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1 Preliminaries, basic notions of probability

theory, the Borel–Cantelli Lemma

The lecture notes are supposed to be as self–contained as possible, but refer-
ences to other books will be unavoidable. References like [1] refer to the read-
ing list. The notes are subdivided into Lectures numbered 1, 2, . . . . Within
each lecture, there will be numbered items. I will use only one counter for
Definitions, Remarks, Theorems, Lemmas, etc. Exercises however will have
their own counter and typically contain simple technical results which the
reader is encouraged to solve herself or himself.

We start the presend section with a reminder of basic notions of proba-
bilities and events. For a more comprehensive account, the reader is referred
to [4]. Let Ω, A, B be sets. Familiarity with the notations A ⊂ Ω, A ∪ B,
A ∩B, ∅ is assumed. Further

A \B := {x ∈ A;x /∈ B}, read “A without B”

A∁ := Ω \ A, read “Complement of A in Ω”.

The notation A∁ is used if Ω is clear from the context. If the elements of a
set A are again sets, we call A a system or family of sets.

Let Ω be a set. A system A of subsets of Ω is called an algebra if

1. ∅ ∈ A

2. A ∈ A ⇒ A∁ ∈ A.

3. A1, . . . , An ∈ A ⇒
⋃n

k=1Ak ∈ A.

Further, A is a sigma algebra if

4. A1, A2, · · · ∈ A ⇒
⋃∞

k=1Ak ∈ A.

The elements of a sigma algebra are called measurable sets. An algebra
formalises the intuition behind “events”. Considering sigma algebras rather
than just algebras, that is where 3 holds for countably many An rather than
just finitely many, is important as we will see many times in this course.

LetA be an arbitrary family of subsets of Ω. Then there is a sigma algebra
denoted by σ(A) so that

1. σ(A) contains A,

2. if B is another sigma algebra containing A, then B contains also σ(A),
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so roughly speaking σ(A) smallest sigma algebra containing A. The sigma al-
gebra σ(A) is uniquely defined and referred to as the sigma algebra generated
by A. In Exercise 1.1 you will show that this concept is well defined.

A pair (Ω,A) with Ω a set and A a sigma algebra is called a measurable
space. If (Ω1,A1) and (Ω2,A2) are measurable spaces, a mapping

f : Ω1 → Ω2

is called measurable if f−1(A) ∈ A1 for every A ∈ A2. Since sigma algebras
can be very large, checking measurability can be a lot of work. The situation
might be easier if A2 is generated by some family B of sets, that is A2 = σ(B).
Then the measurability condition needs to be checked for sets in B, only, that
is, if f−1(B) ∈ A1 for every B ∈ B, then f−1(A) ∈ A1 for every A ∈ A2.

An important class of measurable spaces arises as follows. Let E be a
separable complete metric space. Such spaces are also called polish spaces;
if you are not familiar with these concepts, you may think of E being Rd

or an open or closed subset thereof. Sets with finite or countably many
elements are also polish. The topology τ of E is the family of all open sets.
We may thus consider the sigma algebra σ(τ) generated by this family. This
sigma algebra is called the Borel algebra denoted by BE.

It now makes sense to consider measurable mappings

f : (Ω,A) → (E,BE),

where (Ω,A) is an arbitrary measurable space and (E,BE) a polish space
with the Borel algebra. Such a mapping is called a random variable.

Let A be an algebra on some set Ω. A function P : A −→ [0, 1] is a
probability on A if it satisfies

1. Normalisation: P(Ω) = 1

2. Additivity: If A1, . . . , An ∈ A, with Ai ∩ Aj = ∅ for i ̸= j, then∑n
k=1 P(Ak) = P(

⋃n
k=1Ak).

3. Continuity at ∅: If A1, A2, . . . ∈ A, with A1 ⊃ A2 ⊃ . . . and
⋂
Aj = ∅,

then P(Ak) → 0 for k → ∞.

Again, the intuition behind (1,2) is clear. The continuity at ∅ is important
for technical reasons, see also Exercise 1.3 for several notions equivalent to
Additivity and Continuity at ∅, in case that A is a sigma algebra. It is
possible to construct examples of a function P that is additive and normalised
on an algebra but not continuous at ∅.

Note that algebras are very much smaller than sigma algebras, and it
is generally much easier to define a probability P on an algebra than on a

3
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sigma algebra. On the other hand, given an algebra A, there is a naturally
associated sigma algebra, namely σ(A). The question then arises if, given
probability P on an algebra A, it is possible to extend P uniquely onto σ(A)
(i.e. define it on σ(A) without disturbing it on A where it is already defined).
The affirmative answer is the following celebrated theorem.

Theorem 1.1 (The Measure Extension Theorem, also known as MET or
Hahn-Carathéodory theorem). Let A be an algebra and P a probability on A.
Then there exists a unique probability P̃ on σ(A) with P̃|A = P|A. Further,
if A ∈ σ(A), then for any ϵ > 0 there exist disjoint sets A1, . . . , An ∈ A with
P̃(A△

⋃n
k=1Ak) ≤ ϵ.

Sketch of a proof, see e.g. [3]. For any Y ⊂ Ω, put P∗(Y ) = inf
∑∞

k=1 P(Ak),
inf taken over A1, A2, · · · ∈ A, with Y ⊂

⋃
k Ak. Now

1. P∗|A = P|A (“≤” is trivial).

2. Consider the family M of sets defined as follows: a set A ⊂ Ω is a
member of M if ∀E ⊂ Ω it holds that P∗(E) ≥ P∗(E ∩A)+P∗(E \A).
One then proves that M is a sigma algebra with M ⊃ A.

3. P∗ is a measure on M.

4. The approximation result is relatively straightforward from the defini-
tion of P∗.

We fix the uniqueness part, which is true under weaker conditions:

Theorem 1.2 (Uniqueness of probabilities). Let A be a family of sets which
is intersection–stable, meaning that for any two sets A1 ∈ A, A2 ∈ A, also
A1 ∩ A2 ∈ A. (This is true for instance if A is an algebra.) Further, let
P,Q be two probabilities on σ(A), the sigma algebra generated by A. Then if
P(A) = Q(A) for any set A ∈ A, they agree on σ(A).

For a proof see [1], Proposition 2.23.
Fix a probability space (Ω,A,P); we recall the definition of the integral

for a real–valued random variable f with respect to P, which we will write
as
∫
f(ω) dP(ω) or simply as

∫
f dP (for details of the construction, see [4],

Ch.9). A random variable f : Ω → E is real–valued if E = R and it is
non–negative if E = R≥0. A non–negative random variable f is simple if it
assumes only finitely many values; it can then be written as

f(ω) =
n∑

k=1

fk1Ak
(ω), (1)

4
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for some measurable sets A1, . . . , An. We define
∫
f dP :=

∑n
k=1 fkP(Ak)

(the representation in Eq. (1) is not unique but a little algebra shows that
the value of the integral is still uniquely defined). For a general non–negative
random variable f , we define∫

f dP := sup

∫
g(ω) dP

where the sup is over all simple functions g with the property 0 ≤ g ≤ f .
(Given f , it is possible to construct a specific sequence {gn, n ∈ N} of simple
functions so that gn ↑ f and

∫
gn dP ↑

∫
f dP.)

Note that the integral of a nonnegative random variable is either a non-
negative number or infinity, but the latter possibility has to be excluded
when we define the integral of general real–valued random variables. A gen-
eral real–valued random variable can be written as f = f+ − f−, where
f+ := max{f, 0} and f− = max{−f, 0} are both nonnegative random vari-
ables. If

∫
|f | dP < ∞, we say that f is integrable and define the integral

of f as
∫
f dP :=

∫
f+ dP −

∫
f− dP. Since |f | = f+ + f−, the condition∫

|f | dP < ∞ implies that both
∫
f+ dP and

∫
f− dP are finite. Hence there

can be no “∞−∞”–situation in our definition of the integral of f .
The integral we have just defined is powerful due to the following theorem,

which ultimately stems from the continuity of P at ∅.

Theorem 1.3. In this theorem, whenever {fn}n∈N is a sequence of nonneg-
ative random variables, supn∈N fn is considered pointwise.

1. (Monotone Convergence) If {fn}n∈N is an increasing sequence of non-
negative random variables (i.e. f1(ω) ≤ f2(ω) ≤ . . .), then supn∈N

∫
fn dP =∫

supn∈N fn dP.

2. (Dominated Convergence) If {fn}n∈N is a sequence of real–valued ran-
dom variables with the property that

∫
supn∈N |fn| dP < ∞ and which

converge pointwise to a function f , then f is integrable and
∫
fn dP →∫

f dP.

For the rest of this lecture, fix a probability space (Ω,A,P) and a pol-
ish space (E,B) where B =Borel algebra on E. Further, let I be either
N,Z,R,R≥0 or a closed interval. We will mention when the specific choice is
relevant; think of I as a time interval.

Definition 1.4. A stochastic process is a family of functions {Xt, t ∈ I},
where Xt : Ω → E is a random variable for each t ∈ I.

5
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This definition is preliminary only. They are two further ways of looking
at a stochastic process {Xt, t ∈ I}. Firstly, we may consider it as a mapping
X : Ω → EI , ω → {Xt(ω), t ∈ I} that is with values being functions from E
to I. Secondly, we may consider it as a mapping X : Ω × I → E, (ω, t) →
Xt(ω), that is with values in E while t and ω are arguments. We will later
settle on a more precise version of the second interpretation.

We finish this lecture with an important lemma.

Lemma 1.5 (Borel–Cantelli lemma). Let A1, A2, . . . be a sequence of mea-
surable sets and define

Ai.o. := {ω ∈ Ω;ω ∈ Ak for infinitely many k} =
⋂
n∈N

∞⋃
k=n

Ak.

If
∑

n∈N P(An) <∞, then P(Ai.o.) = 0.

