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Chapter 1

Reminder on probability and
integration

1.1 Sigma algebras and probability measures
Video
Lecture2 V1

starts
about
here.
Videos
Lecture2 V*

cover
Sec-
tions 1.1
to 1.3.

In this section, we discuss probabilities and events, that is the sets we want
to assign probabilities to. We start with some fundamental definitions. Let
Ω, A, B be sets. Familiarity with the notations A ⊂ Ω, A ∪ B, A ∩ B, ∅ is
assumed. Further

A \B := {x ∈ A;x /∈ B}, read “A without B”

A{ := Ω \ A, read “Complement of A in Ω”.

The notation A{ is used if Ω is clear from the context. If the elements of a
set A are again sets, we call A a system or family of sets.

Definition 1.1. Let Ω be a set. A system A of subsets of Ω is called an
algebra if

1. ∅ ∈ A

2. A ∈ A ⇒ A{ ∈ A.

3. A1, . . . , An ∈ A ⇒
⋃n
k=1Ak ∈ A.

Further, A is a sigma algebra if

4. A1, A2, · · · ∈ A ⇒
⋃∞
k=1 Ak ∈ A.
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An algebra formalises the intuition behind “events”. Considering sigma al-
gebras rather than just algebras, that is where 3 holds for countably many
An rather than just finitely many, is important as we have seen in the intro-
duction. Members of A are called events or measurable sets.

Definition 1.2. Let A be an algebra. A function P : A −→ [0, 1] is a
probability if it satisfies

1. Normalisation: P(Ω) = 1

2. Additivity: If A1, . . . , An ∈ A, with Ai ∩ Aj = ∅ for i 6= j, then∑n
k=1 P(Ak) = P(

⋃n
k=1Ak).

3. Continuity at ∅: If A1, A2, . . . ∈ A, with A1 ⊃ A2 ⊃ . . . and ∩Aj = ∅,
then P(Ak)→ 0 for k →∞.

Again, the intuition is clear. The continuity at ∅ is important for techni-
cal reasons, as we have seen in the introduction (the connection will be made
clear in Exercise 1.2). It is possible to construct examples of a probability
on an algebra that is not continuous at ∅. Note that a probability satisfies
P(∅) = 0 (Exercise 1.2).

Definition 1.3. A pair (Ω,A) with Ω a set and A a sigma algebra is called
a measurable space. A triple (Ω,A,P) with Ω a set, A a sigma algebra, and
P a probability is called a probability space.

Note that algebras are very much smaller than sigma algebras, so it should
be much easier to define P just on an algebra (examples later).

Definition 1.4. Let A be an arbitrary family of subsets of Ω. Then σ(A) is
defined as the smallest σ-algebra containing A.

In Exercise 1.1 you will show that this concept is well defined.

Theorem 1.5 (The Measure Extension Theorem, also known as MET or
Hahn-Carathéodory theorem). Let A be an algebra and P a probability on A.
Then there exists a unique probability P̃ on σ(A) with P̃|A = P|A. Further,
if A ∈ σ(A), then for any ε > 0 there exist disjoint sets A1, . . . , An ∈ A with
P̃(A4

⋃n
k=1Ak) ≤ ε.

Sketch of a proof, see e.g. [6]. For any Y ⊂ Ω, put P∗(Y ) = inf
∑∞

k=1 P(Ak),
inf taken over A1, A2, · · · ∈ A, with Y ⊂

⋃
k Ak. Now

1. P∗|A = P|A (“≤” is trivial).
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2. Consider the family of sets M: a set A ⊂ Ω is a member of M if
∀E ⊂ Ω it holds that P∗(E) ≥ P∗(E∩A) +P∗(E \A). One then proves
that M is a σ−algebra with M⊃ A.

3. P∗ is a measure on M.

4. The approximation result is relatively straightforward from the defini-
tion of P∗.

We fix the uniqueness part, which is true under weaker conditions:

Theorem 1.6 (Uniqueness of probabilities). Let A be a family of sets so
that for any two sets A1 ∈ A, A2 ∈ A, also A1 ∩ A2 ∈ A. (This is true for
instance if A is an algebra.) Further, let P,Q be two probabilities on σ(A),
the sigma algebra generated by A. Then if P(A) = Q(A) for any set A ∈ A,
they agree on σ(A).

For a proof see [1], Proposition 2.23. The following theorem ensures that
there exists a probability on the unit interval which on any subinterval is given
by the length of that subinterval. For a proof, see for instance [7], Chapter 7.

Theorem 1.7 (The Lebesgue measure). A halfopen interval on [0, 1] is a
set of the form [a, b[, where 0 ≤ a < b ≤ 1. Let A be the family of sets
which are unions of finitely many disjoint halfopen intervals. Then A is an
algebra. To each A ∈ A we assign λ(A) := the total length of A. This is a
probability on A (the continuity at ∅ requires proof, see for instance [7] for
a somewhat more general statement). It now follows from Theorem 1.5 that
λ can be extended to a probability on σ(A), which is the Borel algebra (see
Definition 1.8).

Exercises for Section 1.1

Exercise 1.1. Let Ω be a set.

1. Show that the power set 2Ω is a sigma algebra.

2. Show that S1∩S2 is a sigma algebra for any two sigma algebras S1,S2.

3. Use the previous two items to show that σ(A) in Definition 1.4 makes
sense, i.e. there exist sigma algebras containing A, and among these
there exists a smallest possible one.
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Exercise 1.2. Let Ω be a set, A an algebra, P : A → [0, 1] a set function
satisfying properties 1 and 2 in Definition 1.2.

1. Show that P(∅) = 0.

2. Show that property 3 in Definition 1.2 is equivalent to sigma additivity:
If A1, A2, . . . is a sequence of sets in A with Ai ∩Aj = ∅ for any i 6= j,
and if

⋃
k Ak ∈ A as well, then

∑∞
k=1 P(Ak) = P(

⋃
k Ak).

3. Show that property 3 in Definition 1.2 is equivalent to continuity from
above: If A1, A2, . . . ∈ A, with A1 ⊃ A2 ⊃ . . . and ∩Aj = A with
A ∈ A, then P(Ak)→ P(A) for k →∞.

4. Show that property 3 in Definition 1.2 is equivalent to continuity from
below: If A1, A2, . . . ∈ A, with A1 ⊂ A2 ⊂ . . . and ∪Aj = A with
A ∈ A, then P(Ak)→ P(A) for k →∞.

5. Show that for any series A1, A2, . . . of disjoint sets in A, we have
P(An)→ 0 (in fact, P(An) must be summable).

1.2 Measurable Functions and Integration

A probability can be seen as a generalised form of volume. As with the
standard volume in Euclidean space, it is possible to integrate functions
against probabilities. We want to define an integral which, to some extent,
can be interchanged with pointwise limits of functions. Let (Ω,A,P) be a
probability space.

Definition 1.8. 1. On R we define the Borel-algebra B as the smallest
σ−algebra containing all open sets (see 1.4).

2. A function f : Ω −→ R is measurable or a random variable if f−1(B) ∈
A for all B ∈ B.

The definition of a random variable guarantees that sets such as {ω ∈
Ω; a < f(ω) < b} = f−1(]a, b[) can be assigned a probability to. To prove
that a function is measurable, it is enough to check that {ω; f(ω) > a} ∈ A
for any a ∈ R (see Exercise 1.4).

Theorem 1.9. 1. If fn, n ∈ N are random variables, so are the pointwise
lim sup fn, lim inf fn, lim fn (if the last exists).

2. If f (k), k = 1, . . . , d are random variables and φ : Rd → R is a contin-
uous function, then the function ψ : ω → φ(f (1)(ω), . . . , f (d)(ω)) is a
random variable.
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Proof. To prove item 1, pick a ∈ R. Then {ω; supk fn+k(ω) > a} =
⋃
k{ω; fn+k(ω) >

a} ∈ A, so supk fn+k is measurable for every n by the remark after Defini-
tion 1.8. infk fn+k is similar (take

⋂
k{. . . }). But

lim inf
n

fn = sup
n

inf
k
fn+k,

lim sup
n

fn = inf
n

sup
k
fn+k.

So they are measurable. If limn fn exists, it is equal to lim sup and lim inf.
To prove the second item, we note that the statement is true if f (1), . . . , f (d)

are simple functions. Further, we will show later on that every nonnegative
random variable is the pointwise limit of simple functions, and this is easily
seen to extend to general (not necessarily nonnegative) random variables.
We can conclude that ψ is the pointwise limit of simple functions and thus
a random variable by item 1.

