂ dP :=

∫
f dP,

for any f̂ which is equivalent to f .

3. For integrable random variable f we define the L1–norm by ‖f‖1 =∫
f dP.

The L1–norm is in fact not a norm on functions, only a pseudo–norm:
‖f‖1 = 0 does not quite imply f = 0. But by Exercise 3.4, f = 0 almost
surely, and therefore ‖f − g‖ = 0 means that f and g are equivalent. So
strictly speaking, ‖.‖1 is a norm on equivalence classes of functions.

Definition 3.9 (The space L1).

1. The space of integrable functions (or strictly speaking, their equivalence
classes) with the norm ‖.‖1 is denoted as L1(Ω,A,P) or just L1 if the
probability space is clear from the context.

2. If {fn} is a sequence of integrable random variables and f is another
random variable so that ‖fn − f‖1 → 0 as n → ∞, we will say that
{fn} converges to f in L1 or write fn

L1→ f .

Theorem 3.10 (Completeness of L1). Suppose {fn} is a sequence of random
variable which is Cauchy with respect to ‖·‖1. Then there exists an integrable
random variable f with fn → f in L1. Further, if f ′ is another random
variable with this property, then f = f ′ a.s.

This result is one of the main drivers behind the development of measure
and integration. With regards to Theorem 3.10 and also Definition 3.9,2, it
has to be kept in mind that L1 limits need not be unique; a sequence {fn}
of random variables can converge in L1 against two different functions f and
f ′ at the same time, however, f and f ′ will be equivalent.
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Exercises for Section 3

Exercise 3.1. In this exercise, we fill in some details to Section 3. Let
(Ω,A) be a measurable space (i.e. a set Ω with a sigma algebra A). Consider
a function f : (Ω,A)→ (R,B), where B is the Borel algebra.

1. Consider the family A0 of all sets of the form f−1(B) where B ∈ B.
Show that A0 is a sigma algebra on Ω. (A0 is referred to as the sigma
algebra generated by f .)

2. Consider the family B0 of all sets B ⊂ R so that f−1(B) ∈ A. Show
that B0 is a sigma algebra on R.

3. Conclude that f is a random variable if B0 from the previous item
contains B.

4. Use the previous item and Exercise 3.2 to prove the remark after Def-
inition 3.1: f is a random variable if {ω ∈ Ω; f(ω) > a} ∈ A for any
a ∈ R.

Exercise 3.2. In this exercise1, we learn more about the Borel algebra B on
R. (Recall that B is the smallest sigma algebra which contains all open sets.)
Show that B is actually the smallest sigma algebra which contains all sets of
the form ]a,∞] for any a ∈ R. You need to prove that if B̃ is a sigma algebra
containing all sets of the form ]a,∞] for any a ∈ R, then B̃ must contain all
open sets. Proceed along the following steps:

1. Show that B̃ contains all left open right closed intervals, i.e. sets of the
form ]a, b] with a < b.

2. Show that B̃ contains all open intervals (Hint: ]a, b[= ∪∞n=1]a, b− 1
n
]).

3. Show that B̃ contains countable unions of open intervals.

4. Show that every open set in R is the union of countably many open
intervals (this is difficult, so skip if you want), and conclude that B̃
contains every open set.

Exercise 3.3. In this exercise, we will prove item (7) in the construction of
the integral.

1This exercise might require bookwork. Check for example [Dud89]
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1. Because the fn are an increasing sequence of functions, the same is true
for the real numbers

∫
fndP. Therefore c = limn

∫
fndP exists. Show

that the following statement implies item (7): If g is simple and g ≤ f ,
then ∫

gdP ≤ c. (3.6)

The following steps will establish this statement.

2. Set ε > 0 and define the sets Mn = {ω ∈ Ω; fn(ω) > g(ω) − ε}.
Show that these sets are measurable, that M1 ⊂ M2 ⊂ . . ., and that
∪∞n=1Mn = Ω.

3. Justify all “≥” signs in the following:∫
fndP ≥

∫
fn · 1MndP ≥

∫
g · 1MndP− εP(Mn) (3.7)

4. Use sigma additivity to establish that P(Mn) → 1, and that
∫
g ·

1MndP →
∫
gdP (remember that g is simple). Using this in Equa-

tion (3.7) gives

c = lim
n

∫
fndP ≥

∫
gdP− ε

for any ε, establishing (3.6).

Exercise 3.4. Show that if f is a nonnegative random variable with
∫
fdP =

0, then f = 0 almost surely, that is f(ω) = 0 for all ω in a set Ω1 with
P(Ω1) = 1. Hint: Consider the sets An = {ω : f(ω) > 1/n} and show that
n · f ≥ 1An to get an upper bound on P(An). What can you now say about
∪∞n=1An?

Exercise 3.5. In this exercise, we will introduce the concept of densities. Let
(Ω,A,P) be a probability space. Let f be a nonnegative random variable,
and suppose that

∫
fdP = 1. On A, define the set function F by

F (A) =

∫
1A · f dP.

1. Show that F is a probability on (Ω,A). To prove that F is sigma
additive, you need to invoke the Monotone Convergence Theorem.

2. Show that P(A) = 0 implies F (A) = 0. (Attention: this is not im-
mediately obvious; assume first that f is simple, then use Monotone
Convergence).
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We will say that f is a density for F . The next item will show that densities
are (essentially) unique.

3. Using Exercise 3.4, show that if two densities f and g give rise to the
same probability F , then f = g almost everywhere. Hint: let h = f−g
and consider h+, h−.

4 Transformations
This short chapter is devoted to transformations, the push–forward of prob-
abilities and the transformation formula. The material is important for later
parts of this chapter but also for dynamical systems.

Let (Ωk,Ak), k = 1, 2 be two measurable spaces. In this context, a
mapping T : Ω1 → Ω2 is defined as measurable if T−1(A) ∈ A1 for all
A ∈ A2. Note that random variables as defined 3.1 are just a special case of
this, namely with (Ω2,A2) = (R,B). Let P be a measure on (Ω1,A1). Then
the formula T∗P(A) := P(T−1(A)) for all A ∈ A2 defines a probability T∗P
on (Ω2,A2) called the pushforward of P under T . That the pushforward is a
probability will be proved in Exercise 4.1.

Theorem 4.1 (Transformation formula). If f : (Ω2,A2) → (R,B) random
variable, either positive or integrable w.r.t. T∗P, then∫

Ω2

fd(T∗P) =

∫
Ω1

f ◦ TdP.

Proof. We prove this for simple functions first. If f =
∑n

k=1 fk ·1Ak , we have
on the left hand side∫

Ω2

f d(T∗P) =
n∑
k=1

fk ·P(T−1(Ak)).

On the right hand side we obtain∫
Ω2

f ◦ T dP =
n∑
k=1

fk ·
∫

1Ak ◦ T dP

=
n∑
k=1

fk ·
∫

1T−1(Ak) dP =
n∑
k=1

fk ·P(T−1(Ak)),

establishing the transformation formula for simple functions. The rest of the
proof is covered in Exercise 4.2
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Exercises for Section 4

Exercise 4.1. This exercise fills in several details to the beginning of Sec-
tion 4 in preparation of the transformation formula 4.1. Let (Ωk,Ak), k = 1, 2
be measurable spaces, P is a measure on (Ω1,A1). Further, T : (Ω1,A1) →
(Ω2,A2) is a measurable mapping and f : (Ω2,A2)→ (R,B) a random vari-
able.

1. Show that the pushforward T∗P defined by T∗P(A) := P(T−1(A)) for
all A ∈ A2 is a probability on the sigma algebra A2.

2. Show that f ◦ T : (Ω1,A1)→ (R,B) is a random variable.

3. If S : (Ω0,A0) → (Ω1,A1) is another measurable mapping, show that
T ◦ S : (Ω0,A0)→ (Ω2,A2) is measurable. (Hint: the previous item is
a special case of this statement.)

Exercise 4.2. In this exercise, we actually prove the transformation formla 4.1.
The same setup is as in theorem 4.1, and we assume it has been proved for
simple functions.

1. Use the Monotone Convergence Theorem and the fact that the push-
forward is a probability to prove theorem 4.1 in the case that f ≥ 0.

2. For integrable f prove theorem 4.1 by considering f+ and f− and using
the previous item.

5 Products spaces and product measures, Fubini-
Theorem

A rectangle in R2 is the carthesian product of two intervals in R, and the
volume of the rectangle is the product of the volumes (i.e. lengths) of these
two intervals. Rather than using the standard volume, basically the same
can be done with probabilities, resulting in product probabilities. We will
also look at the integral of functions against product probabilities and prove
that such integrals can be computed as iterated integrals.

Consider a sequence (Ωk,Ak), k ∈ N of measurable spaces. We define the
Cartesian Product

Ω :=
∏
k∈N

Ωk := sequences (ω1, ω2, . . . ) with ωk ∈ Ωk for all k ∈ N. (5.1)
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A sigma algebra can be introduced on Ω as follows. A rectangular cylinder
is a set of the form

{ω ∈ Ω;ωk ∈ Ak, k ∈ N},

where Ak ∈ Ak for all k ∈ N, and Ak 6= Ωk for only finitely many k. Now
let A := smallest sigma algebra on Ω containing all rectangular cylinders.
Notation A :=

⊗
k∈NAk. The measurable space (Ω,A) is called the measur-

able product of (Ωk,Ak), k ∈ N. A carthesian product over finitely many
factors (Ωk,Ak), k = 1 . . . K is defined in the same way (the requirement that
Ak 6= Ωk for only finitely many k in the definition of rectangular cylinders is
of course not needed then).

Example 5.1. We define

R∞ :=
∏
k∈N

R, B∞ :=
⊗
k∈N

B(R),

using (R,B) for all factors. Let (Ω,A) be another measurable space. A
mapping

f : (Ω,A) −→ (R∞,B∞)

ω −→ f(ω) = (f1(ω), f2(ω), . . . )

is measurable if and only if each component fk is a random variable

Proof. Exercise 5.1.