Proof. P(Ai.o.) ≤ P(
⋃∞

k=nAk) for any n, since Ai.o. ⊂
⋃∞

k=nAk for any n.
It follows from the properties of probability (see Exercise 1.3, item 5) that
P(
⋃∞

k=nAk) ≤
∑∞

k=n P(Ak). Therefore P(Ai.o.) ≤
∑∞

k=n P(Ak) for any n.
Taking the limit n→ ∞, the right–hand–side goes to zero since

∑∞
k=1 P(Ak) ≤

∞ by assumption.

Exercises for Section 1

Exercise 1.1. Let Ω be a set.

1. Show that the power set 2Ω is a sigma algebra.

2. Show that S1∩S2 is a sigma algebra for any two sigma algebras S1,S2.

3. Show the following extension of the previous item: if {Sλ, λ ∈ Λ} is
an arbitrary family of sigma algebras (indexed by the arbitrary set Λ),
then S :=

⋂
λ∈Λ Sλ is a sigma algebra.

4. Let A be an arbitrary family of subsets of Ω. Use the previous items
to show that σ(A) is well defined and unique, i.e. there exist sigma
algebras containing A, and among these there exists a smallest possible
one.

Exercise 1.2. In this exercise, we learn a bit more about measurable func-
tions and the condition of measurability. Let (Ω1,A1), (Ω2,A2) be measur-
able spaces (i.e. Ω1,2 are sets with sigma algebras A1,2, resp). Consider a
function f : (Ω1,A1) → (Ω2,A2), not necessarily measurable.

6
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1. Consider the family B1 of all sets of the form f−1(A) where A ∈ A2.
Show that B1 is a sigma algebra on Ω1. (B1 is referred to as the sigma
algebra generated by f and A2.)

2. Consider the family B2 of all sets B ⊂ Ω2 so that f−1(B) ∈ A1. Show
that B2 is a sigma algebra on Ω2.

3. Conclude that f is measurable with respect to the sigma algebras
A1,A2 if B2 from the previous item contains A2.

Exercise 1.3. Let Ω be a set, A an algebra, P : A → [0, 1] a set function.

1. Show that Additivity implies P(∅) = 0.

2. Show that Additivity and Continuity at ∅ are equivalent to sigma
additivity: If A1, A2, . . . is a sequence of sets in A with Ai ∩Aj = ∅ for
any i ̸= j, and if

⋃
k Ak ∈ A as well, then

∑∞
k=1 P(Ak) = P(

⋃
k Ak).

3. Show that Additivity and Continuity at ∅ are equivalent to continuity
from above: If A1, A2, . . . ∈ A, with A1 ⊃ A2 ⊃ . . . and ∩Aj = A with
A ∈ A, then P(Ak) → P(A) for k → ∞.

4. Show that Additivity and Continuity at ∅ is equivalent to continuity
from below: If A1, A2, . . . ∈ A, with A1 ⊂ A2 ⊂ . . . and ∪Aj = A with
A ∈ A, then P(Ak) → P(A) for k → ∞.

5. Show that sigma additivity implies: if A1, A2, . . . ∈ A, not necessarily
pairwise disjoint, then P(∪k∈NAk) ≤

∑
k∈N P(Ak).

6. Show that Additivity implies that whenever A1, A2, . . . is a sequence
of disjoint sets in A, we have P(An) → 0 (in fact, P(An) must be
summable).

7
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2 Construction of Brownian Motion

We start our discussion of Brownian Motion with some motivation from signal
processing. Suppose we observe a function

X(t) = f(t) + ξ(t), t ≥ 0, (2)

where f is a desired signal and ξ is a sum of many unwanted disturbances
coming from various sources, each of them small. In reality, one never ob-
serves X at individual points in time. All measurement devices need energy,
therefore any observed quantity will always be a temporal average. For in-
stance and analog–digital converter will give you

xn =
1

h

∫ nh

(n−1)h

X(t) dt =
1

h

∫ nh

(n−1)h

f(t) dt+
1

h

∫ nh

(n−1)h

ξ(t) dt = fn+rn, n ∈ N,

where h is the hold time of the AD converter. If f is not too irregular, then
fn ∼= f(nh). To analyse {rn, n ∈ N}, introduce B(t) =

∫ t

0
ξ(s) ds. Then

rn = 1
h
(B(nh)−B((n− 1)h)), so instead of investigating ξ we investigate B

which is a random function of time.
We will argue heuristically that B has three important properties. Firstly,

B(0) = 0 which is evident. Secondly, the perturbations giving rise to ξ are
supposed to be wildly fluctuating with a correlation time much shorter than
the hold time h. Hence the values of ξ on disjoint intervals should be inde-
pendent from one another and thus the same must hold for the increments
of B over disjoint intervals. The third property concerns the distribution
of the increments of B. If the statistical properties of ξ are time invariant,
the distribution of B(t + s) − B(t) should not depend on t but on s only.
We assume that the increments B(t+ s)−B(t) have mean zero and a finite
variance which must be a function of s, say ϕ(s). Since

B(t1 + t2) = B(t1)︸ ︷︷ ︸
A1

+B(t1 + t2)−B(t1)︸ ︷︷ ︸
A2

,

with A1, A2 independent, taking the variance we obtain the identity

ϕ(t1 + t2) = ϕ(t1) + ϕ(t2), (3)

for any t1, t2 ≥ 0. This implies that ϕ is of the form ϕ(t) = at (other solutions
to Eq.(3) exist but are not measurable so highly irregular). We can assume
a = 1 (or consider 1√

|a|
B instead). We now motivate why B(t) has a normal

8
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distribution for each t ≥ 0 (a similar calculation gives that each increment
B(t+ s)−B(t) is normal, too, with mean zero and variance s).

B(t) =
N∑
k=1

B(k
t

N
)−B((k − 1)

t

N
)

=

√
t

N

N∑
k=1

B(k t
N
)−B((k − 1) t

N
)√

t/N

D
=

√
t

N

N∑
k=1

Yk,

where {Yk, k ∈ N} are iid random variables with mean zero and variance

equal to one (and
D
= means “both sides have the same distribution”). Hence

by the central limit theorem, B(t)
D
= N (0, t). The random function t→ B(t)

is called Brownian motion. Our discussion motivates the following definition

Definition 2.1. Let (Ω,A,P) be a probability space. Brownian motion is a
stochastic process {B(t), t ≥ 0} with the properties

1. B(0) = 0 a.s.

2. The process has independent increments, that is for 0 = t0 < t1 <
. . . < tn arbitrary, the increments {B(tk)− B(tk−1), k = 1, . . . , N} are
independent random variables.

3. For any t, s ≥ 0 the increment B(t+ s)−B(t) is normally distributed
with mean zero and variance s.

4. There is a measurable set A ⊂ Ω with P(A) = 1 so that the function
t→ B(t, ω) is continuous.

A word regarding the function ξ. There cannot be such a function! Indeed
assume that (t, ω) → ξ(t, ω) is measurable (this requires a sigma algebra on
I × Ω but this can be done, permitting the use of Fubini’s theorem in the

following). Then 0 = E(B(t+h)−B(t)) = E
(∫ t+h

t
ξs ds

)
=
∫ t+h

t
E(ξs) ds for

any t, h which means that E(ξs) = 0 for all s ∈ I. With a similar calculation,
using the fact that nonoverlapping increments are uncorrelated, one finds
that E(ξsξt) = 0 whenever t ̸= s. Now assume that E(ξ2s ) = c > 0. We

9
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obtain

h = E((B(t+ h)−B(t))2)

= E
(∫ t+h

t

ξs ds ·
∫ t+h

t

ξr dr

)
= E

(∫ t+h

t

∫ t+h

t

ξsξr ds dr

)
=

∫ t+h

t

∫ t+h

t

E(ξsξr) ds dr

= c

∫ t+h

t

∫ t+h

t

1s=r ds dr

= 0,

which is a contradiction, hence the assumption that E(ξ2s ) = c > 0 must be
false—in fact, the variance can only be infinite.

We will soon show that Brownian motion exists using a construction
by Norbert Wiener. Many authors introduce Brownian motion differently
though, along the following lines (for more details see the appendix). (Note:
this will be added at a later stage.)

Our approach proceeds by constructing a mapping

X : Ω → C(I)

where (for now) I = [0, 1], C(I) =continuous functions from I → R; this
space can be equipped with the topology of uniform convergence and subse-
quently with the Borel algebra related to that topology. Our mapping X will
be measurable with respect to that Borel algebra. Furthermore, the mapping
t → Xt(ω) will be continuous for every ω by construction so property 4 of
Brownian motion will be satisfied automatically.

Our construction is fixed in the following

Theorem 2.2. Assume that there exists a probability space (Ω,A,P) with
real–valued random variables {Zn,k, n, k ∈ N} which are iid standard normal.
Then there exists Brownian Motion on I = R≥0.

Proof. Step 1: We start with defining for each n ∈ N a stochastic process
{Bn(t), t ∈ [0, 1]} which is continuous, piecewise linear, and with vertices at
the dyadic points of order n, that is Dn := { k

2n
, k = 0, . . . , 2n}. Let Un :=

{2k+1
2n

, k = 0, . . . , 2n−1} (the “odd” points of order n), then Dn = Dn−1 ∪ Un

(this union is disjoint). In the following, {Zn,k;n, k ∈ N0} are iid standard
normal. We define Bn inductively; put B0(t) = tZ0,0 for t ∈ [0, 1]. Now

10
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assuming Bn−1 has been defined, we set Bn(t) = Bn−1(t)+F (t) for t ∈ [0, 1],
where

Fn(t) =


0 if t ∈ Dn−1,

2−(
n+1
2 )Zn,k if t ∈ Un, with k so that t = 2k+1

2n
,

linearly interpolated in between.