The integral

We want to define an integral
∫
f dP for random variables, which we will

also write as E(f), generalising the expectation value.
But first a remark about limits and increasing sequences. A sequence

{xn, n ∈ N} of real numbers is called increasing if x1 ≤ x2 ≤ . . .. If {xn}
is increasing, then xn ↑ x means that x = supn xn. Note that x might be
infinite, but if it is finite, we have x = limn→∞ xn. (We stress that the limit
of a sequence is always finite per definition.) If {xn} is not increasing though,
then xn ↑ x is meaningless. In general, we will write xn → x as a shorthand
for x = limn xn.

For a sequence {fn, n ∈ N} of real valued functions on some set Ω, the
limits limn fn = f and fn → f are understood pointwise (unless otherwise
stated), that is limn{fn(ω)} = f(ω) and also fn(ω)→ f(ω) for every ω ∈ Ω.
The sequence {fn} is called increasing if {fn(ω), n ∈ N} is an increasing
sequence for every ω ∈ Ω, and we write fn ↑ f if fn(ω) ↑ f(ω) for every
ω ∈ Ω.

The integral of a random variable can be constructed along the following
steps. See [9, 6, 2, 3] for details.

1. For A ∈ A, define the indicator function

1A(ω) =

{
1 if ω ∈ A
0 else.
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2. A random variable f : Ω → R is simple if it assumes finitely many
values, say {f1, . . . , fn} ⊂ R. We can write

f =
k∑
l=1

fl · 1Bl

with Bl = f−1({fl}) for all l = 1, . . . k. Note that Bl ∈ A for all
l = 1, . . . k because f is assumed measurable.

3. If f1, . . . , fk are simple functions and φ : Rk → R an arbitrary function,
then the function ω → φ(f1(ω), . . . , fk(ω)) is simple. In particular, with
f, g simple, so are f · g, αf + βg, α, β ∈ R, max{f, g} and |f | (these
operations are understood pointwise).

4. Every nonnegative random variable f : Ω → R≥0 is the pointwise
monotone increasing limit of simple functions.

Proof. Define gn : R≥0 → R≥0

gn(x) =


k + l

2n
if k + l

2n
< x ≤ k + l+1

2n

for k = 1 . . . n− 1, l = 0 . . . 2n − 1

n if x > n.

Clearly gn(x) ↑ x, ∀ x ∈ R≥0. Now put fn := gn ◦ f , then clearly fn is
simple and fn ↑ f .

5. For f simple, define ∫
f dP =

n∑
k=1

fkP(Bk).

6. Prove that the integral is linear, monotone (i.e. f ≤ g ⇒
∫
f dP ≤∫

g dP) and |
∫
f dP| ≤

∫
|f | dP.

7. If f is a nonnegative random variable and {fn} is a sequence of simple
functions and fn ↑ f (e.g. as in step 4), then {

∫
fn dP} is an increasing

sequence of real numbers and

sup
n

∫
fn dP = sup

g

∫
g dP, (1.1)

where “supg” is over all simple g with f ≥ g. This will be proved in
exercise 1.5. We define

∫
f dP as either side of Equation (1.1). This

might be a nonnegative real number or ∞. But if
∫
f dP < ∞, then∫

fn dP→
∫
f dP for n→∞.
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8. For a general random variable f : Ω → R, put f+ := max{f, 0},
f− := f+ − f (now f+, f− are nonnegative) and set∫

f dP :=

∫
f+ dP−

∫
f− dP

if at least one them is finite. If both are finite, f is called integrable.

We stress that the integral of a nonegative random variable is always well
defined (but maybe infinite). In particular

∫
|f | dP is always well defined for

any random variable f , and f is integrable if and only if
∫
|f | dP <∞.

Lemma 1.10 (Properties of the integral). The integral enjoys the properties
in step (6) if both

∫
|f |dP <∞ and

∫
|g| dP <∞.

Proof. The linearity and the monotonicity for integrals over nonnegative sim-
ple functions is assumed proved in step 6. The additivity for integrals over
nonnegative functions f, g is shown by observing that if fn, gn, n ∈ N are
nonnegative simple functions with fn ↑ f and gn ↑ g, then fn + gn ↑ f + g
with fn + gn nonnegative and simple. The additivity of the integral in this
case then follows from the additivity of the integral for nonnegative simple
functions and step 7 above. To show the monotonicity for integrals over non-
negative functions f ≤ g, we take nonnegative simple functions fn, gn, n ∈ N
with fn ↑ f and gn ↑ g. Now note that hn = max{fn, gn} is also nonnegative
and simple with hn ↑ g, and further fn ≤ hn. It follows from step 7 that∫
f dP ≤

∫
g dP. To prove the additivity in the general case, observe first

that |f + g| ≤ |f |+ |g| and hence
∫
|f + g| dP <∞ by the monotonicity for

nonnegative functions. From the identity

(f + g)+ + f− + g− = (f + g)− + f+ + g+

we obtain by the additivity for nonnegative random variables that∫
(f + g)+ dP+

∫
f− dP+

∫
g− dP =

∫
(f + g)− dP+

∫
f+ dP+

∫
g+ dP.

Note that by integrability, all the terms in this identity are finite. Rear-
ranging and using the definition of the integral for general f and g gives the
result. To prove the monotonicity in the general case, we use the linearity

8



(in the line marked with (∗)) to obtain∫
f dP =

∫
f+ dP−

∫
f− dP

≤
∫
f+ dP +

∫
f− dP

=

∫
(f+ + f−) dP (∗)

=

∫
|f | dP.

Similarly, one proves that −
∫
f dP ≤

∫
|f | dP which gives the result.

Interchange of integral with a.s. limits

An important property of the integral is the relatively nice behaviour of the
integral under pointwise limits (as opposed to using the Riemann integral).

Theorem 1.11 (Monotone Convergence). Suppose {fn, n ∈ N} is an in-
creasing sequence of nonnegative random variable, and fn ↑ f . Then∫

fn dP ↑
∫
f dP. (1.2)

Proof. According to step 4, for every n ∈ N there exists a sequence {fn,m,m ∈
N} of simple nonegative random variable with limm→∞ fn,m = fn. Let gn =
max{fk,l, k, l ≤ n}. This is a increasing sequence of simple functions. On the
one hand,

gn ≤ fn ≤ f for all n. (1.3)

On the other hand if we fix ε > 0 and ω ∈ Ω we can find n and m ≥ n so
that

f(ω) ≤ fn(ω) + ε/2

fn(ω) ≤ fn,m(ω) + ε/2

and since m ≥ n we have
fn,m ≤ gm.

Taking these three estimates together gives

f ≤ gm + ε.

This fact together with the estimate (1.3) proves

gn ↑ f.

The result now follows from the definition of the integral in Step 7.
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Note that the right hand side in Equation (1.2) might be infinity. Further,
the theorem remains true if the function f assumes the value ∞, but we
haven’t quite defined the integral for such functions (the extension is not
difficult). Also, it actually suffices that

∫
fndP ≥ 0 rather than fn ≥ 0 for

the theorem to hold, see [3].

Theorem 1.12 (Fatou Lemma). For {fn} a sequence of nonnegative random
variables we have ∫

lim inf fn dP ≤ lim inf

∫
fn dP. (1.4)

Before proving this, a little example for illustration.

Example 1.13. We will later see that on Ω = [0, 1] equipped with the Borel
algebra (i.e. the sigma algebra generated by all open sets on [0, 1]) one can
define a probability by the formula P(A) =

∫
A

dx. The integral with respect
to P is of course the standard Lebesgue integral on the unit interval (or the
Riemann integral if the integrand is continuous). Define

fn(x) = n · 1[0, 1
n

](x).

Now lim inf fn = lim fn = 0, and hence the left hand side of Equation (1.4)
is zero. But

∫
fn(x) dx = 1 and therefore lim inf

∫
fn(x) dx = 1, hence

the right hand side is one. This helps me to remember which direction
the inequality goes in Fatou’s lemma. Further, the example demonstrates
that the integral is in general not exchangeable with pointwise limits. Some
additional condition (like monotonicity in Theorem 1.11) is necessary. A
different but still sufficient condition will be discussed presently.