Lemma 5.2. The set of finite unions of all rectangular cylinders is an alge-
bra.

Proof. Exercise 5.2.

Definition 5.3. 1. For any finite I ⊂ N, we define the projections

πI :
∏
k∈N

Ωk −→
∏
k∈I

Ωk

(ω1, ω2, . . . ) −→ (ωk1 , . . . , ωkN ),

where k1 < · · · < kN ∈ I.

2. If P is a probability on (
∏

k∈I Ωk,
⊗

k∈I Ak) we define the I-marginal
as PI := πI ∗P, which is a probability on (

∏
k∈I Ωk,

⊗
k∈I Ak).
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3. P is called a product probability if for every rectangular cylinder

A = {ω ∈ Ω;ωk ∈ Ak; k ∈ N}

we have
P(A) =

∏
k∈N

P{k}(Ak), (5.2)

where P{k} is the marginal for I = {k}. Note that in Equation 5.2,
only finitely many factors are 6= 1. In particular for finite products

Ω = Ω1 × · · · × ΩN , A = A1 ⊗ · · · ⊗ AN

we have that for A1 ∈ A1, . . . , AN ∈ AN

P(A1 × . . . AN) = P{1}(A1) · · · · ·P{N}(AN).

Theorem 5.4. Let P,Q two probabilities on (Ω,A) = (
∏

k∈N Ωk,
⊗

k∈NAk)
with all marginals being the same. Then

P = Q.

Proof. The condition just means that P = Q on rectangular cylinders. The
rest of the proof is Exercise 5.3.

Theorem 5.5 (Fubini-Tonelli theorem). Consider (Ω,A) = (Ω1 × Ω2,A1 ⊗
A2) with product measure P = P1 ⊗ P2. Then for every random variable
f : Ω→ R,

1. For all ω1 ∈ Ω1 the function ω2 → f(ω1, ω2) is measurable.

2. If f ≥ 0 or if for all ω1 ∈ Ω1 the function ω2 → f(ω1, ω2) is P2-
integrable, then the function ω1 →

∫
f(ω1, ω2) · dP2(ω2) is measurable.

3. If f ≥ 0 then,∫
fdP =

∫
[

∫
f(ω1, ω2) · dP2(ω2)]dP1(ω1).

4. If f is P integrable, then the function ω1 →
∫
f(ω1, ω2) · dP2(ω2) is

P1-integrable and∫
fdP =

∫
[

∫
f(ω1, ω2) · dP2(ω2)]dP1(ω1).

We will use two lemmata.
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Lemma 5.6. Items (1,2) hold for indicators 1A, A ∈ A.

Lemma 5.7.

P(A) =

∫
1AdP =

∫
[

∫
1A(ω1, ω2) · dP1]dP2.

Proof of Lemma 5.6. Put D := set of all A ⊂ Ω so that (a),(b) hold for
indicators 1A. If A = A1×A2, A1 ∈ A1, A2 ∈ A2, then 1A = 1A1(ω1)·1A2(ω2)
and (a, b) hold trivially. Thus D ⊃ all cyclinders.

Now let A1 ⊂ A2 ⊂ · · · ∈ D. Then

1Ak(ω1, ω2) ↑ 1⋃∞
k=1 Ak

(ω1, ω2) ∀(ω1, ω2) ∈ Ω,

so in particular for ω1 fixed. Hence

ω2 −→ 1⋃∞
k=1 Ak

(ω1, ω2) is measurable.

Further

ω1 →
∫

1⋃∞
k=1

(ω1, ω2)dP2 =

∫
lim
n

1Ak(ω1, ω2)dP2

Monot. conv.
= lim

n

∫
1Ak(ω1, ω2)dP(ω2) (measurable!)

So
⋃∞
k=1Ak ∈ D. If A1 ⊃ A2 ⊃ · · · ∈ D, prove that

⋂∞
k=1Ak ∈ D along

similar lines, using dominated convergence. We have shown that D contains
all rectangular cylinders and is a monotone class. A family D is a monotone
class if

1. A1 ⊂ A2 ⊂ · · · ∈ D ⇒
⋃
k Ak ∈ D

2. A1 ⊃ A2 ⊃ · · · ∈ D ⇒
⋂
k Ak ∈ D.

This implies that D ⊃ A.

Proof of Lemma 5.7. It is trivial to verify 5.7 for rectangular cylinders. How-
ever, the right hand side makes sense for any A ∈ A and forms a probability
(σ-additivity comes from monotone convergence). We thus get 5.7 by the
MET.

Completion of proof of 5.5. We have shown that 5.5 holds for indicators and
clearly also for simple functions. If f ≥ 0 random variable, take fn ↑ f , fn
simple. Now the functions

ω2 −→ fn(ω1, ω2) and ω1 −→
∫
fn(ω1, ω2)dP2,
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respectively, are measurable and converge monotonically to

ω2 −→ f(ω1, ω2) ∀ω1 and ω1 −→
∫
f(ω1, ω2)dP2 ∀ω2,

respectively (the second by monotone convergence). Finally, because
∫
fndP =∫

[fn(ω1, ω2)dP2]dP1 and both sides converge by monotone convergence to∫
fdP and

∫
[
∫
f(ω1, ω2)dP2]dP1, respectively, Theorem 5.5 is proved for

random variable f ≥ 0.
If f is integrable, 5.5 holds for f+ and f−. The only thing that needs

proving is that

ω1 −→
∫
f(ω1, ω2)dP2 =

∫
f+(ω1, ω2)dP2 −

∫
f−(ω1, ω2)dP2 (5.3)

is well defined (no∞−∞ situation occurs). LetN+ = {ω1 ∈ Ω1;
∫
f+(ω1, ·)dP2 =

∞}. We must have P1(N+) = 0, because

∞ >

∫
f+dP =

∫
[

∫
f+(ω1, ω2)dP2]dP1.

Similarly for N− = {ω1 ∈ Ω1;
∫
f−(ω1, ·)dP2 = ∞}. So 5.3 is well defined

apart from ω1 ∈ N+ ∩N−. which has P(N+ ∩N−) = 0.

Remark 5.8. 1. The integrability condition cannot be omitted. It’s not
hard to find cases where

∫
|f |dP = ∞ and then both sides of (c) are

well defined but fail to be equal.

2. To verify that f is integrable, one might use item 3 of the Fubini–Tonelli
theorem which says that

∫
|f |dP =

∫
[
∫
|f |(ω1, ω2) · dP2(ω2)]dP1(ω1).

3. One can use the r.h.s. of 5.7 to define P from the marginals. We have
shown that r.h.s. is well defined for A ∈ A and is σ−additive. But one
then need to invoke MET to show that∫

[

∫
1A(ω1, ω2)dP1]dP2 =

∫
[

∫
1A(ω1, ω2)dP2]dP1.

4. Fubini-Tonelli extends to finite products.

Exercises for Section 5

Exercise 5.1. Prove the statement in Example 5.1.
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Exercise 5.2. Show Lemma 5.2: The family of sets which are finite unions
of cylinders is an algebra of subsets of

∏
k∈N Ωk. (Hint: The complement is

the tricky bit. Start with assuming (and later showing) that if A and B are
cylinders, then A \B is a finite union of cylinders.)

Exercise 5.3. Demonstrate Theorem 5.4. You can use without proof the
Theorem 2.6.

Exercise 5.4. Setup is as in Section 5

1. Consider a set of the form

B = {ω;ωk ∈ Ak for all k ∈ N},

with Ak ∈ Ak for all k ∈ N. (B is not necessarily a cylinder!) Show
that B is nonetheless measurable.

2. Demonstrate that for a product probabilityQ (see Definition 5.3, item 3)
and with B as in the previous item, Q(B) = limn→∞

∏n
k=1 Pk(Ak).

6 Distributions and independence
In this section, we will change notation somewhat, bringing it closer to stan-
dard notation in probability theory. Further, we introduce the important
concept of independence.

Let (Ω,A,P) be a probability space. Random variables are measurable
functions with values in (Rd,Bd) (where d =∞ possible) and are denoted by
capital letters:

X : (Ω,A)→ (Rd,Bd).

If d = 1, we put E(X) :=
∫
XdP (“expectation value”). If d < ∞, E(X) is

taken component wise. Throughout this section, the symbol d stands for a
finite integer or for ∞, unless otherwise stated.

Definition 6.1. 1. The distribution of a random variable X : (Ω,A) →
(Rd,Bd) is defined as PX := X∗P.

2. An I-marginal of X is the distribution XI := (Xk1 , . . . , XkN ), where
I = {k1 < · · · < kN}.

Note that an I-marginal of X according to Definition 6.1 is the same as
an I-marginal of PX according to Definition 5.3 (Exercise 6.2).
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Lemma 6.2. Suppose that X : Ω→ Rd is a random variable and f : Rd → R
a measurable function (with respect to the Borel algebra on both the domain
and range). Further, suppose that f ◦X is integrable. Then

E(f ◦X) =

∫
Rd
f(x)dPX(x).

Proof. This is essentially the transformation formula, see Exercise 6.1.

Lemma 6.3. Two random variables

X, Y : Ω←→ Rd

have the same distribution iff they have the same I-marginals.

Proof. If d is finite, then the I-marginal for I = {1, . . . , d} is actually the
distribution. If d is infinite, let A = {x ∈ R∞;xnk ∈ Ak, nk ∈ I} be a
rectangular cylinder for some I = {n1, . . . , nk} ⊂ N and some A1, . . . , Ak ∈
B1. Then

PXI (A1 × · · · × Ak) = P({ω;Xnk ∈ Ak, nk ∈ I})
= P(X ∈ A) = PX(A).

(6.1)

and the same for Y . If the I-marginals agree, then Equation (6.1) shows that
PX and PY agree on rectangular cylinders, so Theorem 5.4 gives PX = PY .
If on the other hand PX = PY , then Equation (6.1) (read from right to left)
shows that the I-marginals agree.

Independence

This paragraph has only two definitions. Some facts about independent
random variables will be explored in the exercises.