We note that Bn+m = Bn on Dn for any m.
Step 2: Define Sn := ∥Fn∥∞. It follows from standard analysis arguments

that {Bn, n = 1, 2, . . .} converges uniformly if {Sn} is summable, but since
the {Sn} are random variables, this might happen for some ω yet not for
others. We will show that {Sn(ω)} is summable for ω in some set that has
probability one. To this end, let us define the “bad sets”

Ak := {ω ∈ Ω : Sk(ω) ≥ c
√
k2−k/2};

the constant c will be set below. Now clearly {Sn(ω)} is summable if Sk(ω) ≤
c
√
k2−k/2 except possibly for finitely many k; but that means precisely: ω is

not in Ai.o.. Hence we have to show that P(Ai.o.) = 0 or by Borel–Cantelli,∑
k∈N P(Ak) <∞.
Now note that Sn = 2−(n+1)/2 sup0≤k≤2n|Zn,k|. Therefore Sn ≥ c

√
n2−n/2

is equivalent to sup0≤k≤2n|Zn,k|/
√
2 ≥ c

√
n. Hence

P(An) = P(|Zn,k| ≥ c
√
2n for some k with 0 ≤ k ≤ 2n)

≤
∑

0≤k≤2n

P(|Zn,k| ≥ c
√
2n)

= 2n−1P(|Zn,k| ≥ c
√
2n).

A standard estimate gives P(|Z| ≥ c
√
2n) ≤ exp(−c2n) for any c > 1 and

n large enough (see Exercise 2.1). Hence P(An) ≤ 2n−1 exp(−c2n), and
therefore

∑∞
n=0 P(An) < ∞ if we set c >

√
log(2) so by Borel–Cantelli,

P(Ai.o.) = 0.
Step 3: We have constructed the process {B} on [0, 1], to get a process

on R≥0, construct independent processes {B(1), B(2), . . .}, each on [0, 1] and
then set

B(t) := B⌊t⌋(t− ⌊t⌋) +
⌊t⌋−1∑
k=1

B(k)(1)

for any t ∈ R≥0.
Step 4: B is now a randomly selected continuous function, but we still

have to check that the distribution of the increments satisfies properties (2,3)

11
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of Brownian motion. We will show the equivalent statement that for any
n ∈ N and any numbers 0 < t1 < . . . < tn ∈ R≥0, the random vector X :=
(B(t1), . . . , B(tn)) is normal with mean zero and covariance Cov(X)i,j =
min{ti, tj} (see Exercise 2.2).

B has the required properties on D = ∪n∈NDn (see Exercise 2.3), and it
is easy to see that B has the required properties on D̃ := ∪n∈N{D+n} which
is dense in R≥0. We use the following

Lemma 2.3. Let {X(k), k = 1, 2, . . .} be a series of (n–dimensional) Gaus-
sian random variables so that

1. X(k) → X almost surely,

2. Cov(X(k)) → Γ and E(X(k)) → µ,

then X is Gaussian with Cov(X) = Γ and E(X) = µ.

Let 0 < t1 < . . . < tn ∈ R≥0 and set X = (B(t1), . . . , B(tn)) as discussed.

There exist 0 < t
(k)
1 < . . . < t

(k)
n ∈ D̃ with t

(k)
l

k→∞−→ tl for all l = 1, . . . , n.

We plan to apply the Lemma to X(k) := (B(t
(k)
1 ), . . . , B(t

(k)
n )). By continuity

of B we obtain that X(k) k→∞−→ X. Furthermore, X(k) is normal with mean
zero and Cov(X(k))i,j = min{t(k)i , t

(k)
j }. Applying the lemma we find that

X = (B(t1), . . . , B(tn)) is normal with mean zero and covariance Cov(X)i,j =
min{ti, tj}, completing the proof.

Exercises for Section 2

Exercise 2.1. Let X be a standard normal random variable with density
ϕ(x) = 1√

2π
exp(−1

2
x2). Show that

2x

1 + x2
ϕ(x) ≤ P(|X| > x) ≤ 2

x
ϕ(x)

Hint: for a differentiable function h with the property h(x)ϕ(x) → 0 if
x→ ∞, show that

ϕ(x)h(x) =

∫ ∞

x

ϕ(z)(zh(z)− h′(z)) dz.

Conclude that if the function x → xh(x) − h′(x) is positive and decreasing
for sufficiently large x, we get

ϕ(x)h(x)

xh(x)− h′(x)
≥
∫ ∞

x

ϕ(z) dz,

12
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for sufficiently large x, while the opposite inequality occurs if x → xh(x) −
h′(x) is positive and increasing. Now consider h(x) = 1/x and h(x) = 1 as
examples.

Exercise 2.2. By reexamining the proof of Theorem 2.2 and the construction
of {B}, show that the increments of {B} have the required properties (2,3) on
the set D. (Hint: use that any t ∈ D is in some Dn, and that B|Dn = Bn|Dn .)

Exercise 2.3. Show that the increments of {B} have the required proper-
ties (2,3) of Brownian Motion if and only if for any n ∈ N and any numbers
0 < t1 < . . . < tn ∈ R≥0, the random vector X := (B(t1), . . . , B(tn)) is
normal with mean zero and covariance Cov(X)i,j = min{ti, tj}.

13
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3 Scaling properties of Brownian Motion and

the law of large numbers

Definition 3.1. Consider a stochastic process {Xt, t ∈ I} and let 0 ≤ t1 <
. . . < tn be elements of I. A marginal of the stochastic process (correspond-
ing to t1, . . . , tn) is the distribution of the random vector (Xt1 , . . . , Xtn). A
stochastic process is Gaussian if all marginals are Gaussian distributions.

Clearly, Brownian Motion is a Gaussian process.

Lemma 3.2. If {B} is Brownian Motion and a > 0, then t → 1
a
B(a2t) is

also Brownian Motion.

Proof. Exercise 3.1

Theorem 3.3. Let {Xt, t ≥ 0} be some stochastic process on (Ω,A,P) so that
all marginals on D := { k

2n
, k, n ∈ N} agree with that of Brownian Motion.

Then there exists a measurable set A ∈ A with P(A) = 1, and a Brownian
Motion {Bt, t ≥ 0} on (Ω,A,P) so that

Xt(ω) = Bt(ω) for all t ∈ D,ω ∈ A.

Proof (sketch). For n ∈ N put

B(n)(t) :=


0 if t = 0,

X(t) if t ∈ { k
2n
, k ∈ N},

linear in between.

Then there is A ∈ A with P(A) = 1 so that B(n)(ω) converges uniformly in
t on compact intervals, except perhaps if ω ∈ A∁. The proof is exactly as in
Theorem 2.2, because the successive errors

F (n) = B(n) −B(n−1), n ∈ N (4)

behave exactly like the Fn in that proof. Call the limit {Bt, t ≥ 0} which is
a Brownian Motion which agrees with {X} on D by construction.

Theorem 3.4 (Time inversion). If {Bt, t ≥ 0} is Brownian Motion, then
there exists a set A ∈ A with P(A) = 1 and a Brownian Motion {Xt, t ≥ 0}
so that

Xt(ω) =

{
0 if t = 0,

tB1/t(ω) if t > 0,
(5)

for all ω ∈ A.

14
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Proof. For t > 0 and any ω ∈ Ω we define Xt(ω) as in Equation (5). In Exer-
cise 3.2 you will check that {X, t > 0} is a Gaussian process with E(Xt) = 0
and independent increments. Further, for t > 0 and h ≥ 0 we have

Cov(X(t+ h), Xt) = (t+ h)tCov(B(
1

t+ h
), B(

1

t
))

= (t+ h)t
1

t+ h

= t.

Hence the distribution of {Xt, t > 0} is that of Brownian Motion. It is also
evident that t → Xt(ω) is continuous for every ω. It merely remains to
check continuity at t = 0. From Theorem 3.3, there exists a set A ∈ A with
P(A) = 1 and Brownian Motion {X̃t, t ≥ 0} so that X̃t(ω) = Xt(ω) for all
t ∈ D \ {0} and ω ∈ A. Since both t→ Xt(ω) and t→ X̃t(ω) are continuous
for t > 0 and D is dense in R≥0, we obtain that X̃t(ω) = Xt(ω) for all t > 0
and ω ∈ A. But they also agree for t = 0 by construction, finishing the
proof.

Corollary 3.5 (Law of large numbers).

lim
t→∞

1

t
X(t) = 0 almost surely.

Proof. limt→∞
1
t
X(t) = lims→0 sX(1/s) = 0 by Theorem 3.5.

Exercises for Section 3

Exercise 3.1. Prove Lemma 3.2: If {B} is Brownian Motion and a > 0,
then t→ 1

a
B(a2t) is also Brownian Motion.

Exercise 3.2. Let {Xt, t ≥ 0} be the process defined in Theorem 3.5. Show
that {Xt, t > 0} (note “t > 0” here) is a Gaussian process with E(Xt) = 0
and independent increments.

15
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4 Non–differentiability of Brownian Motion

The aim of this lecture is to show that for any given τ > 0, the probability
that Brownian Motion paths t → Bt(ω) are differentiable at τ is zero (al-
though the exceptional set generally depends on τ). More specifically, we
aim to prove

Theorem 4.1. Let {Bt, t ≥ 0} Brownian Motion on some probability space
(Ω,A,P). Then for every t > 0 there exists At ∈ A with P(At) = 1 so that

D+Bt := lim sup
h↓0

B(t+ h)−B(t)

h
= ∞, (6)

D−Bt := lim inf
h↓0

B(t+ h)−B(t)

h
= −∞. (7)

The proof will be based on the following theorem, which is interesting in
its own right (also compare with the Law of Large Numbers, Corollary 3.5):

Theorem 4.2. Let {Bt, t ≥ 0} Brownian Motion on some probability space
(Ω,A,P). Then there exists A ∈ A with P(A) = 1 so that

lim sup
n→∞

Bn(ω)√
n

= ∞, (8)

lim inf
n→∞

Bn(ω)√
n

= −∞, (9)

whenever ω ∈ A.