Proof of Fatou’s Lemma. Since

inf
k
fn+k ≤ fn+l for all l ∈ N,

we get by integrating that∫
inf
k
fn+k dP ≤

∫
fn+l dP for all l ∈ N,

so we take the inf over l and obtain∫
inf
k
fn+k dP ≤ inf

k

∫
fn+k dP. (1.5)
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We now want to take the limit n→∞ on both sides of this inequality. Note
that infk fn+k is a monotone sequence in n of nonegative functions, and hence

lim
n

∫
inf
k
fn+k dP =

∫
lim
n

inf
k
fn+k dP =

∫
lim inf

n
fn+k dP

by monotone convergence and the definition of lim inf. On the right hand
side, taking the limit simply gives lim infn

∫
fn dP.

The next theorem shows that the integral can be interchanged with point-
wise limits provided the sequence of functions is bounded. The boundedness
condition replaces the monotonicity condition in the Monotone Convergence
Theorem (note that the sequence in Example 1.13 is neither bounded nor
monotone).

Theorem 1.14 (Bounded Convergence). Let {fn, n ∈ N} be a sequence of
random variable with |fn| ≤ C, and fn → f for n→∞. Then f is integrable
and

∫
fn dP −→

∫
f dP.

A more general version of this theorem goes under the name Dominated
Convergence Theorem, in which the condition |fn| ≤ C is replaced with
|fn| ≤ g where g is an integrable function. The conclusions are the same.

Proof. Clearly |f | ≤ C as well so we get
∫
|f | dP ≤ C, proving that f is

integrable. Since fn + C, and f + C are nonnegative, we can apply Fatou
and get (after subtracting the constant again from both sides)∫

f dP ≤ lim inf
n

∫
fn dP.

The same can be done with −fn and −f ; we get∫
−f dP ≤ lim inf

n

∫
−fn dP = − lim sup

n

∫
fn dP,

or after multiplying with −1:∫
f dP ≥ lim sup

n

∫
fn dP.

In summary, we have shown that

lim inf
n

∫
fn dP ≥

∫
f dP ≥ lim sup

n

∫
fn dP,

completing the proof.
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Definition 1.15 (Equivalence of random variables).

1. Let f1, f2 : Ω→ R functions (not necessarily measurable). We say

f1 = f2 almost surely (a.s.)

or f1 and f2 are equivalent if f1(ω) = f2(ω) for all ω in a measurable set
Ω1 with P(Ω1) = 1. (One can check that this is indeed an equivalence
relation.)

2. If f is an integrable random variable, we can put∫
f̂ dP :=

∫
f dP,

for any f̂ which is equivalent to f .

3. For integrable random variable f we define the L1–norm by ‖f‖1 =∫
f dP.

The L1–norm is in fact not a norm on functions, only a pseudo–norm:
‖f‖1 = 0 does not quite imply f = 0. But by Exercise 1.6, f = 0 almost
surely, and therefore ‖f − g‖ = 0 means that f and g are equivalent. So
strictly speaking, ‖.‖1 is a norm on equivalence classes of functions.

Definition 1.16 (The space L1).

1. The space of integrable functions (or strictly speaking, their equivalence
classes) with the norm ‖.‖1 is denoted as L1(Ω,A,P) or just L1 if the
probability space is clear from the context.

2. If {fn} is a sequence of integrable random variables and f is another
random variable so that ‖fn − f‖1 → 0 as n → ∞, we will say that

{fn} converges to f in L1 or write fn
L1→ f .

Theorem 1.17 (Completeness of L1). Suppose {fn} is a sequence of random
variable which is Cauchy with respect to ‖·‖1. Then there exists an integrable
random variable f with fn → f in L1. Further, if f ′ is another random
variable with this property, then f = f ′ a.s.

This result is one of the main drivers behind the development of measure
and integration. With regards to Theorem 1.17 and also Definition 1.16,2, it
has to be kept in mind that L1 limits need not be unique; a sequence {fn}
of random variables can converge in L1 against two different functions f and
f ′ at the same time, however, f and f ′ will be equivalent.
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Exercises for Section 1.2

Exercise 1.3. In this exercise, we fill in some details to Section 1.2. Let
(Ω,A) be a measurable space (i.e. a set Ω with a sigma algebra A). Consider
a function f : (Ω,A)→ (R,B), where B is the Borel algebra.

1. Consider the family A0 of all sets of the form f−1(B) where B ∈ B.
Show that A0 is a sigma algebra on Ω. (A0 is referred to as the sigma
algebra generated by f .)

2. Consider the family B0 of all sets B ⊂ R so that f−1(B) ∈ A. Show
that B0 is a sigma algebra on R.

3. Conclude that f is a random variable if B0 from the previous item
contains B.

4. Use the previous item and Exercise 1.4 to prove the remark after Def-
inition 1.8: f is a random variable if {ω ∈ Ω; f(ω) > a} ∈ A for any
a ∈ R.

Exercise 1.4. In this exercise1, we learn more about the Borel algebra B on
R. (Recall that B is the smallest sigma algebra which contains all open sets.)
Show that B is actually the smallest sigma algebra which contains all sets of
the form ]a,∞] for any a ∈ R. You need to prove that if B̃ is a sigma algebra
containing all sets of the form ]a,∞] for any a ∈ R, then B̃ must contain all
open sets. Proceed along the following steps:

1. Show that B̃ contains all left open right closed intervals, i.e. sets of the
form ]a, b] with a < b.

2. Show that B̃ contains all open intervals (Hint: ]a, b[= ∪∞n=1]a, b− 1
n
]).

3. Show that B̃ contains countable unions of open intervals.

4. Show that every open set in R is the union of countably many open
intervals (this is difficult, so skip if you want), and conclude that B̃
contains every open set.

Exercise 1.5. In this exercise, we will prove item (7) in the construction of
the integral.

1This exercise might require bookwork. Check for example [Dud89]
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1. Because the fn are an increasing sequence of functions, the same is true
for the real numbers

∫
fn dP. Therefore c = limn

∫
fn dP exists. Show

that the following statement implies item (7): If g is simple and g ≤ f ,
then ∫

g dP ≤ c. (1.6)

The following steps will establish this statement.

2. Set ε > 0 and define the sets Mn = {ω ∈ Ω; fn(ω) > g(ω) − ε}.
Show that these sets are measurable, that M1 ⊂ M2 ⊂ . . ., and that
∪∞n=1Mn = Ω.

3. Justify all “≥” signs in the following:∫
fn dP ≥

∫
fn · 1Mn dP ≥

∫
g · 1Mn dP− εP(Mn) (1.7)

4. Use sigma additivity to establish that P(Mn) → 1, and that
∫
g ·

1Mn dP →
∫
g dP (remember that g is simple). Using this in Equa-

tion (1.7) gives

c = lim
n

∫
fn dP ≥

∫
g dP− ε

for any ε, establishing (1.6).

Exercise 1.6. Show that if f is a nonnegative random variable with
∫
f dP =

0, then f = 0 almost surely, that is f(ω) = 0 for all ω in a set Ω1 with
P(Ω1) = 1. Hint: Consider the sets An = {ω : f(ω) > 1/n} and show that
n · f ≥ 1An to get an upper bound on P(An). What can you now say about
∪∞n=1An?

Exercise 1.7. In this exercise, we will introduce the concept of densities. Let
(Ω,A,P) be a probability space. Let f be a nonnegative random variable,
and suppose that

∫
f dP = 1. On A, define the set function F by

F (A) =

∫
1A · f dP.

1. Show that F is a probability on (Ω,A). To prove that F is sigma
additive, you need to invoke the Monotone Convergence Theorem.

2. Show that P(A) = 0 implies F (A) = 0. (Attention: this is not im-
mediately obvious; assume first that f is simple, then use Monotone
Convergence).
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We will say that f is a density for F . The next item will show that densities
are (essentially) unique.

3. Using Exercise 1.6, show that if two densities f and g give rise to the
same probability F , then f = g almost everywhere. Hint: let h = f−g
and consider h+, h−.

1.3 Transformations

This short chapter is devoted to transformations, the pushforward of proba-
bilities and the transformation formula. The material is important for later
parts of this chapter but also for dynamical systems.

Let (Ωk,Ak), k = 1, 2 be two measurable spaces. In this context, a
mapping T : Ω1 → Ω2 is defined as measurable if T−1(A) ∈ A1 for all
A ∈ A2. Note that random variables as defined 1.8 are just a special case of
this, namely with (Ω2,A2) = (R,B). Let P be a measure on (Ω1,A1). Then
the formula T∗P(A) := P(T−1(A)) for all A ∈ A2 defines a probability T∗P
on (Ω2,A2) called the pushforward of P under T . That the pushforward is
indeed a probability will be proved in Exercise 1.8.