Definition 6.4. Let X1, X2, . . . random variables with values in R. They are
called independent if any I marginal is a product probability. This means
that for any N ∈ N, any index set I = {k1 < . . . < kN} and any selection of
sets B1, . . . , BN in B(R) the relation

P(Xk1 ∈ B1, . . . , XkN ∈ BN) = P(Xk1 ∈ B1) · . . . ·P(XkN ∈ BN)

holds.
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Definition 6.5. For any random variable X : Ω → Rd, d < ∞ define the
Covariance matrix

Cov(X) = E([Xi − EXi][Xj − EXj])i,j

and the variance

V(X) = tr[Cov(X)] = E([X − EX]2)

(both are finite if
∑n

k=1X
2
k is integrable). Finally, if Y : Ω −→ Rd′ random

variable (d′ <∞), then

Cov(X, Y ) = E([Xi − EXi][Yj − EYj]) ∈ Rd×d′ .

It is easy to see that Cov(X, Y ) = Cov(Y,X)T . Note that Cov(X) is
symmetric and nonnegative definite, because

vTCov(X)v = E
((
vT (X − E (X))

)2
)
≥ 0.

We write A ≥ 0 if A ∈ Rd×d symmetric nonnegative definite. Also, A ≥ B
means A,B symmetric and A−B ≥ 0. Similarly, “>” means positive definite.

Modelling with random variables

The following lemma might sound abstract, but its interpretation is very
simple. Suppose we observe data from the real world, and we want to model
them as random variables, say X1, . . . , Xd, each of them real valued. But
“modelling” almost always means to merely specify the distribution of those
random variables. The probability space (Ω,A,P) on which these random
variables live, and in fact the variables themselves are usually not specified.
The following lemma simply says that this is not a problem, and in the proof
you will find a canonical choice for these missing ingredients:

Lemma 6.6. If µ is a probability on (Rd,Bd), then there exists a probability
space (Ω,A,P) and a measurable random variable X : Ω −→: Rd so that
µ = PX .

Proof. Take Ω = Rd, A = Bd, P = µ and X(ω) = ω.

Exercises for Section 6

Exercise 6.1. In the setup of Lemma 6.2, show that f ◦ X is a random
variable and prove the formula.

27



Exercise 6.2. For PX the distribution of some X : (Ω,A,P) → (Rd,Bd),
we have defined the concept of I–marginals in Definition 6.1. Show that
Definition 5.3 however is also applicable and gives the same concept of I–
marginals. (Hint: this is used in the proof of Lemma 6.3).

Exercise 6.3. In this exercise, d is finite. Consider a random variable X :
Ω → Rd with distribution PX which has a density p : (Rd,Bd) → (R≥0,B)
with respect to the n–dimensional Lebesgue measure.

1. Let f : (Rd,Bd)→ (R,B) be integrable with respect to PX . Show that∫
f(x)dPX(x) =

∫
f(x)p(x)dx

Start with f being a simple function and proceed as usual. (Note that
this extends Lemma 6.2)

2. Show that the marginals of µ have densities as well. Hint: For example
µ{1} has the density

p1(x1) =

∫
Rd−1

p(x1, x2, . . . , xd)dx2 . . . dxd.

Exercise 6.4. A little bit about independence.

1. Show that random variables X1, X2, . . . with values in R are indepen-
dent if and only if for any n ∈ N and any selection f1, . . . , fn of bounded
and measurable functions the relation

E(f1(X1) · . . . · fn(Xn)) = E(f1(X1)) · . . . · E(fn(Xn))

holds.

2. Suppose that random variables X1, . . . , Xd with values in R are inde-
pendent, and their distribution has a density p as in exercise 6.3. Show
that

p(x) = p1(x1) · . . . · pd(xd)
where pk is the density of the distribution of Xk for each k = 1, . . . , d.

3. Suppose that random variablesX1, X2 with values in Rare independent,
and there are sets B1, B2 in B(R) so that

{ω;X1(ω) ∈ B1} = {ω;X2(ω) ∈ B2},

Then P({ω;X1(ω) ∈ B1}) = 0 or 1.

28



Exercise 6.5. Let X = (X1, . . . , Xd) random variables (d is finite). The
distribution of X is said to be normal or Gaussian if it has a density p :
Rd → R>0 with respect to Lebesgue measure given by the formula

p(x;µ,Γ) =
1√

det(2πΓ)
exp

(
− 1

2
(x− µ)TΓ−1(x− µ)

)
where µ ∈ Rd and Γ is a positive definite d× d–matrix.

1. Show that E(Xk) = µk and Cov(X) = Γ.

2. Show that the marginals of the distribution of X are normal as well,
and determine the expectation value and covariance matrix.

3. Let A be a surjective m × d–matrix (m ≤ d) and b ∈ Rm. Show that
AX+b has again a normal distribution, and determine the expectation
value and covariance matrix.

4. Show that X1, . . . , Xd are independent if and only if the covariance
matrix is diagonal.

7 Introduction to Statistics
The main point of statistics is to “identify” PX for some random variable
X : Ω −→ Rd given X assumes certain values (x1, . . . , xd). Here, d is finite,
but one is also interested what happens if d becomes large, e.g. are we able
to reconstruct PX if d→∞?

Definition 7.1 (Parametric estimation problem). Let Θ ⊂ Rp open (p <∞).
This is the parameter space. Let H := {Pθ : θ ∈ Θ} be a set of probability
measures on (Rn,Bn) (i.e. distributions). We call H the hypothesis. The
quadruple (Rn,Bn,Θ,H) we will call a parametric estimation problem.

Since the parametric estimation problem is about identifying the distribu-
tion of X = (X1, . . . , Xn), we are free to chose Ω, A, and X as in Lemma 6.6
to ensure that X has the desired distribution. This is the choice we made
in Definition 7.1. We will write Eθ(φ) :=

∫
Rn φ(x)dPθ for any function φ

integrable with respect to Pθ. Note that Pθ is not the distribution of some
random variable θ, but that θ is a parameter of that distribution. So our
notation in the present section differs slightly from that of Section 6.

The aim in the parametric estimation problem is to find measurable func-
tions (“estimators”)

t : (Rn,Bn)→ (Θ,Bp)
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so that the distribution of t under Pθ, that is t∗Pθ “concentrates” around θ
for all θ ∈ Θ. There are many ways to understand the word “concentrates”.
We will use the concept of mean square error to quantify this:

Definition 7.2. Fix H and estimator t.

1. The bias of t is the function

b :Θ −→ Rp,

b(θ) = Eθ(t)− θ.

2. t is unbiased if b(θ) = 0 for all θ ∈ Θ.

3. The mean-square-error of t is

mse(θ) = Eθ([t− θ]2).

Lemma 7.3. If Eθ(t2) <∞ for all θ ∈ Θ, then

mse(θ) = Eθ([t− Eθ(t)]2)︸ ︷︷ ︸
=:Vθ(t)

+b(θ)2.

Proof.

mse(θ) = Eθ([t− Eθ(t)]2) = Eθ
(
[t− Eθ(t) + Eθ − θ]2

)
= Vθ(t) + (b(θ))2 − 2Eθ

[t− Eθ(t)][θ − Eθ(t)]︸ ︷︷ ︸
constant


︸ ︷︷ ︸

0

.

Definition 7.4 (The standard setup). Let (Rn,Bn,Θ,H) be a parametric
estimation problem. We will say that the parametric estimation problem
has the standard setup if H, the set of candidate distributions, is given by a
family of product densities, that is

Pθ(A) =

∫
Rn

1A · p(x, θ)dx,

where p(x; θ) =
∏n

k=1 f(xk, θ) and f : R→ R≥0 is a density (i.e.
∫
R f(x, θ)dx =

1).
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It follows that if the parametric estimation problem is in the standard
setup, the X1, . . . , Xn are independent, with all Xk having the same distri-
bution given by the density f(·, θ).

Example 7.5. Assume the standard setup 7.4 with f(x, θ) = g(x−θ), where
g : R −→ R≥0 has properties

1.
∫
g(x)dx = 1.

2.
∫
xg(x)dx = 0.

3.
∫
x2g(x)dx = 1.

Now item 1 ensures f is a density. From item 2 we get

Eθ(xk) =

∫
x · f(x, θ)dx =

∫
xg(x− θ)dx (2)

= θ,

and Covθ(x) = 1. We will now try to estimate θ. We use t : Rn → R, t(x) =
1
n

∑n
k=1 xk. First we calculate the bias:

Eθ(t) = Eθ

(
1

n

n∑
k=1

xk

)
=

1

n

n∑
k=1

Eθxk
(d)
= θ ⇒ Bias = 0.

Variance:

Vθ(t) = Eθ([t− θ]2)

= Eθ

(
[
1

n

n∑
k=1

xk − θ]2
)

= Eθ

(
[
1

n

n∑
k=1

(xk − θ)]2
)

=
1

n2

n∑
k,j=1

E ([xk − θ][xj − θ])

=
n

n2
=

1

n
,

so mse(θ) = Vθ(t) = 1
n
−→ 0.

Definition 7.6 (The Fisher Information regularity conditions). A paramet-
ric estimation problem (Rn,Bn,Θ,H) with d finite is said to satisfy the Fisher
Information (FI) regularity conditions if the following is true:
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1. There is a measure ν on (Rd,Bd) and a function p : (Rd,Θ) −→ R≥0 so
that p(·, θ) is a random variable ∀θ ∈ Θ, and

Pθ(A) =

∫
A

p(x, θ) dν(x).

So p is a density w.r.t. ν (see Exercise 3.5).

2. ∀x ∈ Rd, θ ∈ Θ : Dθp(x, θ) exists.

3. ∫
Dθp(x, θ)dν(x) =

Assume this is permitted
Dθ

∫
p(x, θ)dν(x) = Dθ1 = 0.