Using this theorem, we can make quick work of Theorem 4.1.

Proof of Theorem 4.1. First note that for t fixed, the process h → X(h) :=
B(t+ h)− B(t) is also Brownian Motion so we may assume that t = 0. We
have

D+B(0) = lim sup
h↓0

B(h)

h

≥ lim sup
n→∞

B(1/n)

1/n

= lim sup
n→∞

nB(1/n)

= lim sup
n→∞

B̂(n),

where B̂(t) := tB(1/t) for all t > 0 is also Brownian Motion by Theorem 3.4.
But by Theorem 4.2, we have lim supn→∞ B̂(n) = ∞ (actually, the theorem
shows a stronger statement). This proves statement (6). The statement (7)
works analogously.

16



M
AG
IC
08
9
Le
ct
ur
e
No
te
s

Co
py
rig
ht
: J
.B
ro
ec
ke
r

Un
iv
. o
f R
ea
di
ng

Some preparation will be necessary to prove Theorem 4.2.

Definition 4.3. Let {Xn, n ∈ N} random variables with values in (E,BE)
and let B ∈ EN. The event A := {ω ∈ Ω, (X1(ω), X2(ω), . . .) ∈ B} is
exchangeable if it is measurable and A = {(Xσ(1)(ω), Xσ(2)(ω), . . .) ∈ B} for
any permutation σ of finitely many indices.

Example 4.4. The event {Xn ≥ n for infinitely many n ∈ N} is exchange-
able; the event {

∑
k∈N|Xn|2−k < ∞} is exchangeable; the event {X1 ≥ 10}

however is not exchangeable.

Theorem 4.5 (Hewitt–Savage Zero–One Law). If {Xn, n ∈ N} are i.i.d.
random variables and A is exchangeable, then P(A) is either zero or one.

Proof. See Breiman [1].

We will use the Hewitt–Savage Zero–One Law in the

Proof of Theorem 4.2. Step I: For any c > 0, we define the events

Ac := {ω ∈ Ω : Bn(ω) ≥ c
√
n inf’ly often}.

We may then write

{ω ∈ Ω : lim sup
n→∞

Bn(ω)√
n

= ∞} ⊃ ∩l∈NAl.

We will show (Step II) that Ac is an exchangeable event of i.i.d. random
variables for every c > 0, hence P(Ac) = 0 or 1 by the Hewitt–Savage Zero–
One law, Theorem 4.5. The possibility P(Ac) = 0 will then be excluded in
Step III. This will conclude the proof.
Step II: We can write

P({B(n) ≥ c
√
n inf’ly often}) = P({

n∑
k=1

B(k)−B(k − 1) ≥ c
√
n i.o.})

= P({
n∑

k=1

Xk ≥ c
√
n i.o.}),

(10)

if we define Xk := B(k) − B(k − 1) for k ∈ N . These are independent and
identically distributed random variables, and the event Ac := {

∑n
k=1Xk ≥

c
√
n i.o.} is exchangeable. Hence P(Ac) = 0 or 1 by the Hewitt–Savage

Zero–One law, Theorem 4.5.
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Step III: We will now show that P(Ac) > 0 for any c > 0. Fix some c > 0.
Then

P({B(n) ≥ c
√
n inf’ly often}) = P(∩n∈N ∪k≥n {B(k) ≥ c

√
k})

= lim
n→∞

P(∪k≥n{B(k) ≥ c
√
k})

≥ P(∪k≥n{B(k) ≥ c
√
k})− ϵ,

(11)

where the latter relation holds for any ϵ > 0, provided we take n “large
enough”, meaning that for any ϵ > 0 there exists an Nϵ ∈ N, and the
estimate (11) holds provided n ≥ Nϵ. Since P(∪k≥n{B(k) ≥ c

√
k}) ≥

supk≥n P({B(k) ≥ c
√
k}) we find

P({B(n) ≥ c
√
n inf’ly often}) ≥ lim sup

n→∞
P({B(n) ≥ c

√
n}). (12)

By scaling (Lemma 3.2), P(B(n) > c
√
n) = P(B(1) > c) > 0 for any c >

0.

18
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5 The law of the iterated logarithm

In the law of large numbers (Corollary 3.5), we have seen that 1
t
B(t) → 0

almost surely if t→ ∞. In the previous lecture, we showed Theorem 4.1 from
which we can conclude that 1√

t
B(t) fails to converge if t→ ∞. In this lecture

we show that there is a function ϕ in between
√
t and t so that 1

ϕ(t)
B(t) has

nonzero limsup and liminf. (But these have to be different; it is easy to see
that any limit of 1

ϕ(t)
B(t) as t→ ∞ would have to be zero.) We start with a

“t→ 0” version:

Theorem 5.1 (Law of the iterated logarithm). There is a set A ∈ A with
P(A) = 1 so that for all ω ∈ A we have

lim sup
t↓0

Bt(ω)√
2t log(log(1/t))

= 1.

Proof. The proof will be added at a later stage.

Corollary 5.2 (Law of the iterated logarithm for t → ∞). There is a set
A ∈ A with P(A) = 1 so that for all ω ∈ A we have

lim sup
t→∞

Bt(ω)√
2t log log t

= 1.

Proof. Follows from Theorem 5.1 and time inversion.
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6 The Itô integral

We will now go back to our original motivation for constructing Brownian
Motion in Lecture 2, where we formally considered signals of the form (see
Eq. 2)

x(t) = f(t) + ξ(t), t ≥ 0,

where f is a desired signal and ξ is what we can now describe heuristically as
the derivative of Brownian Motion (aka white noise). By formally integrating
Equation (13) however we obtain the following well–defined expression

Xt = X0 +

∫ t

0

f(s) ds+Bt, t ≥ 0, (13)

where B is Brownian Motion, and X can be interpreted as the integral of x
in Equation (13).

We would like to take this a step further and, instead of an equation
like (13), consider a stochastic differential equation

dXt

dt
= f(t,Xt) + g(t,Xt)ξ(t), t ≥ 0, (14)

with some initial condition X0, where now f and g are functions (assumed
smooth in both arguments) and ξ is again white noise. Again we formally
integrate Equation (14) and obtain

Xt = X0 +

∫ t

0

f(s,Xs) ds+

∫ t

0

g(s,Xs) dBs.

Yet now the precise meaning of this has to be clarified. If {X} is continuous
(something that would need to be established), then the first integral is well
defined as a Riemann (or Lebesgue) integral, and it would be a continuous
(even differentiable) function of t. The second integral however, which we
will call stochastic integral, requires more work. Stochastic integrals are of
the form

∫ t

0
Ys dBs where {Y } can be a process that has, broadly speaking,

the same regularity properties as Brownian Motion. (More precise definitions
will of course follow.)

Stochastic integrals cannot be defined as Riemann–Steltjes integrals as
we will now show. Take Y = B as example. Then for a Riemann-Steltjes
integral we have

N−1∑
k=0

Btk(Btk+1
−Btk) →

∫ t

0

Bs dBs (15)
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for increasingly fine partitions 0 = t0 < . . . < tN = t. From the properties of
Brownian Motion, we can conclude that E

(∑N−1
k=0 Btk(Btk+1

− Btk)
)
= 0, so

E
( ∫ t

0
Bs dBs

)
= 0. On the other hand, using integration by parts (which is

permitted for Riemann–Steltjes integrals):∫ t

0

Bs dBs
?
= B2

t −
∫ t

0

Bs dBs,

and taking expectation we find E(B2
t ) = 0 which contradicts the fact that

for Brownian Motion E(B2
t ) = t. We note that E

( ∫ t

0
Bs dBs

)
= 0 depends

crucially on how we approximate the integral in Equation (15); taking in-
stead Bτk(Btk+1

− Btk) with some τk in between tk+1 and tk, we would have

E
( ∫ t

0
Bs dBs

)
̸= 0 in general, and even the value of the integral depends

on how the τk are chosen! The value of the Riemann-Steltjes integral would
be independent of the specific choice of the τk, but Brownian Motion is
not regular enough for a stochastic integral to have the properties of the
Riemann–Steltjes integral. We will later use (broadly speaking) the approx-
imation (15) to define our integrals as this will give us important properties
we would not get for other choices of the τk.

We will now explain for which integrands the Itô integral will be defined.
Let (Ω,A,P) be a probability space and {Bt, t ≥ 0} Brownian Motion.

Definition 6.1. Let M([0, T ]) be the class of stochastic processes {Yt, t ∈
[0, T ]} with the properties

1. The mapping Y : [0, T ] × Ω → R, (t, ω) → Yt(ω) is measurable with
respect to B([0, T ])⊗A,

2. E(
∫ T

0
Y 2
t dt) <∞,

3. The process {Y } is non–anticipating, that is for any t ∈ [0, T ], the
random variable ω → Yt(ω) is independent of the increments {B(t +
h)−B(t), h ≥ 0}.

The requirement 1 in Definition 6.1 is a technical point; the product
sigma–algebra B([0, T ]) ⊗ A is defined as the smallest sigma algebra on
[0, T ] × Ω containing all rectangles of the form B × A where B ∈ B([0, T ])
and A ∈ A. Basically, the condition ensures that Y 2 can be integrated over
t and ω simultaneously (as in item 1 of Definition 6.1), and that the inte-
grals can be interchanged (Fubini–Tonelli). Exercise 6.1 shows that we may
always assume that Brownian Motion is a member of M([0, T ]) for any T ;
in particular it satisfies property 1 in Definition 6.1. We will from now on
require all stochastic processes to have the property 1:
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Convention 6.2. A stochastic process on I is a mapping Y : [0, T ] × Ω →
R, (t, ω) → Yt(ω) measurable with respect to BI ⊗A.