Theorem 1.18 (Transformation formula). If f : (Ω2,A2) → (R,B) is a
random variable, either positive or integrable w.r.t. T∗P, then∫

Ω2

f d(T∗P) =

∫
Ω1

f ◦ T dP.

Proof. We prove this for simple functions first. If f =
∑n

k=1 fk ·1Ak
, we have

on the left hand side∫
Ω2

f d(T∗P) =
n∑
k=1

fk · P(T−1(Ak)).

On the right hand side we obtain∫
Ω2

f ◦ T dP =
n∑
k=1

fk ·
∫
1Ak
◦ T dP

=
n∑
k=1

fk ·
∫
1T−1(Ak) dP =

n∑
k=1

fk · P(T−1(Ak)),

establishing the transformation formula for simple functions. The rest of the
proof is covered in Exercise 1.9
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Exercises for Section 1.3

Exercise 1.8. This exercise fills in several details to the beginning of Sec-
tion 1.3 in preparation of the transformation formula 1.18. Let (Ωk,Ak), k =
1, 2 be measurable spaces, P is a measure on (Ω1,A1). Further, T : (Ω1,A1)→
(Ω2,A2) is a measurable mapping and f : (Ω2,A2)→ (R,B) a random vari-
able.

1. Show that the pushforward T∗P defined by T∗P(A) := P(T−1(A)) for
all A ∈ A2 is a probability on the sigma algebra A2.

2. Show that f ◦ T : (Ω1,A1)→ (R,B) is a random variable.

3. If S : (Ω0,A0) → (Ω1,A1) is another measurable mapping, show that
T ◦ S : (Ω0,A0)→ (Ω2,A2) is measurable. (Hint: the previous item is
a special case of this statement.)

Exercise 1.9. In this exercise, we actually prove the transformation formla 1.18.
The same setup is as in theorem 1.18, and we assume it has been proved for
simple functions.

1. Use the Monotone Convergence Theorem and the fact that the push-
forward is a probability to prove theorem 1.18 in the case that f ≥ 0.

2. For integrable f prove theorem 1.18 by considering f+ and f− and using
the previous item.
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1.4 Products spaces and product measures,

Fubini-Theorem

Consider a sequence (Ωk,Ak), k ∈ N of measurable spaces. We define the
Cartesian Product as

Ω :=
∏
k∈N

Ωk := sequences (ω1, ω2, . . . ) with ωk ∈ Ωk for all k ∈ N. (1.8)

A sigma algebra can be introduced on Ω as follows. A finite dimensional
rectangle is a set of the form

{ω ∈ Ω;ωk ∈ Ak, k ∈ N},

where Ak ∈ Ak for all k ∈ N, and Ak 6= Ωk for only finitely many k (hence
the term “finite dimensional”). Now let A := smallest sigma algebra on

16



Ω containing all finite dimensional rectangles. Notation A :=
⊗

k∈NAk.
The measurable space (Ω,A) is called the measurable product of (Ωk,Ak),
k ∈ N. A carthesian product over finitely many factors (Ωk,Ak), k = 1 . . . K
is defined in the same way (the requirement that Ak 6= Ωk for only finitely
many k in the definition of finite dimensional rectangles is of course not
needed then). Video
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here.

Example 1.19. Let B(R) be the Borel algebra on R (see Def. 1.8). We
define

R∞ :=
∏
k∈N

R, B∞ :=
⊗
k∈N

B(R),

and similarly

Rd :=
d∏

k=1

R, Bd :=
d⊗

k=1

B(R),

using (R,B(R)) for all factors. Let (Ω,A) be another measurable space. A
mapping

f : (Ω,A) −→ (R∞,B∞), f(ω) := (f1(ω), f2(ω), . . . )

is measurable if and only if each component fk is a random variable.

Proof. Exercise 1.10.

Definition 1.20. 1. For any finite I ⊂ N, we define the projections

πI :
∏
k∈N

Ωk −→
∏
k∈I

Ωk

(ω1, ω2, . . . ) −→ (ωk1 , . . . , ωkN ),

where k1 < · · · < kN ∈ I.

2. If P is a probability on (
∏

k∈I Ωk,
⊗

k∈I Ak) we define the I-marginal
as PI := πI ∗ P, which is a probability on (

∏
k∈I Ωk,

⊗
k∈I Ak). Video
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3. P is called a product probability if for every finite dimensional rectangle

A = {ω ∈ Ω;ωk ∈ Ak; k ∈ N}

we have
P(A) =

∏
k∈N

P{k}(Ak), (1.9)
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where P{k} is the marginal for I = {k}. Note that in Equation 1.9,
only finitely many factors are 6= 1. In particular for finite products

Ω = Ω1 × · · · × ΩN , A = A1 ⊗ · · · ⊗ AN

we have that for A1 ∈ A1, . . . , AN ∈ AN

P(A1 × . . . AN) = P{1}(A1) · · · · · P{N}(AN).
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Theorem 1.21. Let P,Q two probabilities on (Ω,A) = (
∏

k∈N Ωk,
⊗

k∈NAk)
with all marginals being the same. Then

P = Q.

Proof. The condition just means that P = Q on finite dimensional rectangles.
The rest of the proof is Exercise 1.12.
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Probably the most important fact about product probabilities (with finitely
many factors) is that integrals over such probabilites can be calculated iter-
atively, and the order of integration does not matter. This is the following

Theorem 1.22 (Fubini-Tonelli theorem). Consider (Ω,A) = (Ω1×Ω2,A1⊗
A2) with product measure P = P1 ⊗ P2. Then for every random variable
f : Ω→ R,

1. For all ω1 ∈ Ω1 the function ω2 → f(ω1, ω2) is measurable.

2. If f ≥ 0 or if for all ω1 ∈ Ω1 the function ω2 → f(ω1, ω2) is P2-
integrable, then the function ω1 →

∫
f(ω1, ω2) · dP2(ω2) is measurable.

3. If f ≥ 0 then,∫
f dP =

∫
[

∫
f(ω1, ω2) · dP2(ω2)]dP1(ω1). (1.10)

4. If f is P integrable, then the function ω1 →
∫
f(ω1, ω2) · dP2(ω2) is

P1-integrable and∫
f dP =

∫
[

∫
f(ω1, ω2) · dP2(ω2)]dP1(ω1). (1.11)

To prove this theorem, we will use two lemmata.

Lemma 1.23. Items (1,2) hold for indicators 1A, A ∈ A.

18



Lemma 1.24.

P(A) =

∫
1A dP =

∫
[

∫
1A(ω1, ω2) · dP1]dP2. (1.12)

Proof of Lemma 1.23. Put D := set of all A ⊂ Ω so that (a),(b) hold for
indicators 1A. If A = A1×A2, A1 ∈ A1, A2 ∈ A2, then 1A = 1A1(ω1)·1A2(ω2)
and (a, b) hold trivially. Thus D ⊃ all cyclinders.

Now let A1 ⊂ A2 ⊂ · · · ∈ D. Then

1Ak
(ω1, ω2) ↑ 1⋃∞

k=1 Ak
(ω1, ω2) ∀(ω1, ω2) ∈ Ω,

so in particular for ω1 fixed. Hence

ω2 −→ 1⋃∞
k=1 Ak

(ω1, ω2) is measurable.

Further

ω1 →
∫
1⋃∞

k=1
(ω1, ω2)dP2 =

∫
lim
n
1Ak

(ω1, ω2) dP2

Monot. conv.
= lim

n

∫
1Ak

(ω1, ω2) dP(ω2) (measurable!)

So
⋃∞
k=1Ak ∈ D. If A1 ⊃ A2 ⊃ · · · ∈ D, prove that

⋂∞
k=1Ak ∈ D along

similar lines, using dominated convergence. We have shown that D contains
all finite dimensional rectangles and is a monotone class. A family D is a
monotone class if

1. A1 ⊂ A2 ⊂ · · · ∈ D ⇒
⋃
k Ak ∈ D

2. A1 ⊃ A2 ⊃ · · · ∈ D ⇒
⋂
k Ak ∈ D.

This implies that D ⊃ A.