4. C(θ) = {x ∈ Rd; p(x, θ) > 0} does not depend on θ.

Theorem 7.7 (The Cramér–Rao lower bound). Suppose the FI-conditions
7.6 are met. Further, suppose that t is an unbiased estimator of θ. Then

Covθ(t) = Eθ [(t− θ)i(t− θ)j] ≥ I−1,

where I = Covθ (Dθ log p(x, θ)) is the Fisher information, provided that I is
invertible.

We will need the following

Lemma 7.8. Let (Ω,A,P) be a probability space. Suppose X : Ω → Rd1,
Y : Ω→ Rd2, finite variances. If Cov(Y ) > 0, then

Cov(X) ≥ Cov(X, Y )Cov(Y )−1Cov(Y,X).

Further, equality holds here if and only if there is M ∈ Rd1×d2 so that X =
MY .

Proof. Put

Z =

(
X
Y

)
and consider

Cov(Z) =

[
Cov(X) Cov(X, Y )

Cov(Y,X) Cov(Y )

]
.

Put
W =

[
1

−Cov(Y )−1 · Cov(Y,X)

]
∈ R(d1+d2)×d1 .
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Now

0 ≤ W TCov(Z)W = Cov(X)− Cov(X, Y )Cov(Y )−1Cov(Y,X).

If equality holds, then W TCov(Z)W = Cov(W TZ) = 0. Checking the diag-
onal elements, we get W TZ = 0 or X = Cov(X, Y )Cov(Y )−1︸ ︷︷ ︸

M

·Y .

Proof of the Cramér–Rao bound. By taking the derivative of the identity 1 =∫
p(x, θ)dν(x) we get

0 =

∫
∂θj log p(x, θ) · p(x, θ)dν(x). (7.1)

From unbiasedness, we get

0 =

∫
[t(x)− θ]ip(x, θ)dν(x) = Eθ(t)− θ,

and taking the derivative of this identity and using (7.1) we obtain

0 = −δij +

∫
[t(x)− θi] · ∂θj log p(x, θ) · p(x, θ)dν. (7.2)

Equation (7.2) can be written as 1 = Cov (t− θ,Dθ log p(X, θ)). Now the
lemma gives the result.

Lemma 7.9. Under appropriate regularity conditions

I = −Eθ
(
∂2
θiθj

log p(X, θ)
)
.

Proof. Exercise 7.1.

Definition 7.10. Let (Rn,Bn,Θ,H) be a parametric estimation problem,
and suppose that t is an unbiased estimator. If

Covθ(t) ≤ Covθ(t′) ∀θ ∈ Θ

for any other unbiased estimator t′, then t is called Uniformly Minimum
Variance Unbiased (UMVU) estimator.

Example 7.11 (Another example). Standard setup 7.4, with f(x, θ) =
1
θ

exp(−x
θ
), θ ∈ R+, x ∈ R≥0. Consider the estimator t = 1

n

∑n
k=1 xk. For

this estimator, we get Eθ(t) = θ, Vθ(t) = θ2

n
. The FI-regularity conditions

are easily checked, and

I = −Eθ
(
∂2
θ log p(x, θ)

)
=

n

θ2
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as the following calculations show:

− log p(x, θ) =
n∑
k=1

log(θ) +
xk
θ

= n log(θ) +
n∑
k=1

xk
θ
,

∂2
θ (− log p(x, θ)) = − n

θ2
+ 2

∑
k xk
θ3

,

Eθ
(
∂2
θ (− log p(X, θ))

)
= − n

θ2
+ 2

n · θ
θ3

=
n

θ2
.

Hence t has minimum variance!

Definition 7.12 (The maximum likelihood estimator). Suppose a paramet-
ric estimation problem is in the standard setup and satisfies the FI-regularity
conditions 7.6. The Likelihood L : Θ× Rn → R is given by

L(θ, x) = p(x, θ),

Consider the set C = {x ∈ Rd; f(x, θ) > 0} and suppose that for any x ∈ C
the likelihood as a function of θ, that is θ → L(θ, x), has a unique maximiser
t(x). In other words, for any x ∈ C and θ ∈ Θ it holds that

L(t(x), x) ≥ L(θ, x),

with equality here if and only if θ = t(x). Then t is called the Maximum Like-
lihood estimator (MLE).

Remark 7.13. 1. It often pays off to maximise l := logL(·, x), the log−
likelihood.

2. In the standard setup, we have

p(x, θ) =
n∏
k=1

f(xk, θ),

so l = logL(θ, x) =
∑n

k=1 log f(xk, θ).

Example 7.14. 1. Assume the standard setup with f(x, θ) = 1
θ

exp
(
−x
θ

)
,

θ > 0, x ≥ 0. Then

l(θ, x) = −1

θ

n∑
k=1

xk − n log θ.
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To find the MLE, we solve the normal equations:

∂

∂θ
l(θ, x) =

1

θ2

n∑
k=1

xk −
n

θ

∂

∂θ
l(t, x) = 0 ⇐⇒ 0 =

1

t2

n∑
k=1

xk −
n

t

⇐⇒ t(x1, . . . , xn) =
1

n

n∑
k=1

xk as in Example 7.11.

2. Assume the standard setup with

f(x, θ) =
xm · exp(−θx)θm+1

m!
,

where m ∈ N is a fixed.

l(θ, x) =
n∑
k=1

{log
1

m!
+m log xk − θxk + (m+ 1) log θ}

∂

∂θ
l(θ, x) = −

n∑
k=1

xk + n · (m+ 1)/θ

∂

∂θ
l(t, x) = 0 ⇐⇒ t =

(m+ 1)
1
n

∑n
k=1 xk

.

Remark 7.15. It is not always true that the MLE is UMVU. But if the
parametric estimation problem satisfies the standard setup, the FI-regularity
conditions, and some more conditions, then t has, asymptotically for large
n, a normal distribution with mean θ and variance I(θ)−1. See [vdV00],
chapter 5, for precise statements and proofs of this result.

Exercises for Section 7

Exercise 7.1. Demonstrate the formula in Lemma 7.9 for the Fisher infor-
mation and state the conditions under which this formula is correct.

Exercise 7.2. Assume the R–valued random variables X1, . . . , Xn (n is fi-
nite) are independent, nonegative, and for all k = 1, . . . , n, the distribution
of Xk has a density with respect to Lebesgue measure, given by

p(x, θ) =

{
1
θ

if 0 ≤ x ≤ θ

0 else.
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where θ ∈ R>0. This is called a uniform distribution. Given that Xk can
never be larger than θ, we put T (x) = max{x1, . . . , xn} as an estimator for
θ.

1. Show that
P(T ≤ z) =

zn

θn
, 0 < z < θ.

2. Conclude from the previous item that T has a density given by

q(z) =
nzn−1

θn
, 0 < z < θ.

3. Show that T is biased, and suggest an estimator for θ based on T which
would be unbiased.

Exercise 7.3. Let x1, . . . , xn be independent and identically distributed ran-
dom variables, and the distribution of each xk has a density f(x; θ) with
respect to Lebesgue measure of the form

f(x; θ) = a(x) exp(θh(x)− φ(θ)),

where a ≥ 0 and h are given random variables, and x ∈ I with I some interval
not depending on θ. Densities of this kind are referred to as exponential
families (not to be confused with the exponential distribution, which is a
special case). You can assume that f(x; θ) is a well defined density for all θ
in some open interval Θ. Further, you can assume that differentiation under
the integral sign is permitted in the following, that the function θ → Eθ(h)
is one-to-one and continuous in both directions, and that 0 < Vθ(h) <∞ for
all θ ∈ Θ.

1. By considering the condition
∫
x∈I f(x; θ)dx = 1, provide an expression

for the function φ.

2. By differentiating
∫
x∈I f(x; θ)dx = 1 with respect to θ, demonstrate

that Eθ(h) = dφ
dθ
. Differentiate again to show that Vθ(h) = d2φ

dθ2
.

3. Show that the maximum likelihood estimator θ̂ for θ is a solution of
the equation 1

n

∑n
k=1 h(xk) = dφ

dθ
(θ̂).

4. Show that the maximum derived in the last item is actually a maximum
at least locally (Hint: You might want to use results from item 2 for
this proof).
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5. Demonstrate that the Fisher information (of the joint density) is given
by nd2φ

dθ2
.

6. For this last item, you need to use the Law of large numbers: If
Y1, . . . , Yn are independent and identically distributed random vari-
ables with finite variance, then 1

n

∑n
k=1 Yk → E(Y1) almost surely for

n→∞. Using this, prove that if θ0 corresponds to the true distribution
of x1, . . . , xn, then θ̂ → θ0.

8 Conditional probabilities and Conditional ex-
pectations

Let (Ω,A,P) probability space. Consider L2, the space of all random vari-
ables f : Ω → R so that

∫
f 2dP < ∞. This is a Hilbert space with scalar

product 〈f, g〉 :=
∫
fgdP. Let f be an element of this Hilbert space and S be

a closed subspace. Then there exists f̂ ∈ S which is the “best approximation”
f , which means∥∥∥f − f̂∥∥∥2

= 〈f − f̂ , f − f̂〉 ≤ ‖f − g‖2 , ∀g ∈ S,

and equality occurs here if and only if g = f̂ . We now claim that f − f̂ (i.e.
the approximation error) is perpendicular to S, that is 〈f − f̂ , g〉 = 0 for any
g ∈ S. To see this, note that for any g ∈ S we have∥∥∥f − (f̂ + g)

∥∥∥2

=
∥∥∥f − f̂∥∥∥2

+ ‖g‖2 − 2〈f − f̂ , g〉.