Our construction of the Itô integral proceeds in several steps.
Step I : A simple process is a process of the form

Yt :=
N∑
k=1

Yk−11[tk−1,tk),

for 0 = t0 < . . . < tN = T and random variables Y0, . . . YN−1 with the
property that E(Y 2

k ) <∞ and Yk is independent from {B(tk+h)−B(tk), h ≥
0} for each k = 0, . . . , N − 1. For simple processes we define∫ T

0

Ys dBs :=
N∑
k=1

Yk−1(Btk −Btk−1
).

Step II : Check that simple processes are in M([0, T ]) and we have

E(
∫ T

0

Ys dBs) = 0, (16)

E
(
(

∫ T

0

Ys dBs)
2
)
= E(

∫ T

0

Y 2
s dt). (17)

Step III : On M([0, 1]) consider the norm

|||Y ||| :=
(
E(
∫ T

0

Y 2
s ds)

)1/2
.

Now Step II shows that for simple processes Y we have E
(( ∫ T

0
Ys dBs

)2)
=

|||Y |||2 so the mapping Y →
∫ T

0
Ys dBs is a linear isometry.

Step IV : Suppose that Y ∈ M([0, 1]) and Y (1), Y (2), . . . is a sequence of
simple processes in M([0, 1]) so that Y (k) → Y in the |||.||| norm as k →
∞. Then the integrals

∫ T

0
Y

(k)
s dBs, k = 1, 2, . . . form a Cauchy sequence of

random variables in L2(Ω,A,P); we call the limit
∫ T

0
Ys dBs.

This finishes the definition of the stochastic integral at least for all pro-
cesses in M([0, T ]) which can be represented as limits of simple processes in
the |||.||| norm. We will now show that this is in fact all of M([0, T ]).

Lemma 6.3. Every process in M([0, T ]) is the limit (in |||.|||–norm) of simple
processes.
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Proof. Let Y ∈ M([0, T ]). Our goal is to approximate Y with simple pro-
cesses in the |||.|||–norm. We will first impose more assumptions on Y which
get subsequently lifted.
Step I : Assume that Y is bounded (i.e. |Y (t, ω)| ≤ C for some C and all
t ∈ [0, T ], ω ∈ Ω), and further t → Y (t, ω) is continuous for every ω ∈ Ω.
For a partition Π := {(t0, . . . tN); 0 = t0 < . . . < tN = T} of the interval
[0, T ] with resolution |Π| := max{tk − tk−1, k = 1 . . . N} we define the simple
process YΠ(t, ω) =

∑N
k=1 Y (tk−1, ω)1[tk−1,tk). (The reader should check that

this is indeed a simple process.) If Πn, n = 1, 2, . . . is a sequence of partitions
so that |Πn| → 0, then since Y is continuous in t it follows from standard
analysis results that ∫ T

0

(Y (t, ω)− YΠn(t, ω))
2 dt→ 0

as n→ ∞. Since furthermore Y is bounded we obtain
∫ T

0
(Y (t, ω)−YΠn(t, ω))

2 dt ≤
4C and therefore by the bounded convergence theorem we get |||Y − YΠn|||2 =
E(
∫ T

0
(Y (t, ω)− YΠn(t, ω))

2 dt) → 0.
Step II : We drop the continuity assumption but still require |Y (t, ω)| ≤ C.
For each n ∈ N consider a nonnegative and continuous function ψn on R
so that ψn(t) = 0 if either t > 0 or t < −1/n and further

∫
R ψn(t) dt = 1.

Now put Y (n)(t, ω) :=
∫ t

0
ψ(t − s)Y (s, ω) ds. Now Y (n) is bounded (by C),

continuous, and a member of M([0, T ]) for every n ∈ N. (Use Fubini’s
theorem to show that Y (n) is non–anticipating.) Now for each ω ∈ Ω we
get from Lebesgue’s differentiation theorem (see [2], C4) that Y (n)(t, ω) →
Y (t, ω) for almost all t ∈ [0, T ]. Again by bounded convergence (over the

t variable) we get
∫ T

0
(Y (n)(t, ω) − Y (t, ω))2 dt → 0 as n → ∞. As in the

previous step, this implies |||Y (n) − Y ||| → 0 as n→ ∞.
Step III : Finally, let Y be an arbitrary element of M([0, 1]) and put Y (n) :=
(Y ∧ n)∨ (−n). Then |Y (n)| ≤ |Y | for all n and also Y (n)(t, ω) → Y (t, ω) for
all t, ω. Therefore |||Y (n) − Y ||| → 0 by dominated convergence theorem.

Exercises for Section 6

Exercise 6.1. Let (Ω,A,P) be a probability space, {Bt, t ≥ 0} Brownian
motion, and M([0, T ]) as defined in Definition 6.1. Show that there is a set
A ∈ A with P(A) = 1 so that the process

B̃t(ω) =

{
Bt(ω) if ω ∈ A,

0 else.
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is an element of M([0, T ]). In particular, it is a stochastic process in the
sense of Convention 6.2. (Hint: apply the same reconstruction process as
in Theorem 3.3 and show that the process constructed in this way indeed
adheres to Convention 6.2.)

Exercise 6.2. Let (Ω,A,P) be a probability space, {Bt, t ∈ [0, T ]} Brownian
motion. For a partition Π := {(t0, . . . tN); 0 = t0 < . . . < tN = T} of the
interval [0, T ] with resolution |Π| := max{tk − tk−1, k = 1 . . . N} consider the
quadratic variation of Brownian motion

SΠ :=
N∑
k=1

(Btk −Btk−1
)2

Show that SΠ → T in L2 if |Π| → 0. Compare this with the quadratic
variation of a function t → f(t) (stochastic or not) which has a continuous
derivative.
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7 Properties of the Itô integral; martingales

Let (Ω,A,P) be a probability space and {Bt, t ≥ 0} Brownian Motion. Fur-
ther, let {Yt, t ∈ [0, T ]} be a stochastic process in M([0, T ]). We want to
study properties of the stochastic integral

∫ t

0
Ys dBs, including as a func-

tion of the upper limit t. As one would expect, the integral is linear in Y
and also additive with regards to the time interval we are integrating over.
Furthermore, we will see (after some work) that it is a stochastic process in
the sense of definition 6.2. Here we will need to sort out an important yet
subtle technical difficulty which arises because we have defined the integral∫ t

0
Ys dBs separately for each t and these definitions now have to be spliced

together to form a stochastic process. Finally, we will see that this process is
a martingale, an important class of stochastic processes which we will learn
more about.

We start with the following important lemma which we have already used
and proved in the construction of the integral.

Lemma 7.1. For Y ∈ M([0, T ]) we have

E
(
(

∫ T

0

Yt dBt)
2
)
= |||Y |||2.

In particular, if Y (n), n ∈ N are elements of M([0, T ]) with Y (n) |||.|||→ Y , then∫ T

0
Y

(n)
t dBt

L2→
∫ T

0
Yt dBt.

Elementary properties of the Itô integral are the following.

Lemma 7.2. Let X, Y ∈ M([0, T ]). Then

1. for λ, µ ∈ R we have λX + µY ∈ M([0, T ]) and∫ T

0

(λXt + µYt) dBt = λ

∫ T

0

Xt dBt + µ

∫ T

0

Yt dBt,

2. for 0 < S < T we have X|[0,S] ∈ M([0, S]) as well as X|[S,T ] ∈
M([S, T ]), and∫ S

0

Xt dBt +

∫ T

S

Xt dBt =

∫ T

0

Xt dBt,

3. The integral
∫ T

0
Xt dBt is independent from {B(T + h)−B(T ), h ≥ 0}
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The identities in items 1 and 2 hold for all ω in some set A with P(A) = 1
but in general, that set depends on λ, µ (in item 1) resp on S, T (in item 2).

Proof. These identities hold for simple processes and therefore, using the
isometry, they hold for all processes in M([0, T ]). Details can be found in
Exercise 7.1.

For the remainder of this course, we will work with a set of stochastic
processes V([0, T ]) as integrands which is smaller than M([0, T ]). This will
simplify the exposition.

Definition 7.3. Let V([0, T ]) be the class of stochastic processes satisfying
items 1 and 2 in the definition of M([0, T ]) (see Def. 6.1), but instead of
item 3 we have

3. for any t ∈ [0, T ] the random variable ω → Yt(ω) is measurable with
respect to {B(s), 0 ≤ s ≤ t}.

We will later see that V([0, T ]) ⊂ M([0, T ]).
As said, we want to establish that the stochastic integral is a stochastic

process (in fact an element of V([0, T ])) as a function of the upper integration
limit. We recall that the integral

∫ t

0
Ys dBs is constructed for each t ∈ [0, T ]

separately. This results in a set of random variables indexed by t but this will
not in general result in a stochastic process in the sense of Definition 6.2, as
will fail to have the required joint measurability in ω and t. The t–dependence
of the exceptional set mentioned at the end of Lemma 7.2 is a related issue.
Similarly, it will be difficult to prove any regularity property in the variable
t, with ω fixed, such as continuity.

On the other hand, for every t the random variable
∫ t

0
Ys dBs is con-

structed by approximating Y |[0,t] in M([0, t]) with |||.||| by simple processes
Y (n,t), n ∈ N. Yet there is freedom in chosing the {Y (n,t)}; chosing differ-
ent approximating sequences will strictly speaking result in different limits
for the stochastic integral, but any two of these must agree on a set of unit
probability. This freedom can be exploited to achieve better regularity in t,
essentially by controlling the regularity in t of the approximating sequence
{Y (n,t)} of simple processes. The following theorem, which we will not prove
but use extensively, explores this avenue.