Proof of Lemma 1.24. It is trivial to verify 1.24 for finite dimensional rect-
angles. However, the right hand side makes sense for any A ∈ A and forms
a probability (σ-additivity comes from monotone convergence). We thus get
Lemma 1.24 by the MET.

Completion of proof of Theorem 1.22. We have shown that 1.22 holds for in-
dicators and clearly also for simple functions. If f ≥ 0 random variable, take
fn ↑ f , fn simple. Now the functions

ω2 −→ fn(ω1, ω2) and ω1 −→
∫
fn(ω1, ω2)dP2,
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respectively, are measurable and converge monotonically to

ω2 −→ f(ω1, ω2) ∀ω1 and ω1 −→
∫
f(ω1, ω2) dP2 ∀ω2,

respectively (the second by monotone convergence). Finally, because
∫
fn dP =∫

[fn(ω1, ω2) dP2] dP1 and both sides converge by monotone convergence to∫
f dP and

∫
[
∫
f(ω1, ω2) dP2] dP1, respectively, Theorem 1.22 is proved for

random variable f ≥ 0.
If f is integrable, Theorem 1.22 holds for f+ and f−. The only thing that

needs proving is that

ω1 −→
∫
f(ω1, ω2) dP2 =

∫
f+(ω1, ω2) dP2 −

∫
f−(ω1, ω2) dP2 (1.13)

is well defined (no∞−∞ situation occurs). LetN+ = {ω1 ∈ Ω1;
∫
f+(ω1, ·) dP2 =

∞}. We must have P1(N+) = 0, because

∞ >

∫
f+ dP =

∫
[

∫
f+(ω1, ω2) dP2] dP1.

Similarly for N− = {ω1 ∈ Ω1;
∫
f−(ω1, ·) dP2 = ∞}. So 1.13 is well defined

apart from ω1 ∈ N+ ∩N−. which has P(N+ ∩N−) = 0.

Remark 1. 1. The integrability condition cannot be omitted. It’s not hard
to find cases where

∫
|f | dP =∞ and then both sides of Equation (1.11)

are well defined but fail to be equal.

2. To verify that f is integrable, one might use item 3 of the Fubini–Tonelli
theorem which says that∫

|f | dP =

∫ ( ∫
|f |(ω1, ω2) dP2(ω2)

)
dP1(ω1),

even if one side (and then also the other) is infinite.

3. One can use the right hand side of Equation (1.12) to define P from
the marginals. Indeed, we have shown that the right hand side is well
defined for A ∈ A and is σ−additive. This allows to invoke the MET
to show that∫

[

∫
1A(ω1, ω2) dP1] dP2 =

∫
[

∫
1A(ω1, ω2) dP2] dP1.

4. The Fubini-Tonelli theorem extends to finite products by induction.
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Exercises for Section 1.4

Exercise 1.10. Prove the statement in Example 1.19.

Exercise 1.11. Show that the family A of sets that are finite unions of
finite dimensional rectangles is an algebra of subsets of

∏
k∈N Ωk. (Hint: The

complement is the tricky bit. Start with assuming (and later showing) that
if A and B are finite dimensional rectangles, then A \ B is a finite union of
finite dimensional rectangles.)

Exercise 1.12. Demonstrate Theorem 1.21. (Hint: Show that the inter-
section of two finite dimensional rectangles is a finite dimensional rectangle.
You can then use without proof the Theorem 1.6.)

Exercise 1.13 (Assessed Exercise 1). Setup is as in Section 1.4

1. Consider a set of the form

B = {ω;ωk ∈ Ak for all k ∈ N},

with Ak ∈ Ak for all k ∈ N. (B is not necessarily a finite dimensional
rectangle!) Show that B is nonetheless measurable.

2. Demonstrate that for a product probability P (see Definition 1.20,
item 3) and withB as in the previous item, P(B) = limn→∞

∏n
k=1 Pk(Ak).

Exercise 1.14. Setup is as in Section 1.4. We might define the Borel algebra
B(Rd) for d ∈ N as the smallest sigma algebra containing all open sets of Rd,
similar to our definition of B(R) in Definition 1.8. Show that B(Rd) = Bd
with Bd defined in Example 1.19. (Hint: Use Exercise 1.4.)

1.5 Distributions and independence
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In this section, we will change notation somewhat, bringing it closer to stan-
dard notation in probability theory. Further, we introduce the important
concept of independence.

Let (Ω,A,P) be a probability space. Random variables are measurable
functions with values in (Rd,Bd), where from now on, d ∈ N ∪ {∞}. That
is d = ∞ is permitted unless explicitly stated otherwise. Further, random
variables are denoted by capital letters:

X : (Ω,A)→ (Rd,Bd).

If d = 1, we put E(X) :=
∫
X dP (“expectation value”). If d < ∞, E(X) is

taken component wise.
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Definition 1.25. 1. The distribution of a random variable X : (Ω,A)→
(Rd,Bd) is defined as PX := X∗P.

2. An I-marginal of X is the distribution XI := (Xk1 , . . . , XkN ), where
I = {k1 < · · · < kN}.
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Note that an I-marginal of X according to Definition 1.25 is the same as
an I-marginal of PX according to Definition 1.20 (Exercise 1.16).

Lemma 1.26. Two random variables

X, Y : Ω←→ Rd

have the same distribution iff they have the same I-marginals.

Proof. If d is finite, then the I-marginal for I = {1, . . . , d} is actually the
distribution. If d is infinite, let A = {x ∈ R∞;xnk

∈ Ak, nk ∈ I} be a finite
dimensional rectangle for some I = {n1, . . . , nk} ⊂ N and some A1, . . . , Ak ∈
B1. Then

PXI
(A1 × · · · × Ak) = P({ω;Xnk

∈ Ak, nk ∈ I})
= P(X ∈ A) = PX(A).

(1.14)

and the same for Y . If the I-marginals agree, then Equation (1.14) shows
that PX and PY agree on finite dimensional rectangles, so Theorem 1.21 gives
PX = PY . If on the other hand PX = PY , then Equation (1.14) (read from
right to left) shows that the I-marginals agree.
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Lemma 1.27. Suppose that X : Ω→ Rd is a random variable and f : Rd →
R a measurable function (with respect to the Borel algebra on both the domain
and range). Further, suppose that f ◦X is integrable. Then

E(f ◦X) =

∫
Rd

f(x) dPX(x).

Proof. This is essentially the transformation formula, see Exercise 1.15.

In Exercise 1.17, this result will be extended using densities.
The following lemma might sound abstract, but its interpretation is very

simple. Suppose we observe data from the real world, and we want to model
them as random variables, say X1, . . . , Xd, each of them real valued. But
“modelling” almost always means to merely specify the distribution of those
random variables; the probability space (Ω,A,P) on which these random
variables live, and in fact the variables themselves are usually not specified.
The following lemma simply says that this is usually not a problem, be-
cause there is a canonical choice for these missing ingredients, the so–called
coordinate representation, which can be found in the proof.
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Lemma 1.28. If µ is a probability on (Rd,Bd), then there exists a probability
space (Ω,A,P) and a measurable random variable X : Ω −→: Rd so that
µ = PX .

Proof. Take Ω = Rd, A = Bd, P = µ and X(ω) = ω.

Independence
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This paragraph has only two definitions. Some facts about independent
random variables will be explored in the exercises.

Definition 1.29. Let X1, X2, . . . random variables with values in R. They
are called independent if any I marginal is a product probability. This means
that for any N ∈ N, any index set I = {k1 < . . . < kN} and any selection of
sets B1, . . . , BN in B(R) the relation

P(Xk1 ∈ B1, . . . , XkN ∈ BN) = P(Xk1 ∈ B1) · . . . · P(XkN ∈ BN)

holds.

Definition 1.30. For any random variable X : Ω → Rd, d < ∞ define the
Covariance matrix

Cov(X) = E([Xi − EXi][Xj − EXj])i,j

and the variance

V(X) = tr[Cov(X)] = E([X − EX]2)

(both are finite if
∑n

k=1X
2
k is integrable). Finally, if Y : Ω −→ Rd′ random

variable (d′ <∞), then

Cov(X, Y ) = E([Xi − EXi][Yj − EYj]) ∈ Rd×d′ .

It is easy to see that Cov(X, Y ) = Cov(Y,X)T . Note that Cov(X) is
symmetric and nonnegative definite, because

vTCov(X)v = E
((
vT (X − E (X))

)2
)
≥ 0.