Suppose ∃g ∈ S with 〈f− f̂ , g〉 = m 6= 0, then replace g in the relation above
with g′ = m

‖g‖2 g, which gives

∥∥∥f − (f̂ + g′)
∥∥∥2

=
∥∥∥f − f̂∥∥∥2

+
m2

‖g‖2 − 2
m2

‖g‖2

=
∥∥∥f − f̂∥∥∥2

− m2

‖g‖2 <
∥∥∥f − f̂∥∥∥2

,

which means that f̂ + g′ is a better approximation than f̂ , which is a con-
tradiction. Hence 〈f − f̂ , g〉 = 0, or∫

f · gdP =

∫
f̂ · gdP for all g ∈ S. (8.1)
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We want to use this with S being the space of all random variables g so
that

∫
g2dP < ∞ and g is F -measurable, where F is some σ-algebra on Ω

with F ⊂ A. It is clear that S is a subspace of L2 and is in itself a Hilbert
space. This implies that S is closed in L2, hence we can find f̂ so that (8.1)
is correct. Note that for the special S we have chosen here, (8.1) would be
true if ∫

f · 1AdP =

∫
f̂ · 1AdP, ∀A ∈ F (8.2)

by approximation. But (8.2) makes sense even if
∫
|f |dP < ∞, which is

weaker that
∫
f 2dP <∞. This leads us to the following definition.

Definition 8.1. Let
∫
|f |dP < ∞, F ⊂ A, F a sigma-algebra. Then the

conditional expectation of f given F , written as E(f |F), is any F -measurable
function f̂ satisfying (8.2).

Theorem 8.2. Let
∫
|f |dP <∞, F ⊂ A, F a sigma algebra.

1. There exists conditional expectation E(f |F).

2. Suppose f (1), f (2) are F-measurable and satisfy (8.2), then

f (1)(ω) = f (2)(ω)

for ω ∈ Ω1, with P(Ω1) = 1.

Proof. Suppose first f ≥ 0. Put c =
∫
fdP and define

F (A) :=
1

c

∫
f · 1AdP (8.3)

for any A ∈ F . Note that this is a probability on F (see Exercise 8.1). Using
the Radon Nykodym theorem, it can be shown that ∃F -measurable random
variable f̂ ≥ 0 with

F (A) =
1

c

∫
f̂ · 1AdP (8.4)

for any A ∈ F . Combining (8.3,8.4) is (8.2). The uniqueness is like the
uniqueness for densities. For general f , consider f+ and f−.

Remark 8.3 (Defining properties of the conditional expectation). Let’s say
you have some f̂ and you suspect that

f̂ = E(f |F).

To verify this, you have to check that
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1. f̂ is F -measurable

2. ∫
f · gdP =

∫
f̂ · gdP

for any function g which is F−measurable and bounded (in fact, it
suffices to check this for all g of the form 1A with A ∈ F).

Lemma 8.4 (Properties of E(f |F)).

1. Linear in f .

2. f ≥ 0⇒ E(f |F) ≥ 0 a.s.

3. If Y ⊂ F ⊂ A are sigma-algebras, then

E(E(f |F)|Y) = E(f |Y)

(Law of the Iterated Expectations).

Proof. Exercise 8.2.

Definition 8.5. 1. Let g : (Ω,A) → (Ω′,A′) measurable. The family of
sets

σ(g) = {g−1(A) : A ∈ A′}

is a sigma algebra, called the sigma algebra generated by g (A′ is fixed).
Measurability implies σ(g) ⊂ A.

2. E(f |g) := E(f |σ(g)). Note that this is a random variable on (Ω,A).

3. The following is a slightly different concept of conditional expectation.
Let X : (Ω,A) → (Rd,Bd). Then E(f |X = x) is any random variable
f̂ satisfying∫

1B(x) · f̂(x)dPX(x) =

∫
1B ◦X(ω) · f(ω)dP(ω)

for all B ∈ Bd. Note that E(f |X = x) is a random variable on (Rd,Bd).

Lemma 8.6. f̂(x) = E(f |X = x) ⇐⇒ f̂(X(ω)) = E(f |σ(X))(ω).

Proof. Exercise 8.3.

Definition 8.7 (Conditional Probability). The conditional expectation of
an indicator function has a special interpretation. Let A ∈ A.
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1. P(A|F) := E(1A|F)(ω) is called the conditional probability of A given
F .

2. If X is a random variable, we define P(A|X) := E(1A|X) and call it
conditional probability of A given X.

3. Using the alternative concept of conditional expectation in Definition 8.5,
item 3 we define P(A|X = x) := E(1A|X = x).

Note that for B ∈ F we have the formula∫
P(A|F) · 1B dP =

∫
1A · 1B · dP = P(A ∩B).

Lemma 8.8 (Bayes–Rule).

X : (Ω,A) −→ (Rd1 ,Bd1)
Y : (Ω,A) −→ (Rd2 ,Bd2),

d1 + d2 <∞. Suppose that Z = (X, Y ) has density p(z) = p(x, y). Then

P(X ∈ B|Y = y) =

∫
B
p(x, y)dx∫

Rd1 p(x, y)dx

for all B ∈ Bd1.

Proof. Exercise 8.4.

Regular conditional probabilities

Consider sigma-algebra F ⊂ A and conditional probability P(A|F)(ω). We
have a mapping

µ : (A× Ω) −→ [0, 1],

µ(A, ω) = P(A|F)(ω),

so that

1. ∀A ∈ A, ω → µ(A, ω) is F−measurable random variable indexed by ω.

We would also like to have

2. ∀ω ∈ Ω; A −→ µ(A, ω) is a probability on A.

40



But there is a problem: Note that the relation

lim
n→∞

n∑
k=1

µ(Ak, ω) = µ(
∞⋃
k=1

Ak, ω) (8.5)

for pairwise disjoint A1, A2, · · · ∈ A merely holds for ω ∈ Ω0 with P(Ω0) = 1.
Although these are “almost all ω”, the set Ω0 where Equation (8.5) holds
depends on A1, A2 . . . . Now µ would have to be modified on Ωc

0 in order
to render Equation (8.5) correct for all ω. We then have to repeat this for
any sequence (A1, A2, . . . ) of measurable and pairws. disjoint sets. There are
uncountably many such sequences, hence uncountably many “problem sets”
Ωc

0, and their union might have nonzero measure.

Theorem 8.9. Let X : (Ω,A) → (Rd,Bd), d = ∞ permitted, F ⊂ A sigma
algebra. Then the conditional distribution

PX(B|F) := P({ω;X(ω) ∈ B|F)

has a regular version µ : (Bd×Ω)→ [0, 1], that is for any B ∈ Bd the equation
PX(B|F)(ω) = µ(B,ω) holds, provided ω ∈ ΩB, where P(ΩB) = 1, and µ
satisfies conditions (1,2) at the beginning of this paragraph.

Proof. See [Bre73], theorem 4.34. The structure of Bd enters in an essential
way.

Exercises for Section 8

Exercise 8.1. Prove that the mapping F in the proof of Theorem 8.2 is a
probability on F .

Exercise 8.2. Prove Lemma 8.4.

Exercise 8.3. Prove Lemma 8.6.

Exercise 8.4. Prove Lemma 8.8.

9 The Central Limit Theorem
Let X1, X2, . . . random variable, Xk : Ω −→ R, independent with iden-
tical distribution (i.i.d.), E(Xk) = m, E((Xk − m)2) = σ2 < ∞. Then
E (
∑n

k=1(Xk −m)) = 0, E ((
∑n

k=1(Xk −m))2) = n·σ2, so Zn := 1√
n

∑n
k=1

Xk−m
σ

has mean zero and unit variance. Use your computer to play around with
specific examples to convince yourselves that Zn does not converge pointwise
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(or any strong sense). On the other hand, if for example Xk = 1 or −1, both
with probability 1/2, it can be shown that

P(Zn ≤ z) = PZn((−∞, z])

−→ 1√
2π

∫ z

−∞
exp

(
−1

2
x2

)
dx (standard normal).

Note that this does not involve the convergence of random variables but
rather of distributions, that is probabilities on (R,B); write D for the family
of all distributions on (R,B). For µ1, µ2, · · · ∈ D we could define

µn
D−→ µ ∈ D if µn(A) −→ µ(A)∀A ∈ B,

but this is too strong. Let for example µn = uniform measure of [0, 1/n],
then µn({0}) = 0 ∀n but clearly we would like

µn
D−→ δ0,

which according to our too strong definition would necessitate µn({0})→ 1.
The following definition of “ D−→” is weaker.

Definition 9.1.

1. If µ ∈ D, call Fµ(z) := µ((−∞, z]) the Cumulative Distribution Func-
tion (CDF) of µ.

2. We will say that µn
D−→ µ (read “µn converges in distribution to µ”) if

one of the equivalent condition holds (we will not prove this):

(a)
∫
φdµn −→

∫
φdµ for any bounded and continuous function φ on

R.
(b) Fµn(z) −→ Fµ(z) at every z where Fµ continuous.

Note that the integral in item 2a is always well defined because φ is
assumed bounded. Further, it can be shown that two distributions µ1 and
µ2 agree if ∫

φdµ1 =

∫
φdµ2

for any bounded and continuous function φ on R. This implies that the limit
in distribution is well defined.
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Definition 9.2. The characteristic function of µ ∈ D is

f(u) :=

∫
eiuxdµ(x) u ∈ R.

This is well defined since |eiux| = 1.

Lemma 9.3. The characteristic function f of some µ ∈ D has the following
properties:

1. f is uniformly continuous.

2. f(0) = 1.

3. |f(u)| ≤ 1.

4. f(−u) = f(u).

Proof. Only item 1 is nontrivial

|f(u+ h)− f(u)| = |
∫
ei(u+h)x − eiux)dµ(x)|

= |
∫

(eihx − 1)eiuxdµ(x)|

≤
∫
|(eihx − 1)|dµ(x) =: δ(h),

and δ(h)→ 0 if h→ 0 by the bounded convergence theorem.

Theorem 9.4. Let fk be the characteristic function of µk, k = 1, 2. Then
f1 = f2 implies µ1 = µ2.

Proof. We will show that
∫
φdµ1 =

∫
φdµ2 for any bounded and continuous

function φ on R. If ∫
exp(iux)dµ1 =

∫
exp(iux)dµ2,

then
∫
gdµ1 =

∫
gdµ2 for

g(x) =
∑

finite k

αke
iukx. (9.1)

Now let εn ≤ 1, εn → 0. Any bounded and continuous function φ can be
approximated uniformly on [−n, n] by functions gn of the form (5.3), so

|φ(x)− gn(x)| ≤ εn
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for x ∈ [−n, n]. But since φ(x) ≤ M and εn ≤ 1, and since g is periodic, we
have

|gn| ≤M + 1.