Theorem 7.4. If Y ∈ M([0, T ]), then there exists a stochastic process
{Zt, t ∈ [0, T ]} which is continuous in t for all ω and so that∫ t

0

Ys dBs = Zt,

for all t ∈ [0, T ], and for ω ∈ At, where At ∈ A with P(At) = 1.
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Note the t–dependence of the exceptional set At.

Proof. See [5], Theorem 3.2.5. It follows from the proof that there exists a
sequence {Y (n), n ∈ N} of simple processes in M([0, T ]) and a set A ∈ A
with P(A) = 1 so that for all ω ∈ A,∫ t

0

Y (n)
s dBs → Zt

uniformly in t.

Theorem 7.4 may be seen as a generalisation of our construction of Brow-
nian Motion (Thm. 2.2) where we have constructed a sequence of simple
processes which (up to a set of measure zero) converge uniformly to Brow-
nian Motion. In the same way that Theorem 2.2 proved the continuity of
Brownian Motion, Theorem 7.4 proves that the stochastic integral is contin-
uous as a function of the upper limit.

Definition 7.5. 1. A filtration (on (Ω,A)) is a family {Ft, t ≥ 0} of
sigma algebras such that Fs ⊂ Ft ⊂ A for any 0 ≤ s ≤ t.

2. A stochastic process {Yt, t ≥ 0} is adapted to a given filtration {Ft, t ≥
0} if Yt is Ft–measurable for every t ≥ 0.

3. A stochastic process {Mt, t ≥ 0} is called a martingale with respect to
a given filtration {Ft, t ≥ 0} if

(a) M is Ft–adapted,

(b) E(|Mt|) <∞ for all t ≥ 0,

(c) E(Mt|Fs) =Ms for all 0 ≤ s ≤ t.

Associated with every stochastic process {Yt, t ≥ 0} is a filtration {Ft, t ≥
0} given by Ft := σ{Ys; s ≤ t} for each t ≥ 0. It is called the natural filtration
of Y or the filtration generated by Y . Of course any process is adapted to
its own natural filtration. The property 3 of Definition 7.3 says that any
member Y ∈ V([0, T ]) is adapted to the filtration generated by Brownian
motion. A martingale (with respect to some filtration {F}) is automatically
a martingale with respect to its natural filtration.

Lemma 7.6. Brownian motion is a martingale with respect to its natural
filtration.
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Proof. Fix t, s with 0 ≤ s < t and let {Ft} be the filtration generated by
Brownian motion. We know that E(|Bt|) ≤ ∞ and furthermore Brownian
motion has independent increments. This implies that Bt−Bs is independent
from Fs (this is an exercise in probability theory). Hence E(Bt −Bs|Fs) = 0
which implies the martingale property.

Theorem 7.7. Let Y ∈ V([0, T ]). Then t →
∫ t

0
Ys dBs is a continuous

martingale with respect to the natural filtration of Brownian motion.

Proof. Let {Ft} be the filtration of Brownian motion. The statement is true if
Y ∈ V([0, T ]) is a simple process (see Exercise 7.3). Now let Y be an arbitrary
element of V([0, T ]) and let Zt :=

∫ t

0
Ys dBs (where we pick a continuous

version as per Theorem 7.4). It follows from the proof of Theorem 7.4 that
there exists a sequence {Y (n), n ∈ N} of simple processes in V([0, T ]) so that

the processes t→ Z
(n)
t :=

∫ t

0
Ys dBs are martingales, and for every t ∈ [0, T ]

we have Z
(n)
t → Zt in L2 as n→ ∞. From the Martingale property we have

E(Z(n)
t − Z

(n)
s |Fs) = 0 for any 0 ≤ s ≤ t, but by the L2 convergence, the left

hand side converges to E(Zt −Zs|Fs) in L2 as well, so this quantity must be
zero. This concludes the proof.

Exercises for Section 7

Exercise 7.1. Let (Ω,A,P) be a probability space, {Bt, t ≥ 0} Brownian
motion, and M([0, T ]) as defined in Definition 6.1. If 0 < S < T , then the
definition of M([S, T ]) should also be clear from a minor modification of
Definition 6.1.

1. Show that the properties listed in Lemma 7.2 hold if X, Y are simple
processes in M([0, T ]).

2. Show that if the properties listed in Lemma 7.2 hold for sequences {Xn}
and {Yn} of elements in M([0, T ]) so that Xn → X and Yn → Y in the
|||.||| norm, then properties listed in Lemma 7.2 also hold for X, Y .

Exercise 7.2. Let (Ω,A,P) be a probability space, {Bt, t ≥ 0} Brownian
motion.

1. Show that {B2 − t, t ≥ 0} is a martingale with respect to the natural
filtration of Brownian motion.

2. Show that if {Yt, t ≥ 0} is a martingale, then E(Yt) does not depend
on t.
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Exercise 7.3. Let (Ω,A,P) be a probability space, {Bt, t ≥ 0} Brownian
motion. Prove Theorem 7.7 for simple processes Y ∈ V([0, T ]): The pro-
cess t →

∫ t

0
Ys dBs is a martingale with respect to the natural filtration of

Brownian motion.
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8 Itô processes and the Itô formula

Let (Ω,A,P) be a probability space and {Bt, t ≥ 0} Brownian Motion.

Definition 8.1 (Itô processes). An Itô process is a process {Xt, t ∈ [0, T ]}
of the form

Xt = X0 +

∫ t

0

Ys ds+

∫ t

0

Zs dBs,

with Y, Z ∈ V([0, T ]). The first (Riemann) integral is called the absolutely
continuous part, the second (Itô) integral is called the martingale part.

It turns out that X ∈ V([0, T ]) as well:

Lemma 8.2. If X is an Itô process on [0, T ], then X ∈ V([0, T ]) and in
particular |||X||| <∞.

Proof. See Exercise 8.1.

Definition 8.3. If {Xt, t ∈ [0, T ]} is an Itô process of the form

Xt = X0 +

∫ t

0

fs ds+

∫ t

0

gs dBs, (18)

and Y ∈ V([0, T ]) so that also gY ∈ V([0, T ]), then we define the Itô integral
of Y against X as∫ t

0

Ys dXs :=

∫ t

0

Ysfs ds+

∫ t

0

Ysgs dBs. (19)

We see that the Itô integral of Y ∈ V([0, T ]) against an Itô process X is
again an Itô process. In order to remember the formula (19), we may write
Equation (18) heuristically in “differential form” as

dXt = ftdt+ gtdBt,

and by multiplying with Yt we obtain Equation (19) in differential form:

YtdXt = Ytftdt+ YtgtdBt.

In Exercise 8.2 we will prove an approximation result for integrals against
Itô processes, similiar to integrals against Brownian Motion.

Generalising from integration against Brownian Motion to integration
against Itô processes is necessary when dealing with nonlinear mappings, as
we shall now explain. If {Xt; t ∈ [0, T ]} is an Itô process (with values in
R) and h : R → R a nonlinear, differentiable function, then (subject to

30



M
AG
IC
08
9
Le
ct
ur
e
No
te
s

Co
py
rig
ht
: J
.B
ro
ec
ke
r

Un
iv
. o
f R
ea
di
ng

some integrability conditions) the process {h(Xt); t ∈ [0, T ]} will again be
an Itô process; this is the main content of Itô’s theorem 8.4. It turns out
that in general, {h(Xt)} will have a nontrivial absolutely continuous part
even if X does not have an absolutely continuous part (i.e. X is merely an
integral against Brownian Motion). This might seem counterintuitive, as
it is different from the “classical” situation where {Xt; t ∈ [0, T ]} has only
an absolutely continuous part, that is Xt = X0 +

∫ t

0
fs ds. Then by the

ordinary chain rule h(Xt) = h(X0) +
∫ t

0
h′(Xs)fs ds, so again {h(Xt)} has

only an absolutely continuous part. If {Xt; t ∈ [0, T ]} has only a martingale
part however, that is Xt = X0 +

∫ t

0
gs dBs, then in general h(Xt) is not

given by h(X0) +
∫ t

0
h′(Xs)gs dBs. We have already seen for example that

B2
t ̸= 2

∫ t

0
Bs dBs; further examples can be found in the Exercises.

Theorem 8.4 (The Itô formula). Let {Xt, t ∈ [0, T ]} be an Itô process of
the form

Xt = X0 +

∫ t

0

fs ds+

∫ t

0

gs dBs s ∈ [0, T ], (20)

and h : [0, T ] × R → R a function with ∂xh, ∂th, ∂
2
xxh all continuous and

bounded. Then Yt := h(t,Xt) for t ∈ [0, T ] defines again an Itô process and
almost surely for each t ∈ [0, T ]:

Yt = Y0 +

∫ t

0

{
∂th(s,Xs) +

1

2
∂2xxh(s,Xs) g

2
s

}
ds+

∫ t

0

∂xh(s,Xs) dXs.

(21)

Here’s how to remember the Itô formula (21), which heuristically can be
written in differential form as

dYt =

{
∂th(s,Xs) +

1

2
∂2xxh(s,Xs) g

2
s

}
ds+ ∂xh(s,Xs)dXs. (22)

To obtain this formula in a formal way, use Taylor expansion to second order:

dYt = h(t+ dt,Xt + dXt)− h(t,Xt)

= ∂th(t,Xt)dt+ ∂xh(t,Xt)dXt

+
1

2
∂2tth(t,Xt)(dt)

2 +
1

2
∂2xxh(t,Xt)(dXt)

2 + ∂2xth(t,Xt)dtdXt.

(23)

It turns out that (dt)2 and dtdXt are higher–than–first–order terms which
can be ignored when integrating over t, while (dXt)

2 is actually a term of
order dt which cannot be ignored. To see this, and to find an expression for

31



M
AG
IC
08
9
Le
ct
ur
e
No
te
s

Co
py
rig
ht
: J
.B
ro
ec
ke
r

Un
iv
. o
f R
ea
di
ng

(dXt)
2, we use the representation dXt = ftdt + gtdBt (a heuristic form of

Eq.20). This gives

(dXt)
2 = f 2

t (dt)
2 + g2t (dBt)

2 + 2ftgtdtdBt,

dtdXt = ft(dt)
2 + gtdtdBt.