We write A ≥ 0 if A ∈ Rd×d symmetric nonnegative definite. Also, A ≥ B
means A,B symmetric and A−B ≥ 0. Similarly, “>” means positive definite.
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Exercises for Section 1.5

Exercise 1.15. In the setup of Lemma 1.27, show that f ◦ X is a random
variable and prove the formula.

Exercise 1.16. For PX the distribution of some X : (Ω,A,P) → (Rd,Bd),
we have defined the concept of I–marginals in Definition 1.25. Show that
Definition 1.20 however is also applicable and gives the same concept of I–
marginals. (Hint: this is used in the proof of Lemma 1.26).

Exercise 1.17. In this exercise, d is finite. Consider a random variable
X : Ω→ Rd with distribution PX which has a density p : (Rd,Bd)→ (R≥0,B)
with respect to the n–dimensional Lebesgue measure.

1. Let f : (Rd,Bd)→ (R,B) be integrable with respect to PX . Show that∫
f(x) dPX(x) =

∫
f(x)p(x) dx

Start with f being a simple function and proceed as usual. (Note that
this extends Lemma 1.27)

2. Show that the marginals of µ have densities as well. Hint: For example
µ{1} has the density

p1(x1) =

∫
Rd−1

p(x1, x2, . . . , xd) dx2 . . . dxd.

Exercise 1.18. A little bit about independence.

1. Show that random variables X1, X2, . . . with values in R are indepen-
dent if and only if for any n ∈ N and any selection f1, . . . , fn of bounded
and measurable functions the relation

E(f1(X1) · . . . · fn(Xn)) = E(f1(X1)) · . . . · E(fn(Xn))

holds.

2. Suppose that random variables X1, . . . , Xd with values in R are inde-
pendent, and their distribution has a density p as in exercise 1.17. Show
that

p(x) = p1(x1) · . . . · pd(xd)

where pk is the density of the distribution of Xk for each k = 1, . . . , d.
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3. Suppose that random variables X1, X2 with values in Rare independent,
and there are sets B1, B2 in B(R) so that

{ω;X1(ω) ∈ B1} = {ω;X2(ω) ∈ B2},

Then P({ω;X1(ω) ∈ B1}) = 0 or 1.

Exercise 1.19. Let X = (X1, . . . , Xd) random variables (d is finite). The
distribution of X is said to be normal or Gaussian if it has a density p :
Rd → R>0 with respect to Lebesgue measure given by the formula

p(x;µ,Γ) =
1√

det(2πΓ)
exp

(
− 1

2
(x− µ)TΓ−1(x− µ)

)
where µ ∈ Rd and Γ is a positive definite d× d–matrix.

1. Show that E(Xk) = µk and cov(X) = Γ.

2. Show that the marginals of the distribution of X are normal as well,
and determine the expectation value and covariance matrix.

3. Let A be a surjective m × d–matrix (m ≤ d) and b ∈ Rm. Show that
AX+b has again a normal distribution, and determine the expectation
value and covariance matrix.

4. Show that X1, . . . , Xd are independent if and only if the covariance
matrix is diagonal.

1.6 Conditional probabilities and Conditional

expectations
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Let (Ω,A,P) probability space. Consider L2, the space of all random vari-
ables f : Ω → R so that

∫
f 2 dP < ∞. By a statement analogous to

Theorem 1.17 but for L2, this space is a Hilbert space with scalar product

〈f, g〉 :=
∫
fg dP and norm ‖f‖ :=

√∫
|f |2 dP.

Let f be an element of this Hilbert space and S be a closed subspace.
Then there exists f̂ ∈ S which is the “best approximation” f , which means

‖f − f̂‖2 = 〈f − f̂ , f − f̂〉 ≤ ‖f − g‖2, ∀g ∈ S,

and equality occurs here if and only if g = f̂ (see for instance Theorem 3.32
in [10]) We now claim that f − f̂ (i.e. the approximation error) is perpendic-
ular to S, that is 〈f − f̂ , g〉 = 0 for any g ∈ S. To see this, note that for any
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g ∈ S we have

‖f − (f̂ + g)‖2 = ‖f − f̂‖2 + ‖g‖2 − 2〈f − f̂ , g〉.

Suppose ∃g ∈ S with 〈f− f̂ , g〉 = m 6= 0, then replace g in the relation above
with g′ = m

‖g‖2 g, which gives

‖f − (f̂ + g′)‖2 = ‖f − f̂‖2 +
m2

‖g‖2
− 2

m2

‖g‖2

= ‖f − f̂‖2 − m2

‖g‖2
< ‖f − f̂‖2,

which means that f̂ + g′ is a better approximation than f̂ , which is a con-
tradiction. Hence 〈f − f̂ , g〉 = 0, or∫

f · g dP =

∫
f̂ · g dP for all g ∈ S. (1.15)

We want to use this with for a special class of subspaces S, namely the space
of all random variables g in L2 that are measurable with respect to some
sigma algebra F on Ω with F ⊂ A. It is clear that S is a subspace of L2 but
also a Hilbert space in its own right with the same scalar product as L2. This
implies that S is closed in L2, hence we can find f̂ so that (1.15) is correct.
Note that for the special S we have chosen here, (1.15) is equivalent to∫

f · 1A dP =

∫
f̂ · 1A dP (1.16)

for all A ∈ F by approximation. But Equation (1.16) makes sense even if
only

∫
|f | dP <∞, which is weaker that

∫
f 2 dP <∞. This leads us to the

following definition. Video
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Definition 1.31. Let
∫
|f | dP < ∞, F ⊂ A, F a sigma-algebra. Then the

conditional expectation of f given F , written as E(f |F), is any F -measurable
function f̂ satisfying (1.16).

Lemma 1.32 (Properties of E(f |F)). Suppose that f, g are random vari-
ables. Then (provided the conditional expectations appearing below exist), we
have

1. E(.|F) is linear, that is E(af + bg|F) = aE(f |F) + bE(g|F) a.s.,

2. E(.|F) is monotone, that is f ≥ 0⇒ E(f |F) ≥ 0 a.s.,
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3. If G ⊂ F ⊂ A are sigma-algebras, then

E(E(f |F)|G) = E(f |G)

(Law of the Iterated Expectations).

Proof. Exercise 1.21.

Theorem 1.33. Let
∫
|f | dP <∞, F ⊂ A, F a sigma algebra.

1. There exists conditional expectation E(f |F).

2. Suppose f (1), f (2) are both conditional expectations of f given F , then

f (1)(ω) = f (2)(ω)

for ω ∈ Ω1, with P(Ω1) = 1.

Proof. We start with item 2. Indeed, if f (1), f (2) are conditional expectations
of f with respect to F , then it follows from Equation (1.16) that∫

(f (1) − f (2)) · 1A dP = 0

for any A ∈ F . Since f (1) − f (2) is F–measurable, this implies f (1) = f (2)

almost surely. Video
Lecture6 V3

starts
about
here.

With regards to the existence of a conditional expectation, it follows from
our discussion at the beginning of this section that E(f |F) exists if

∫
f 2 dP <

∞. We will now prove that this mapping is furthermore continuous in the
L1–norm. It follows from Lemma 1.32 that the mapping f → E(f |F) is
monotone (see Exercise 1.21). Therefore, since f ≤ |f | we obtain E(f |F) ≤
E(|f ||F). The same is true for −f and we therefore get what might be
termed a triangle inequality

|E(f |F)| ≤ E(|f ||F).

We integrate over this inequality and use that E(E(|f ||F)) = E(|f |) (this can
be shown by using Equation (1.16) with A = Ω). We obtain

E
(
|E(f |F)|

)
≤ E(|f |).

Together with the linearity from Lemma 1.32, we get that the mapping
f → E(f |F) is a linear mapping from L2 into L1 which is uniformly continu-
ous in the L1–norm. Since L2 is dense in L1 (both contain simple functions,
for instance), E(.|F) has a unique continuous extension onto the whole of
L1.
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Remark 2 (Defining properties of the conditional expectation). Let’s say you
have some f̂ and you suspect that

f̂ = E(f |F).

To verify this, Theorem 1.33 tells you that you have to check that

1. f̂ is F -measurable

2. ∫
f · g dP =

∫
f̂ · g dP

for any function g which is F−measurable and bounded (in fact, it
suffices to check this for all g of the form 1A with A ∈ F).