So (9.1) gives ∫
gndµ1 =

∫
gndµ2

and hence ∫
φdµ1 =

∫
gndµ1 +

∫
φ− gndµ1

=

∫
gndµ2 +

∫
φ− gndµ1

=

∫
φdµ2 +

∫
φ− gndµ1 +

∫
gn − φdµ2.

It remains to prove that by choosing n large enough,
∫
φ− gndµ1 and

∫
φ−

gndµ2 can be made as small as we want. Fix ε > 0. Note that for any z > 0
we have ∫

|φ− gn|dµ1 =

∫
[−z,z]

|φ− gn|dµ1 +

∫
[−z,z]c

|φ− gn|dµ1

≤
∫

[−z,z]
|φ− gn|dµ1 + (M + 1)µ1([−z, z]c).

Since µ1([−z, z]c) → 0 for z → ∞, we can pick z so large that (M +
1)µ1([−z, z]c) ≤ ε

2
. Next, pick n0 so large that z ≤ n and further εn · 2z ≤ ε

2

whenever n ≥ n0. Using this in the estimate above gives∫
|φ− gn|dµ1 ≤ ε

whenever n ≥ n0. The reasoning for the integral
∫
|φ−gn|dµ2 is the same

Theorem 9.4 demonstrates that no two distributions can have the same
characteristic function. The following theorem strengthens this and demon-
strates why characteristic functions are so important.

Theorem 9.5. Assume that fn, n ∈ N are characteristic functions of some
distributions µn, and further that fn → f pointwise if n → ∞, where f is
also the characteristic function of some distribution µ. Then µn

D−→ µ.
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Proof. (The proof will be incomplete.) We know that
∫
φdµn →

∫
φdµ for

every function φ of the form φ(x) = exp(iux) for some u, so we can assume
that this convergence takes place if φ is of the form (9.1) in the proof of
Theorem 9.4. We have to show that this implies

∫
φdµn →

∫
φdµ for every

continuous and bounded function φ on R. We will do this under the wrong
assumption that all µn are concentrated on a compact interval I. So let φ be
a continuous and bounded function on I, and let ε > 0. (All integrals that
follow will be over I.) As in the proof of Theorem 9.4 we can find a function
g of the form (9.1) in the proof of Theorem 9.4 so that

sup
x∈I
|g(x)− φ(x)| ≤ ε

3
.

With g chosen, take n0 so large that

|
∫
gdµn −

∫
gdµ| ≤ ε

3

for any n ≥ n0. This implies

|
∫
φdµn −

∫
φdµ|

≤ |
∫

(φ− g)dµn +

∫
gdµn −

∫
gdµ+

∫
(g − φ)dµ|

≤ |
∫

(φ− g)dµn|+ |
∫
gdµn −

∫
gdµ|+ |

∫
(g − φ)dµ|

≤ ε.

Two remarks about this:

1. The wrong assumption of compactness can be removed, because from
the fact that fn → f it is possible to show (with some further work)
that for any ε > 0 there exists a compact interval Iε so that µn(Icε ) < ε
for all n.

2. Note that in our version of the theorem, we do not only assume that
fn → f but also that f is a characteristic function. In general, a
pointwise limit of characteristic functions need not be a characteristic
function! If we don’t assume that f is a characteristic function, a
compensating assumption has to be made.

We will use Theorem 9.5 to prove the Central Limit Theorem. The fol-
lowing Taylor expansion is the key:
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Lemma 9.6. Let E(X2) <∞, then

f(u) = 1 + iu · E(X)− 1

2
u2E(X2) + δ(u)u2,

with δ(u)→ 0 as u→ 0.

Proof.

exp(iux) = 1 + iux− 1

2
(ux)2 +

1

2
(ux)2 · ϕ(u, x),

with ϕ(u, x) = cos(θ1(u, x)) + i sin(θ2(u, x))− 1, θ1, θ2 ∈ R, |θn| ≤ 1. Further
E ((uX)2ϕ(u,X)) = u2 · E(X2 · ϕ(u,X)) so we get that (uX)2ϕ(u,X) is
integrable for every u. Further |X2 · ϕ(u,X)| ≤ 3X2, and ϕ(u,X) → 0 if
u→ 0, so we get the statement by the dominated convergence theorem.

The Central Limit Theorem

Consider the situation at the beginning of this section: X1, X2, . . . are ran-
dom variable, Xk : Ω −→ R, independent with identical distribution µ, and
E(Xk) = m, E((Xk−m)2) = σ2 <∞. We consider the characteristic function
of Zn = 1√

n

∑n
k=1

Xk−m
σ

:

fn(u) = E

(
exp{i · u · 1√

n

n∑
k=1

Xk −m
σ

}

)

= E

(
n∏
k=1

exp{i · u · Xk −m√
n · σ

}

)

=

[
E
(

exp{iuXk −m√
nσ
}
)]n

9.6
= [1− 1

n

(
1

2
· u2 + δ(

u√
n
· u2)

)
]n

−→ e−
1
2
u2

for n→∞. A simple calculation gives that this is the characteristic function
of the standard normal distribution, i.e.

1√
2π

∫
exp(−iux)e−

1
2
x2 dx = e−

1
2
u2 .

Using Theorem 9.5, we arrive at the following

Theorem 9.7. If X1, X2, . . . are random variable, Xk : Ω −→ R, indepen-
dent with identical distribution µ, E(Xk) = m, and E((Xk−m)2) = σ2 <∞.
Then the characteristic function of Zn = 1√

n

∑n
k=1

Xk−m
σ

converges pointwise
to the characteristic function of the standard normal distribution.
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10 Literature on measure theory and integra-
tion

The following books cover measure theory and integration, mostly somewhat
more general than in this chapter. [JP00] is nice and brief, strongly recom-
mended. Some proofs are ommitted. [Dud89] is unusual in that it covers
analysis and probability alongside each other, including aspects of functional
analysis, measure theory, and advanced aspects of probability theory. The
presentation is superb. [Hal74] is an absolute classic. Halmos’ fame as a
mathematical expositor began with this book. Focusses on measures on lo-
cally compact spaces which is somewhat outdated. [Doo94] a very consise
text which nonetheless covers everything that is important.

Concerning probability theory, I recommend the following. [Kle14] a mod-
ern accout of measure theory which touches upon many aspects of probability
theory as well. For an introductory text it is often somewhat too concise.
[Bre73] A classic in probability theory. Written in Breiman’s very personal
but highly readable style, it gives a wonderful introduction to the subject,
and whoever thinks it “too theoretical” should look at Breiman’s later career.
This book does not cover measure theory and integration in detail though.
[Fel66, Fel70] Feller’s two books on probability theory are even more classic
in probability theory than [Bre73]. Again, does not cover measure theory
and integration in detail.

For data assimilation, I believe that [Jaz70] is a good introduction, al-
beit not a rigorous account, and written by an engineer rather than an at-
mospheric scientist. It’s a must–have though for everyone working in data
assimilation.

Finally, there is a growing amount of very decent lecture notes available
on the internet, for instance

Daniel Ocone’s homepage:
http://www.math.rutgers.edu/~ocone

Stefan Grossinsky’s homepage:
http://homepages.warwick.ac.uk/~masgav

Pavel Chigansky’s homepage:
http://pluto.huji.ac.il/~pchiga/teaching.html
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11 Solutions to selected exercises

Exercise 2.1

1. For a set Ω the power set 2Ω of Ω is the set of all of its subsets. Following
Definition 3, we need to verify three properties for the power set to be
a sigma algebra. First, since ∅ is a subset of Ω, ∅ ∈ 2Ω. Second,
if A ∈ 2Ω then A ⊂ Ω which implies that Ac ⊂ Ω. This means that
Ac ∈ 2Ω. Finally for countably many elements A1, A2, · · · ∈ 2Ω, we have
A1, A2, · · · ⊂ Ω, hence ∪∞k=1Ak ⊂ Ω. This means that ∪∞k=1Ak ∈ 2Ω as
required.

2. Suppose S1,S2 are sigma algebras. Following Definition 3, we need to
verify three properties for S1 ∩ S2 to be a sigma algebra. First, since
∅ ∈ S1 and ∅ ∈ S2 we have that ∅ ∈ S1 ∩ S2. Second, if A ∈ S1 ∩ S2

then A ∈ Sk, k = 1, 2. Since Sk, k = 1, 2 are sigma algebras, we deduce
that Ac ∈ Sk, k = 1, 2 which further implies that Ac ∈ S1∩S2. Finally,
let A1, A2, · · · ∈ S1 ∩ S2. Then, A1, A2, · · · ∈ Sk, k = 1, 2. Since Sk,
k = 1, 2 are sigma algebras we deduce that ∪∞j=1Aj ∈ Sk, k = 1, 2 which
further implies that ∪∞j=1Aj ∈ S1∩S2. In conclusion the three required
properties for a sigma algebra are satisfied.

3. For a set Ω, let A be an arbitrary family of subsets of Ω. We define F
to be the family of all sigma algebras on Ω that contain the family A of
subsets of Ω. The power set 2Ω by definition contains A and from the
previous item it is a sigma algebra on Ω. Hence, 2Ω ∈ F. So F contains
at least one sigma algebra (and maybe more). We take the intersection
of all these sigma algebras and call the result Ā. For sure, Ā ⊃ A.
But since the intersection of sigma algebras is also a sigma algebra we
deduce that Ā is a sigma algebra on Ω containing A. Further, Ā is
contained in any other sigma algebra in F and is therefore the smallest
sigma algebra containing A.

Exercise 2.2

1. Since ∅ and Ω are disjoint, the additivity property implies:

P (∅) + P (Ω) = P (∅ ∪ Ω) = P (Ω),

and since P (Ω) = 1 <∞ we deduce that P (∅) = 0.