Note first that if we treat (dt)2, dtdBt and (dBt)
2 according to the following

multiplication table:
× dt dBt

dt 0 0
dBt 0 dt,

we get dtdXt = 0 and (dXt)
2 = g2t dt. Replacing with this in Equation (23)

we obtain Equation (22).
Why is it justified to treat the higher–order terms in this way upon in-

tegration? Let Π := {0 = t0 < . . . < tN = T} be a partition of the interval
[0, T ] and write |Π| := maxk=1,...,N |tk − tk−1|. Now heuristically (for some
continuous function r)

“

∫ T

0

rt dtdBt ” ∼=
N∑
k=1

rtk(tk+1 − tk)(Btk+1
−Btk)

≤ max
m

|Btm+1 −Btm| ·
N∑
k=1

|rtk |(tk+1 − tk).

If |Π| → 0, the second term converges to
∫ T

0
|rt| dt while the first converges

to zero since the paths of B are uniformly continuous on [0, T ]. Therefore we
may set dtdBt = 0 as claimed. A similar argument holds for terms of order
(dt)2. Terms of order (dBt)

2 however behave differently; to analyse those
terms it is essential to assume that r ∈ V([0, T ]). Then

“

∫ T

0

rt (dBt)
2 ” ∼=

N∑
k=1

rtk(Btk+1
−Btk)

2

=
N∑
k=1

rtk(tk+1 − tk)︸ ︷︷ ︸
=:SI

+
N∑
k=1

rtk
(
(tk+1 − tk)− (Btk+1

−Btk)
2
)

︸ ︷︷ ︸
=:SII

.
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The sum SI on the right hand side converges to
∫ T

0
rt dt if |Π| → 0. The

second sum SII converges to zero in L2 if |Π| → 0, as we will now demon-
strate. We use the abbreviations ∆kt := tk+1 − tk and ∆kB := Btk+1

− Btk ;
the terms in SII can now be written as rtk(∆kt − (∆kB)2). Using that rtk
is independent from ∆kt − (∆kB)2 for k = 1, . . . , N (since r ∈ V([0, T ])) as
well as the properties of the increments ∆kB we obtain

E
[
rtk(∆kt− (∆kB)2)

]
= 0,

E
[
rtkrtl(∆kt− (∆kB)2)(∆lt− (∆lB)2)

]
=

{
2E
[
r2tk
]
(∆kt)

2 if k = l,

0 else.

(24)

Therefore E
[
S2
II

]
= 2

∑N
k=1 E

[
r2tk
]
(∆kt)

2 → 0 as |Π| → 0. This demon-
strates, on a heuristic level, that (dBt)

2 = dt.

Proof of Itô’s theorem. The proof of Itô’s theorem basically proceeds by mak-
ing the discussed heuristics rigorous. For the sake of simplicity, we will as-
sume that h does not depend on t. We can also take t in Equation (21)
to be equal to T (the proof for general t ∈ [0, T ] is the same). Further-
more, there are several steps that will be relegated to the exercises. Let
Π = {0 = t0 < . . . < tn = T} a partition of the interval [0, T ]; as before we
write |Π| = maxk=1,...,n tk − tk−1.
Step I: Using Taylor’s theorem, we obtain

YT = Y0 +
n∑

k=1

h(Xtk)− h(Xtk−1
)

= Y0 +
n∑

k=1

∂xh(Xtk)(Xtk −Xtk−1
) (25)

+
1

2

n∑
k=1

(∂2xxh(Xtk) +Rk)(Xtk −Xtk−1
)2, (26)

where for Taylor’s remainder terms we have Sn := maxk|Rk| → 0 almost
surely if |Π| → 0.

Step II: The sum in (25) converges in L2(Ω,A,P) to
∫ T

0
∂xh(Xs) dXs if

|Π| → 0. To show this, according to Exercise 8.2 we need to prove that
the approximating process t →

∑n
k=1 ∂xh(Xtk)1[tk,tk+1)(t) converges in the

|||.||| norm to the process t→ ∂xh(Xt). This holds because X is continuous in
t and ∂xh is continuous and bounded (see Exercise 8.5 for details).
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Step III: We now consider the sum in (26):

1

2

n∑
k=1

(∂2xxh(Xtk) +Rk)(Xtk −Xtk−1
)2

=
1

2

n∑
k=1

∂2xxh(Xtk)(Xtk −Xtk−1
)2 (27)

+
1

2

n∑
k=1

Rk(Xtk −Xtk−1
)2 (28)

To continue we need the following Lemma which we will use several times in
the following:

Lemma 8.5. Suppose Yn, Zn, n = 1, 2, . . . are sequences of nonnegative ran-
dom variables so that E(Zn) ≤ ζ for all n and Yn → 0 almost surely as
n→ ∞. Then YnZn, n = 1, 2, . . . converges to zero in probability.

Proof. For any x, ϵ > 0 we have

P(YnZn ≥ ϵ) = P({YnZn ≥ ϵ} ∩ {Zn < x}) + P({YnZn ≥ ϵ} ∩ {Zn ≥ x})
≤ P(Ynx ≥ ϵ) + P(Zn ≥ x)

≤ P(Ynx ≥ ϵ) +
ζ

x
,

the last inequality following from Markov’s inequality. We may now choose
first x to make the second term small. Since Ynx converges to zero in prob-
ability, we can now render the first term arbitrarily small by chosing n large
enough.

We will use Lemma 8.5 to show that the sum in (28) converges to zero
in probability. Since |

∑n
k=1Rk(Xtk − Xtk−1

)2| ≤ Sn

∑n
k=1(Xtk − Xtk−1

)2

and {Sn, n ∈ N} converges to zero almost surely if |Π| → 0, we can apply
Lemma 8.5 with Yn := Sn and Zn :=

∑n
k=1(Xtk − Xtk−1

)2, if we can show
that E(

∑n
k=1(Xk+1 −Xtk)

2) can be bounded independent of n. This is done
in Exercise 8.6 by direct use of the representation (20) of X.
Step IV: We now consider the term in (25), which we need to split up, using
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the representation of X

=
1

2

n∑
k=1

∂2xxh(Xtk)(Xtk −Xtk−1
)2

=
1

2

n∑
k=1

∂2xxh(Xtk)

(∫ tk+1

tk

gs dBs

)2

(29)

+
1

2

n∑
k=1

∂2xxh(Xtk)

(∫ tk+1

tk

fs ds

)2

(30)

+
n∑

k=1

∂2xxh(Xtk)

∫ tk+1

tk

fs ds

∫ tk+1

tk

gs dBs. (31)

We first show that the terms (30,31) go to zero in probability if |Π| → 0. To
this end, we note that |∂2xxh(.)| ≤ C by assumption. Further, |

∫ tk+1

tk
fs ds| ≤∫ tk+1

tk
|fs| ds. Finally, since the function t→

∫ t

0
gs dBs is uniformly continuous

on [0, T ], we can conclude that Sn := maxk≤n |
∫ tk+1

tk
gs dBs| → 0 a.s. if

|Π| → 0. We therefore find for the third term (31) that

|
n∑

k=1

∂2xxh(Xtk)

∫ tk+1

tk

fs ds

∫ tk+1

tk

gs dBs|

≤ CSn

n∑
k=1

∫ tk+1

tk

|fs| ds ≤ CSn

∫ T

0

|fs| ds,

and we can now apply Lemma 8.5 with Yn := Sn and Zn :=
∫ T

0
|fs| ds. The

same argument works for the term (30) since the function t→
∫ t

0
fs ds, too,

is uniformly continuous on [0, T ].
Step V: In this step, which is the most difficult part, we show that (roughly

speaking) for |Π| very small we have
(∫ tk+1

tk
gs dBs

)2 ∼=
∫ tk+1

tk
g2s ds in the

sum (29). Thus we need to compare the sum (29) with

1

2

n∑
k=1

∂2xxh(Xtk)

∫ tk+1

tk

g2s ds. (32)

But first note that the sum in display (32) converges to 1
2

∫ T

0
∂2xxh(Xs)g

2
s ds

almost surely if |Π| → 0, which is the desired term. To show that the
difference between the sums in displays (32) and (29) converges to zero in
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probability, we introduce the abbreviations

mt :=

∫ t

0

g2s ds, Mt :=

∫ t

0

gs dBs,

δk :=

∫ tk+1

tk

g2s ds, ∆k :=

∫ tk+1

tk

gs dBs.

(33)

With this, we square the difference between the sums in (32) and (29), take
the expectation, and find

E

(
n∑

k=1

∂2xxh(Xtk)

(∫ tk+1

tk

gs dBs

)2

−
n∑

k=1

∂2xxh(Xtk)

∫ tk+1

tk

g2s ds

)2

= E

(
n∑

k=1

∂2xxh(Xtk)(∆
2
k − δk)

)2

=
n∑

k=1

E
(
(∂2xxh(Xtk))

2(∆2
k − δk)

2
)

≤ 2C

(
n∑

k=1

E(∆4
k) +

n∑
k=1

E(δ2k)

)
.