Definition 1.34. 1. Let g : (Ω,A)→ (Ω′,A′) measurable. The family of
sets

σ(g) = {g−1(A) : A ∈ A′}
is a sigma algebra, called the sigma algebra generated by g (A′ is fixed).
Measurability implies σ(g) ⊂ A.

2. E(f |g) := E(f |σ(g)). Note that this is a random variable on (Ω,A).

3. The following is a slightly different concept of conditional expectation.
Let X : (Ω,A) → (Rd,Bd). Then E(f |X = x) is any random variable
f̂ satisfying∫

1B(x) · f̂(x) dPX(x) =

∫
1B ◦X(ω) · f(ω) dP(ω)

for all B ∈ Bd. Note that E(f |X = x) is a random variable on (Rd,Bd).

Lemma 1.35. f̂(x) = E(f |X = x) ⇐⇒ f̂(X(ω)) = E(f |σ(X))(ω).

Proof. Exercise 1.22.
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Definition 1.36 (Conditional Probability). The conditional expectation of
an indicator function has a special interpretation. Let A ∈ A.

1. P(A|F) := E(1A|F)(ω) is called the conditional probability of A given
F .

2. If X is a random variable, we define P(A|X) := E(1A|X) and call it
conditional probability of A given X.
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3. Using the alternative concept of conditional expectation in Definition 1.34,
item 3 we define P(A|X = x) := E(1A|X = x).

Note that for B ∈ F we have the formula∫
P(A|F) · 1B dP =

∫
1A · 1B · dP = P(A ∩B).

In most practical applications, conditional expectations are calculated using
the following result:

Lemma 1.37 (Bayes–Rule). Consider two random variables

X : (Ω,A) −→ (Rd1 ,Bd1)
Y : (Ω,A) −→ (Rd2 ,Bd2),

where d1 + d2 < ∞. Suppose that Z = (X, Y ) has a density p : R2 →
R; (x, y)→ p(x, y) (see Exercise 1.7 for a discussion of densities). Then

P(X ∈ B|Y = y) =

∫
B
p(x, y) dx∫

Rd1
p(x, y) dx

(1.17)

for all B ∈ Bd1.

Proof. Exercise 1.23.
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Regular conditional probabilities

Consider sigma-algebra F ⊂ A and conditional probability P(A|F)(ω). We
have a mapping

µ : (A× Ω) −→ [0, 1],

µ(A, ω) = P(A|F)(ω),

so that

1. for every A ∈ A the mapping ω → µ(A, ω) is F−measurable random
variable.

We would also like to have that

2. for every ω ∈ Ω the mapping A −→ µ(A, ω) is a probability on A.
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But there is a problem: Note that the relation

lim
n→∞

n∑
k=1

µ(Ak, ω) = µ(
∞⋃
k=1

Ak, ω) (1.18)

for pairwise disjoint A1, A2, · · · ∈ A merely holds for ω ∈ Ω0 with P(Ω0) = 1.
Although these are “almost all ω”, the set Ω0 where Equation (1.18) holds
depends on A1, A2 . . . . Now µ would have to be modified on Ω{

0 in order to
render Equation (1.18) correct for all ω. We then have to repeat this for
any sequence (A1, A2, . . . ) of measurable and pairws. disjoint sets. There are
uncountably many such sequences, hence uncountably many “problem sets”
Ω{

0, and their union might have nonzero measure or, worse still, might not
even be measurable. Video
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Theorem 1.38. Let X : (Ω,A)→ (Rd,Bd), d =∞ permitted, F ⊂ A sigma
algebra. Then the conditional distribution

PX(B|F) := P({ω;X(ω) ∈ B}|F)

has a regular version µ : (Bd × Ω) → [0, 1], that is for any B ∈ Bd the
equation PX(B|F)(ω) = µ(B,ω) holds, provided ω ∈ ΩB, where P(ΩB) = 1,
and µ satisfies conditions (1,2) at the beginning of this paragraph.

Proof. See [1], theorem 4.34. The structure of Bd enters in an essential
way.

Exercises for Section 1.6

Exercise 1.20. (Obsolete)

Exercise 1.21. Prove Lemma 1.32.

Exercise 1.22. Prove Lemma 1.35.

Exercise 1.23 (Assessed Exercise 2). In this exercise you prove the Bayes
Rule Lemma 1.37. Proceed along the following steps (you might want to look
at the results of Exercise 1.7 as well):

1. Show using Fubini–Tonelli that both the numerator as well as the de-
nominator on the right hand sides of Equation (1.17) are measurable
functions of y.

2. Consider the set B0 of all y ∈ Rd2 where the denominator on the right
hand side of Equation (1.17) vanishes, and prove that P({Y ∈ B0}) = 0.
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3. Now using the defining property of the conditional expectation, show
that Equation (1.17) holds.

Remember that conditional probabilities, like conditional expectations, are
defined only “up to sets of measure zero”, so you do not need to have
Equation (1.17) satisfied for all y, but only for y in some set B1 so that
P({Y ∈ B1}) = 1.

1.7 Literature on measure theory and inte-

gration

The following books cover measure theory and integration, mostly somewhat
more general than in this chapter. [7] is nice and brief, strongly recom-
mended. Some proofs are ommitted. [3] is unusual in that it covers analysis
and probability alongside each other, including aspects of functional analysis,
measure theory, and advanced aspects of probability theory. The presenta-
tion is superb. [6] is an absolute classic. Halmos’ fame as a mathematical
expositor began with this book. Focusses on measures on locally compact
spaces which is somewhat outdated. [2] a very consise text which nonetheless
covers everything that is important.

Concerning probability theory, I recommend the following. [9] a modern
accout of measure theory which touches upon many aspects of probability
theory as well. For an introductory text it is often somewhat too concise. [1]
A classic in probability theory. Written in Breiman’s very personal but highly
readable style, it gives a wonderful introduction to the subject, and whoever
thinks it “too theoretical” should look at Breiman’s later career. This book
does not cover measure theory and integration in detail though. [4, 5] Feller’s
two books on probability theory are even more classic in probability theory
than [1]. Again, does not cover measure theory and integration in detail.

For data assimilation, I believe that [8] is a good introduction, albeit not
a rigorous account, and written by an engineer rather than an atmospheric
scientist. It’s a must–have though for everyone working in data assimilation.

Finally, there is a growing amount of very decent lecture notes available
on the internet, for instance

Daniel Ocone’s homepage: http://www.math.rutgers.edu/~ocone

Stefan Grossinsky’s homepage: http://homepages.warwick.ac.uk/~masgav

Pavel Chigansky’s homepage: http://pluto.huji.ac.il/~pchiga/teaching.html
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Chapter 2

Stochastic processes in discrete
time

2.1 Basic definitions
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here.

Let (Ω,A,P) be a probability space.

Definition 2.1. A stochastic process with state space E is a sequence {Xn, n ∈
N} of random variables Xk : Ω→ E.

For this definition to make sense, E has to be a space so that the notion
of random variables with values in E makes sense.

Remark 3 (Convention regarding state space E). Many of the things we will
say in these lecture notes about stationary stochastic processes as well as
Markov processes (see Sec.2.2 and 2.5, respectively) remains true if we take
for E to be a separable and complete metric space (so called Polish space).
However, for simplicity’s sake our state spaces will mostly be E = Rd with
Borel algebra B(Rd) where d is finite. We might demonstrate special results
where E will be just the real line R or some interval with the standard Borel
algebra, or even only a finite set, for instance {1, . . . , d} with the sigma
algebra of all possible subsets.

For some set I ⊂ N we will use the shorthand XI := (Xi; i ∈ I). We also
remind the reader of the cartesian product (E∞,B(E)∞).

2.2 Stationary processes and the ergodic the-

orem

For this lecture we fix a stochastic process {Xn, n ∈ N} with state space
(E,B(E)).
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Definition 2.2. A stochastic process {Xn, n ∈ N} is stationary if its dis-
tribution is invariant under time shifts, more precisely, if it has the same
distribution as the shifted process {Yn, n ∈ N} defined through Yn = Xn+1

for all n ∈ N.