2. (⇒) Consider countably many pairwise disjoint sets An, n = 1, 2, . . . in
A so that ∪An is in A as well. We want to show that

∑∞
n=1 P (An) =
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P (∪An). We define:

Bn = ∪Ak \ (A1 ∪ · · · ∪ An)

for n ∈ N. We then have that B1 ⊃ B2 ⊃ . . . and ∩Bn = ∅. Hence,
since we assume that continuity at the empty set holds we deduce:

lim
n→∞

P (Bn) = P (∩Bn) = 0.

Furthermore, due to the disjointness of the Ai’s, we have

0 = lim
n→∞

P (Bn) = lim
n→∞

(
P (∪Ak)−

n∑
k=1

P (Ak)
)

= P (∪Ak)−
∞∑
k=1

P (Ak),

which gives the required equality.

(⇐) For countably many sets An, n = 1, 2, . . . in A such that A1 ⊃
A2 ⊃ . . . and ∩Ak = ∅, we need to show that limn→∞ P (An) = 0. We
define:

Bn = An ∩ Acn+1

for n ∈ N. We then have that for i 6= j, Bi ∩ Bj = ∅. Moreover,
∪Bk = ∪Ak = A1 ∈ A and from the sigma additivity of the family of
subsets {Bn}n∈N we also have that

∑∞
k=1 P (Bk) = P (∪Bk) = P (A1).

So we have:

0 = lim
n→∞

(
P (∪Bk)−

n∑
k=1

P (Bk)
)

= lim
n→∞

P (∪Bk \ (B1 ∪ · · · ∪Bn))

= lim
n→∞

P (A1 \ (A1 ∩ Acn+1))

= lim
n→∞

P (An+1),

namely, limn→∞ P (An) = 0 as required.

3. Using the previous item we will show that sigma additivity is equivalent
to continuity from above.

(⇒) Consider countably many sets An, n ∈ N with A1 ⊃ A2 ⊃ . . . . We
define

Bn = An \ An+1
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for all n ∈ N. We have then that for i 6= j, Bi ∩ Bj = ∅ and ∪Bk =
∪Ak = A1 ∈ A. Moreover, using the sigma additivity of the family
{Bn}n∈N, we have

∑
P (Bk) = P (∪Bk). Furthermore,

0 = lim
n→∞

(
P (∪Bk)−

n∑
k=1

P (Bk)
)

= lim
n→∞

P (∪Bk \ (B1 ∪ · · · ∪Bn))

= lim
n→∞

P (A1 \ (A1 ∩ Acn+1))

= lim
n→∞

P (An+1).

(⇐) Consider sets {An}n∈N with Ai ∩ Aj = ∅ for i 6= j. We define:

Bn = ∪∞k=nAk

for all n ∈ N. Then we have that B1 ⊃ B2 ⊃ . . . and ∪Bk = ∪Ak.
Moreover, it is not difficult to verify that

∩Bn = ∩∞n=1(∪∞k=nAk) = ∅.

From the continuity from above property on the family {Bn}n∈N we
have that limn→∞ P (Bn) = P (∩Bn) = 0. Furthermore,

∪Ak =
(
∪nk=1 Ak

)
∪
(
∪∞k=n+1 Ak

)
= ∪nk=1 ∪Bn+1,

and therefore

P (∪Ak) =
n∑
k=1

P (Ak) + P (Bn+1),∀n ∈ N.

By taking the limit n→∞, we get

P (∪Ak) =
∞∑
k=1

P (Ak) + P (∩Bk) =
∞∑
k=1

P (Ak).

4. Using a previous item we will show that sigma additivity is equivalent
to continuity from below.

(⇒) Consider countably many sets with A1 ⊂ A2 ⊂ . . . and ∪Ak ∈ A.
We define:

Bn = An \ (A1 ∪ · · · ∪ An−1)
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for all n ∈ N. Then we have that for i 6= j, Bi∩Bj = ∅ and ∪Bk = ∪Ak
and ∪kj=1Bj = Ak. So we have that P (Ak) =

∑k
j=1 P (Bj) which implies

that:

lim
k→∞

P (Ak) =
∞∑
k=1

P (Bk) = P (∪Bk) = P (∪Ak),

where for the second equality we have used the sigma additivity for the
family of sets {Bn}n∈N.

(⇐) Consider countably many pairwise disjoint sets An, n ∈ N. We
define:

Bn = A1 ∪ · · · ∪ An
for all n ∈ N. Then we have that B1 ⊂ B2 ⊂ . . . and ∪Bk = ∪Ak.
Furthermore:

∞∑
n=1

P (An) = lim
n→∞

n∑
k=1

P (Ak) = lim
n→∞

P (A1 ∪ · · · ∪ An)

= lim
n→∞

P (Bn) = P (∪Bk) = P (∪Ak),

where the fourth equality follows from the continuity from below prop-
erty of the family {Bi}i∈N of subsets.

5. For A1, A2, . . . countably many disjoint sets in A. Then from the ad-
ditivity property we have for all n ∈ N:

n∑
k=1

P (Ak) = P (∪nk=1Ak) ≤ P (Ω) = 1.

Since for all n ∈ N,
∑n

k=1 P (Ak) ≤ 1 by taking the limit as n→∞ we
have:

∞∑
n=1

P (An) <∞,

i.e. the series converges. This implies that P (An)→ 0 as n→∞.

Exercise 3.1

1. We check Definition 3.

(a) ∅ ∈ B, and f−1(∅) = ∅, so ∅ ∈ A0.
(b) Let A ∈ A0. Then ∃B ∈ B : f−1(B) = A. Now Bc ∈ B and

f−1(Bc) = f−1(B)c = Ac, hence Ac ∈ A0.
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(c) If A1, A2, ... ∈ A0, then ∃B1, B2, ... ∈ B so that f−1(Bk) = Ak.
Therefore

⋃
k Ak =

⋃
k f
−1(Bk) = f−1 (

⋃
k

Bk)︸ ︷︷ ︸
∈B

∈ A0.

2. We check Definition 3.

(a) Since f−1(∅) = ∅ ∈ A, ∅ ∈ B0.

(b) If f−1(B) ∈ A, then f−1(Bc) = f−1(B)c ∈ A. This shows B ∈
B0 =⇒ Bc ∈ B0.

(c) If f−1(Bk) ∈ A ∀k ∈ N, then f−1(
⋃
k

Bk) =
⋃
k

f−1(Bk) ∈ A. This

shows B1, B2, ... ∈ B0 =⇒
⋃
k

Bk ∈ B0.

3. If B0 contains B, then f−1(B) ∈ A for all sets B ∈ B. Hence f is a
random variable.

4. Let D be the sets of the form {x ∈ R, x > a}, and B0 as in item 2. We
know by assumption D ⊂ B0. Since B0 is a σ-algebra by (2), we have
σ(D) ⊂ B0. But by (4.2), σ(D) = B. Hence B ⊂ B0. It follows from
(3) that f is a random variable.

Exercise 3.3

1. You can find simple g̃ ≤ f so that
∫
g̃dP is arbitrarily close to sup

∫
gdP

in the theorem. Hence if c < sup
∫
gdP, you could find g so that

c <
∫
gdP, violating the statement, i.e. the statement implies c ≥

sup
∫
gdP. On the other hand, since all fn are simple and no greater

than f , we must have c ≤ sup
∫
gdP.

2. fn − g is measurable, so Mn = {fn − g > −ε} are measurable sets.
M1 ⊂ M2 ⊂ ... follows because fn is monotone increasing. Suppose
that ω were in none of the Mn, then

fn(ω) ≤ g(ω)− ε ≤ f(ω)− ε

∀n, so fn(ω) 9 f(ω), which is a contradiction. Hence
⋂
n

Mn = ∅ =⇒⋃
n

Mn = Ω.

3. We know that fn, g and 1Mn are simple, so fn · 1Mn , g · 1Mn ,
∑

1Mn are
too. Now fn ≥ fn · 1Mn ≥ (g − ε) · 1Mn due to the definition of Mn.
Now the relation (3.7) follows from monotonicity.
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4. P(Mn) = P(
n⋃
k=1

Mk) → P(
∞⋃
k

Mk) = 1. Now let g1Mn =
m∑
k=1

gk · 1Bk∩Mn .

By the same argument as above we get P(Bk ∩ Mn) = P(
n⋃
l=1

(Bk ∩

Mk))
n→∞−−−→ P(Bk). Hence

∫
1MngdP =

m∑
k=1

gk · P(Bk ∩ Mn)
n→∞−−−→

m∑
k=1

gk · P(Bk) =
∫
gdP.

Exercise 3.4

Put An = {ω; f(ω) > 1
n
}, then for ω ∈ An; n · f(ω) ≥ 1, and if ω /∈

An, n · f(ω) ≥ 0, so n · f(ω) ≥ 1An(ω) ∀ω ∈ Ω. This gives 0 = n
∫
fdP ≥

n ·
∫
1AndP = P(An), so

P(
∞⋃
n=1

An) = lim
m→∞

P(
m⋃
n=1

An) ≤
m∑
n=1

P(An) = 0.

But if f(ω) > 0 for some ω, then f(ω) > 1
n
for some n, hence ω ∈ An for

some n, hence ω ∈
⋃
n∈N

An, but this set has probability zero.

Exercise 4.1

1. We shall check the three defining properties of probability one by one.

(a) Note that T−1(Ω2) = Ω1. Then T?P(Ω2) = P(T−1(Ω2)) = P(Ω1) =
1, using the assumption that P is a probability on (Ω1,A1).

(b) If A,B ∈ A2 and A∩B = φ then T−1(A)∩T−1(B) = T−1(A∩B) =
T−1(φ) = φ, hence T−1(A) and T−1(B) are disjoint. Therefore by
additivity of P, T?P(A ∪ B) = P(T−1(A ∪ B)) = P(T−1(A) ∪
T−1(B)) = P(T−1(A)) + P(T−1(B)) = T?P(A) + T?P(B), i.e. T?P
is additive.