(34)

The second equality follows as in Equation (24) because the terms under the
sum are uncorrelated (see also Exercise 8.7; the important point here is that
the discrete–time stochastic process {

∑n
k=1 ∂

2
xxh(Xtk)(∆

2
k − δk), n ∈ N} is a

Martingale). For the remainder of step V, we assume that |mt| ≤ L, |Mt| ≤ L
for all t ∈ [0, T ] and all ω ∈ Ω. (This restriction will be removed in step VI.)
We may now estimate

∑n
k=1 δ

2
k ≤ maxk δk · mT which goes to zero almost

surely because the process t → mt is uniformly continuous. By bounded
convergence, it also goes to zero in expectation. For the first term on the
last line of display (34) we have (using the Cauchy–Schwartz inequality)

n∑
k=1

E∆4
k ≤ E(max

k
∆2

k ·
n∑

k=1

∆2
k)

≤
√
E(max

k
∆4

k)

√√√√E(
n∑

k=1

∆2
k)

2

(35)

Since maxk ∆
4
k goes to zero almost surely (because the process t → Mt is

uniformly continuous) it also goes to zero in expectation by bounded conver-
gence, and the remaining task is to demonstrate that E(

∑n
k=1∆

2
k)

2 remains
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bounded as |Π| → 0.

E(
n∑

k=1

∆2
k)

2 =
n∑

k=1

n∑
l=1

E∆2
k∆

2
l

=
n∑

k=1

E∆4
k + 2

n∑
k=1

n∑
l=k+1

E∆2
k∆

2
l .

Note that we have encountered the first term on the right hand side al-
ready in Equation (35) but now we merely need to show that this term is
bounded. But this follows from the first inequality in (35) as maxk ∆

2
k ≤ L2

and E(
∑n

k=1∆
2
k) =

∫ T

0
E(g2s) ds (this follows from the definition of the Itô in-

tegral, see Lemma 7.1). For the mixed term, we note that if l > k then
E(∆2

kMtl+1
Mtl) = E(∆2

kM
2
tl
) by the martingale property. Hence

E(∆2
k∆

2
l ) = E(∆2

k(M
2
tl+1

+M2
tl
− 2Mtl+1

Mtl))

= E(∆2
k(M

2
tl+1

−M2
tl
)),

and therefore

n∑
k=1

n∑
l=k+1

E(∆2
k∆

2
l ) =

n∑
k=1

E(∆2
k(M

2
n −M2

k ))

≤ 2L2

n∑
k=1

E(∆2
k)

= 2L2

∫ T

0

E(g2s) ds.

Step VI: We now remove the condition that m and M are bounded and
define

Kn :=
n∑

k=1

∂2xxh(Xtk)(∆
2
k − δk), (36)

This is the quantity investigated in Step V, see Equation (33), but for M,m
bounded. In order to apply the results from Step V, we introduce stopping
times

TL := inf{t ∈ [0, T ], |Mt| ≥ L or |mt| ≥ L},

and let K
(L)
n be as in Equation (36), but withM,m replaced with {Mt∧TL

, t ∈
[0, T ]} and {mt∧TL

, t ∈ [0, T ]}, respectively. Then Step V can be applied to

K
(L)
n sinceM.∧TL

is now a bounded Martingale, with m.∧TL
also bounded (see

Exercises 8.8,8.9 for more details on this step).
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Now

P(|Kn| ≥ c) = P({|Kn| ≥ c} ∩ {TL ≥ T}) + P({|Kn| ≥ c} ∩ {TL < T})
= P({|K(L)

n | ≥ c} ∩ {TL ≥ T}) + P({|Kn| ≥ c} ∩ {TL < T})
≤ P(|K(L)

n | ≥ c) + P(TL < T ),

where we use that K
(L)
n = Kn if m,M do not reach their bounds and the

stopping never happens. But applying Step V to K
(L)
n , the first term goes to

zero with |Π| → 0 while the second term goes to zero if L → ∞ since M,m
have bounded paths with probability one.

Exercises for Section 8

Exercise 8.1. Prove Lemma 8.2. It may help to prove the lemma for the
absolutely continuous part and the martingale part separately, and by taking
Y, Z to be simple processes first. Also note the general fact that if a sequence
{fn} of random variables is measurable with respect to some sigma algebra
G and converges in L2 to some f , then also f is measurable with respect to
G.

Exercise 8.2. Show the following Lemma: If {X} is an Itô process of the
form (18) and {Y (n), n ∈ N} is a sequence of processes in V([0, T ]) so that
Y (n) converges to Y and also Y (n)g converges to Y g in the |||.||| norm, then∫ T

0
Y

(n)
t dXt converges to

∫ T

0
Yt dXt in L2.

Note:

Exercises 8.3,8.4 discuss some applications of the Itô formula, while Exer-
cises 8.5–8.9 fill in bits of the proof of the Itô formula.

Exercise 8.3 (A stochastic differential equation). Let {Bt, t ≥ 0} be Brow-
nian motion on some probability space (Ω,A,P). Find the Itô process
{Xt, t ≥ 0} that solves the stochastic differential equation

dXt = (−B2
t + 2t2B2

t − t)Xtdt− 2tBtXtdBt

with initial conditionX0 = 1. (Hint: Apply Ito’s theorem toXt = exp(ϕ(t, Bt))
and try to find ϕ.)

Exercise 8.4. Let {Bt, t ≥ 0} be Brownian motion on some probability
space (Ω,A,P).
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1. Find a function ϕ so that the process t→ Xt := exp(Bt − ϕ(t)) can be
written as an Itô–process without absolutely continuous part (i.e. up to
a constant, {X} is a stochastic integral).

2. Use the first item to prove that E(Xt) = exp(−ϕ(0)) for all t ≥ 0.

Exercise 8.5. To complete Step II of the proof of the Itô formula, show
that the approximating process t →

∑n
k=1 ∂xh(Xk)1[tk,tk+1)(t) converges in

the |||.||| norm to the process t→ ∂xh(Xt). (Hint: because X is continuous in
t and ∂xh is continuous, this holds pointwise for all t, ω. Now use that ∂xh
is bounded.)

Exercise 8.6. In Step III, show that E(
∑n

k=1(Xk+1−Xk)
2) can be bounded

independent of n. Hint: use the representation (20) of X.

Exercise 8.7 (More on martingales). In this exercise, we find the reason
why the cross terms in Step V of the proof of Itô’s theorem cancel.

1. Let {Mt, t ≥ 0} be a martingale with respect to some filtration {Ft, t ≥
0}, and suppose that E(M2

t ) <∞ for all t ≥ 0. Show that

E

[n−1∑
k=0

Mtk+1
−Mtk

]2 =
n−1∑
k=0

E
[
Mtk+1

−Mtk

]2
for any partition 0 = t0 ≤ . . . ≤ tn ∈ R.

2. Let {Bt, t ≥ 0} Brownian motion, {Ft, t ≥ 0} the filtration generated
by Brownian Motion, and g ∈ V([0, T ]). Put Mt =

∫ t

0
gsdBs and show

that Vt =M2
t −

∫ t

0
g2sds is a martingale w.r.t. {Ft, t ≥ 0}. (Hint: Prove

this first for g ∈ V([0, T ]) simple.)

Exercise 8.8 (Stopped martingales). In this exercise, we learn how a mar-
tingale can be stopped to give a bounded martingale. We will consider the
discrete time case first. You might want to read a little bit on “Optional
Stopping” of martingales (e.g. Breiman).

Let {Mn, n ∈ N} be a martingale in discrete time, with respect to some
filtration {Fn, n ∈ N}. That is E(|Mn|) < ∞, Mn is Fn measurable for all
n ∈ N, and E(Mn|Fk) = Mk if k ≤ n. Further, a stopping time is a random
variable T : Ω → N so that the event {T ≤ k} ∈ Fk for all k ∈ N.

1. Show that the event {T > k} ∈ Fk for all k ∈ N.

2. Prove that MT∧n is Fn-measurable for all k ∈ N. (Hint: Show that
every random variable Y can be written as

∑n
k=1 Y 1{T=k} + Y 1{T>n},

apply this with Y =MT∧n and use the previous item).
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3. Prove that E(MT∧n|Fk) = MT∧k for all k ≤ n. (Hint: Use the repre-
sentation in item 2 with Y =MT∧n −MT∧k).

4. Prove that E(|Mn| ·1{|MT∧n|>x}) ≥ E(|MT∧n| ·1{|MT∧n|>x}) for all x ≥ 0.
(Hint: Use the representation in item 2 with Y = (|Mn| − |MT∧n|) ·
1{|MT∧n|>x}).

Exercise 8.9 (Stopped martingales in continuous time). In this exercise, we
show that the results of the previous exercise hold in continuous time. Let
{Mt, t ≥ 0} be a continuous martingale w.r.t. some filtration {Ft, t ≥ 0}.
Now, a stopping time is a random variable T : Ω → R≥0 so that the event
{T ≤ t} ∈ Ft for all t ≥ 0. You can use without proof that the mapping
ω →MT (ω)∧t is measurable with respect to A.

1. If T is a stopping time that assumes only countably many values, prove
for all t ≥ s ≥ 0 that

E(MT∧t|Fs) =MT∧s

and for all t ≥ 0 and x ≥ 0 that

E(|Mt| · 1{|MT∧t|>x}) ≥ E(|MT∧t| · 1{|MT∧t|>x})

(Hint: Use the results of the previous exercise).

2. If T is a stopping time, show that for each n ∈ N,

S(n) =
k

2n
if

k − 1

2n
< T ≤ k

2n

is a stopping time assuming only countably many values.

3. If T is a stopping time and S(n) defined as in the previous item, show
that MS(n)∧t →MT∧t almost surely if n→ ∞. (Hint: Use continuity.)

4. Conclude from the other items that if T is a stopping time, then
{MT∧t, t ≥ 0} is a martingale w.r.t. {Ft, t ≥ 0}, that is for all 0 ≤ s ≤ t

E(MT∧t|Fs) =MT∧s

(Hint: The idea is to apply the first relation in item 1 to the stopping
times S(n) and take the limit. But item 3 only gives you a.s. conver-
gence. You need the second relation in item 1 to conclude that the
random variablesMS(n)∧t are uniformly integrable; check the references
on probability theory, e.g. Breiman, for this concept.)
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