(c) Suppose Ak ∈ A2 for all k ∈ N and A1 ⊇ A2 ⊇ · · · with
∩k∈NAk = φ. It follows that T−1(A1) ⊇ T−1(A2) ⊇ · · · and
∩k∈NT−1(Ak) = T−1(∩k∈NAk) = φ. Hence by continuity of P at
φ, T?P(Ak) = P(T−1(Ak))→ 0, so T?P is continuous at φ as well.

2. If f : (Ω2,A2) → (R,B) is a random variable, then f−1(B) ∈ A2 for
all B ∈ B. Further, if T : (Ω1,A1) → (Ω2,A2) is measurable, then
T−1(A2) ∈ A1 for all A2 ∈ A2, in particular if we take A2 = f−1(B).
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Hence (f ◦ T )−1(B) = T−1(f−1(B)) ∈ A1 for all B ∈ B, implying that
f ◦ T is a random variable.

Exercise 4.2

1. Suppose f : (Ω2,A2) → (R,B) is measurable and non-negative. Take
(fn)n∈N a sequence of simple functions with fn ↑ f (e.g. as in step 4 of
the integral construction). We have, from theorem 5.1,∫

Ω2

fn d(T?P) =

∫
Ω1

fn ◦ T dP.

By monotone convergence, the left-hand-side converges to
∫

Ω2
fd(T?P).

Further, since fn◦T ↑ f◦T , the right-hand-side converges to
∫

Ω1
f◦TdP,

again by monotone convergence. By uniqueness of limits we get∫
Ω2

f d(T?P) =

∫
Ω1

f ◦ T dP.

2. If f = f+ − f− is integrable with respect to T?P, then

∞ >

∫
Ω2

f+ d(T?P) =

∫
Ω1

f+ ◦ T dP

and
∞ >

∫
Ω2

f− d(T?P) =

∫
Ω1

f− ◦ T dP

using part (1). Subtracting the second expression from the first and
observing f+ ◦ T − f− ◦ T = (f+ − f−) ◦ T = f ◦ T gives the result.

Exercise 5.1

We first prove the statement “f is a random variable implies fk are random
variables for all k ∈ N." Fix k ∈ N and B ∈ B, and consider the rectangular
cylinder C := {x ∈ R∞ : xk ∈ B}. Then C ∈ B∞ and hence by our
assumption f−1(C) ∈ A. But

f−1(C) = {ω ∈ Ω : fk(ω) ∈ B}
= f−1

k (B).
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Hence f−1
k (B) ∈ A, implying that fk is a random variable.

For the converse statement, fix a non-negative integer L, the indices
k1, · · · , kL ∈ N, the Borel sets B1, · · · , BL ∈ B, and the rectangular cylinder

C = {x ∈ R∞ : xk1 ∈ B1, · · · , xkL ∈ BL}.

Then

f−1(C) = {ω ∈ Ω : fk1(ω) ∈ B1, · · · , fkL(ω) ∈ BL}
= ∩Lm=1{ω ∈ Ω : fkm(ω) ∈ Bm}
= ∩Lm=1f

−1
km

(Bm).

Since we have assumed that fk are random variables for all k ∈ N and A is a
sigma-algebra (which is closed under finite and countable intersections), the
right-hand-side is in A. So we have shown f−1(C) ∈ A for any rectangular
cylinder. The conclusion now follows as in Exercise 4.1: B0, the family of
all sets B ⊆ R∞ such that f−1(B) ∈ A, is a sigma-algebra. Since we have
shown that B0 contains all rectangular cylinders, we have B∞ = σ({C :
C is a rectangular cylinder}) ⊆ B0 and in particular the pre-image of any
rectangular cylinder is in A.

Exercise 7.2

Following the assumptions we have:

1. For z ∈ [0, θ] we have:

P (T ≤ z) =
n∏
k=1

P (xk ≤ z) =
n∏
k=1

∫ z

0

1

θ
dx =

n∏
k=1

z

θ
=
zn

θn
.

2. From the previous item, we have that:

P (T ≤ z) =
zn

θn
=

∫ z

0

nxn−1

θn
dx

for all z ∈ [0, θ]. Hence, we have that the distribution of T has a density
function q(z) = nzn−1

θn
, z ∈ [0, θ].

3. Using the density, we find:

Eθ(T ) =

∫ θ

0

x
nxn−1

θn
dx

n

n+ 1
θ

so T is biased. From the linearity of Eθ we deduce that putting T̂ =
n+1
n
T , we have that Eθ(T̂ ) = n+1

n
Eθ(T ) = θ, so T̂ is unbiased.
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Exercise 7.3

1. We have

1 =

∫
I

f(x; θ) dx =

∫
I

a(x)eθh(x)−φ(θ) dx = e−φ(θ)

∫
I

a(x)eθh(x) dx.

Hence

eφ(θ) =

∫
I

a(x)eθh(x) dx⇔ φ(θ) = log
(∫

I

a(x)eθh(x) dx
)
.

2. We differentiate w.r.t. θ and then use differentiation under the integral
sign which is permitted by assumption. We have

0 =

∫
I

a(x)(h(x)− φ′(θ))eθh(x)−φ(θ) dx =

∫
I

(h(x)− φ(θ))f(x; θ) dx,

which then give us:∫
I

h(x)f(x; θ) dx = φ′(θ)

∫
I

f(x; θ) dx = φ′(θ) =
dφ

dθ
(θ).

But the left-hand-side of the above equation is by definition equal to
Eθ(h) i.e. Eθ(h) = dφ

dθ
as required. Now we differentiate again w.r.t. θ

and by using again differentiation under the integral sign we obtain:

d2φ

dθ2
=

∫
I

h(x)
d

dθ
f(x; θ) dx

=

∫
I

h(x)(h(x)− dφ

dθ
)f(x; θ) dx

=

∫
I

h(x)2f(x; θ) dx− dφ

dθ

∫
I

h(x)f(x; θ) dx

= Eθ(h
2)− Eθ(h)Eθ(h)

= Vθ(h).

Here we have used the definition of variance and the properties of Eθ.

3. Let θ̂ the MLE for θ. Then θ̂ maximizes the log-likelihood

l(θ) = logL(θ, x) =
n∑
k=1

log f(xk; θ).
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(Here we have the standard setup 7.4 so we use the log-likelihood.)
Hence, we have that

0 =
dl

dθ
(θ̂) =

d

dθ

∣∣∣
θ=θ̂

n∑
k=1

log f(xk; θ)

=
n∑
k=1

d

dθ

∣∣∣
θ=θ̂

(
log a(xk) + θh(xk)− φ(θ)

)
=

n∑
k=1

h(xk)− n
dφ

dθ
(θ̂)

⇒ 1

n

n∑
k=1

h(xk) =
dφ

dθ
(θ̂).

4. From the previous item we have that the derivative of log-likelihood
w.r.t. θ is:

dl

dθ
=

n∑
k=1

h(xk)− n
dφ

dθ
.

We differentiate again w.r.t to θ and have:

d2l

dθ2
= −nd

2φ

dθ2
= −nVθ(h),

where the last equality follows from the second item. Now θ̂ derived in
the previous item (i.e. as a critical point of the log-likelihood) satisfies:

dl

dθ
(θ̂) = 0,

d2l

dθ2
(θ̂) = −nVθ̂(h) < 0.

This implies that the critical point of the log-likelihood is at least a
local maximum for the log-likelihood.

5. We calculate:

log f(xk, θ) =
n∑
k=1

{log a(xk) + θh(xk)− φ(θ)}

∂θ(log f(xk, θ)) =
n∑
k=1

{h(xk)− φ′(θ)}

∂2

∂θ2
(log f(xk, θ)) = −

n∑
k=1

φ′′(θ) = −nφ′′(θ).
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Then using Lemma 7.9 we have that the Fisher information is given
by:

I = −Eθ
(
− nφ′′(θ)

)
= nφ′′(θ).

6. We will be using the law of large numbers which says that if Y1, . . . , Yn
independent, identically distributed RV with finite variance then

1

n

n∑
k=1

Yk → E(Y1)

almost surely for n→∞. We note that θ̂ is uniquely determined due to
the 1-1 property of Eθ(h). By assumption x1, . . . , xn are independent
and identically distributed and it is easy to see that the same holds
for Yk = h(xk). Since by assumption Vθ(h) is finite the law of large
numbers implies 1

n

∑n
k=1 h(xk)→ Eθ(h(x1)) almost surely for n→∞.

Using items two and three we then deduce that dφ
dθ

(θ̂) → Eθ(h(x1))

almost surely as n goes to infinity. Moreover, by assumption dφ
dθ

is 1-1
and continuous, thus θ̂ converges to θ as n→∞.

Exercise 8.2

We can assume that f is integrable (otherwise E[f |F ] is not well defined).
We use Remark 8.3 throughout.

1. Let f, g be integrable, λ, µ ∈ R. Then λf + µg is integrable. Put
h := λE[f |F ] + µE[g|F ] then h is F -measurable, and for any A ∈ F
we have ∫

1A · hdP =

∫
1A{λE[f |F ] + µE[g|F ]}dP

= λ

∫
1AE[f |F ]dP + µ

∫
1AE[g|f ]dP

(8.3,2)
= λ

∫
1AfdP + µ

∫
1AgdP

=

∫
1A{λf + µg}dP.

This implies E[λf + µg|F ] = λE[f |F ] + µE[g|F ].

2. Suppose not. Then there is ε > 0 so that A := {ω ∈ Ω,E[f |F ] ≤ −ε}
has positive probability. Further, A ∈ F by (8.3,1). By (8.3,2) and
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since f ≥ 0 we get:

0 =

∫
f · 1AdP =

∫
E[f |F ]1AdP ≤ −εP(A).

which is a contraditction.

3. Put h := E[E[f |F ]|Y ]. Then by Remark 8.3, h is Y-measurable and
∀A ∈ Y , ∫

1AE[f |F ]dP =

∫
1AhdP.

But since A ∈ F as well, the left hand side is equal to
∫
1AfdP. By

Remark 8.3, h = E[f |Y ]. .
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