We remember that two stochastic processes {Xn, n ∈ N} and {Yn, n ∈ N}
have the same distribution if they have the same finite–dimensional distri-
butions, that is if XI and YI have the same distribution for all finite sub-
sets I ⊂ N (see Lemma 1.26). We can therefore conclude that a process
{Xn, n ∈ N} is stationary if and only if its finite–dimensional distributions
are invariant with respect to shifting the time index. In particular the dis-
tribution of Xn does not depend on n, and the same is true for expectations
like E(φ(Xn)) for measurable functions φ as long as the expectation exist. Video
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Given a stationary process, one may construct new ones:

Lemma 2.3. Let φ : E∞ → Rm be a measurable mapping, and {Xn, n ∈ N}
a stationary process with state space E. Then the process {Yn, n ∈ N} defined
through Yn := φ(Xn, Xn+1, . . .) has state space Rm and is stationary.

Note that φ in Lemma 2.3 might depend on finitely many components
only, so that in particular processes like {φ(Xk), k ∈ N} are stationary if
{Xn, n ∈ N} is.

The most important result about stationary processes is the

Theorem 2.4 (Ergodic theorem). Suppose that φ : E → R is measurable
and E(|φ(X1)|) <∞. Then there exists a random variable Y so that

1

n

n∑
k=1

φ(Xk)→ Y

almost surely as well as in L1.

For a proof see [1], Theorem 6.21. The random variable Y that appears
as the limit in the ergodic theorem has interesting properties which we want
to describe.

Definition 2.5. Let {Xn, n ∈ N} be a stationary process with state space
E.

1. A measurable mapping ψ : E∞ → Rm is called invariant with respect
to {Xn} if ψ(X1, X2, . . .) = ψ(X2, X3, . . .) almost surely.

2. A random variable Y is called invariant with respect to {Xn} if Y =
ψ(X1, X2, . . .) for some invariant ψ as in the previous item.
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Corollary 2.6. The random variable Y that appears in the Ergodic Theroem
is invariant with respect to {Xn, n ∈ N}. Furthermore EY = Eφ(X1).

We have formulated the Ergodic Theorem without any concept of “Er-
godicity”. This concept will be introduced now.

Definition 2.7. A stationary process {Xn, n ∈ N} is called ergodic if every
invariant random variable is almost surely equal to a constant.

Exercise 2.1 (Assessed Exercise 3). 1. Prove Corollary 2.6.

2. Suppose that {Xn, n ∈ N} is stationary and ergodic. Show that the
random variable Y in the Ergodic Theorem is equal to Eφ(X1).

Exercise 2.2 (Assessed Exercise 4). 1. Prove Lemma 2.3.

2. Suppose that {Xn, n ∈ N} is stationary and ergodic. Show that the
process Yn := φ(Xn, Xn+1, . . .) as in Lemma 2.3 is also ergodic.

2.3 Martingales
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In this section we consider martingales and related processes where the state
space E is the real line. Fix a probability space (Ω,F ,P). We first need the
concept of a filtration:

Definition 2.8. 1. A filtration is a sequence {Fn, n ∈ N} of sigma alge-
bras so that F1 ⊂ F2 ⊂ . . . ⊂ F .

2. Given a filtration {Fn, n ∈ N}, we say that a stochastic process {Xn, n ∈
N} is adapted to the filtration if Xk is Fk–measurable for all k ∈ N.

Any stochastic process {Xn, n ∈ N} generates its “own” or natural filtra-
tion {Gn := σ(X1, . . . , Xn), n ∈ N} for all n ∈ N. Clearly, any stochastic
process is adapted to its natural filtration. We are now ready to define mar-
tingales and related processes:

Definition 2.9. Suppose we are given a filtration {Fn, n ∈ N}.

1. A stochastic process {Xn, n ∈ N} is a martingale with respect to the
filtration {Fn} if it is adapted to the filtration and

E(Xk+1|Fk) = Xk (2.1)

for all k ∈ N.
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2. A stochastic process {Xn, n ∈ N} is a submartingale with respect to
the filtration {Fn} if it is adapted to the filtration and

E(Xk+1|Fk) ≥ Xk (2.2)

for all k ∈ N. It is called a supermartingale if the opposite inequality
holds in Equation (2.2) instead.

3. A stochastic process {Xn, n ∈ N} is a martingale difference sequence
(MDS)1 with respect to the filtration {Fn} if it is adapted to the fil-
tration and

E(Xk+1|Fk) = 0

for all k ∈ N.

We collect a few facts about these processes. Video
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Lemma 2.10. Fix a filtration {Fn, n ∈ N}. Unless stated otherwise, all
martingales, submartingales, etc that appear in this Lemma are with respect
to this filtration.

1. If {Xn, n ∈ N} is a martingale (resp. submartingale, supermartingale,
MDS), then it is also martingale (resp. submartingale, supermartingale,
MDS) with respect to its own filtration {σ(X1, . . . , Xn), n ∈ N}.

2. If {Xn, n ∈ N0} is a martingale, then Yn := Xn − Xn−1 for n ∈ N
defines an MDS.

3. If {Xn, n ∈ N} is an MDS, then Yn :=
∑n

k=1Xk for n ∈ N defines a
martingale.

4. If {Xn, n ∈ N} is a martingale and φ : R → R a convex function such
that E|φ(Xn)| < ∞ for all n ∈ N, then setting Yn := φ(Xn) for all
n ∈ N defines a submartingale.

5. If {Xn, n ∈ N} is a martingale, then for m ≤ n we have E(Xn|Fm) =
Xm. For submartingales (resp. supermartingales) this holds with “≥”
(resp. “≤”) replacing “=”.

6. If {Xn, n ∈ N} is a martingale, then E(Xn) = E(X1). For submartin-
gales (resp. supermartingales), the sequence {E(Xn), n ∈ N} is increas-
ing (resp. decreasing).

Proof. Exercise 2.3.

1Also called fair process
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Next we will discuss an important construction which may be seen as
“integrating” a predictable process against a martingale, resulting in a new
martingale. Video
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Lemma 2.11. Let {Xn, n ∈ N0} be a martingale and {Yn, n ∈ N0} be a
stochastic process, both with state space R and adapted to the same filtration
{Fn, n ∈ N0}. Furthermore, suppose that E|Yn−1 · (Xn −Xn−1)| <∞ for all
n ∈ N. Then

Zn :=
n∑
k=1

Yk−1 · (Xk −Xk−1) for n ∈ N (2.3)

forms a martingale with respect to the same filtration.

Proof. We just need to show that Rn := Yk−1 · (Xk −Xk−1) for n ∈ N forms
an MDS and invoke Lemma 2.10, item 4. We have E|Rn| <∞ by assumption
for all n ∈ N, so

E(Rn|Fn−1)

= E(Yn−1 · (Xn −Xn−1)|Fn−1) (Def. of Rn)

= Yn−1 · E(Xn −Xn−1)|Fn−1) (Since Yn−1 is Fn−1 measbl.)

= Yn−1 · (E(Xn|Fn−1)−Xn−1) (Linearity of E(.|Fn−1))

= Yn−1 · 0 = 0 (Martingale property of {Xn}).

Equation (2.3) might be seen as a Riemann-Steltjes sum approximating
the integral

Zt =

∫ t

0

Ys dXs. (2.4)

Such stochastic integrals can indeed be defined for a martingale {Xt} in
continuous time and so–called predictable processes {Yt}. The process {Zt}
is then again a martingale. Continuous time martingales and stochastic
integrals as in Equation (2.4) form a cornerstone of stochastic analysis and
mathematical finance.

The reasons for this though can be explained in our discrete time frame-
work. Suppose you want to make financial investments. The sigma–algebra
Fn may be seen as the market information you hold at time n; if a random
variable is measurable with respect to Fn, you will known its value at time
n. You will never forget any information and hence these sigma–algebras
are growing. Let {Xn, n ∈ N} be a stochastic process representing the value
of some financial asset. The condition Equation (2.1) then says that the

36



expected future value of a financial asset, given the information we have cur-
rently, is equal to its current value. This assumption basically means that
the value of the asset has no predictable trend. This model is too simple for
assets such as for instance shares. But martingales form important building
blocks for more realistic models; we will use martingales here to explain the
basic ideas.

At each time n you decide to buy an amount of Yn of the asset Xn. The
value at time n + 1 will then be Yn · Xn+1 and you have made a gain (or
loss) of Yn · (Xn+1−Xn). (There is no way you can foresee the value of Xn+1

at time n so this is why Yn must be Fn measurable.) Summing up all your
gains up to time n, you obtain Zn as in Equation (2.3).

The fact that this is still a martingale according to Lemma 2.11 is remark-
able as it means that whatever your “buying strategy” {Yn} your expected
gains (or losses) will always be zero. This in fact also applies to strategies
such as “quit while you are ahead”, as we will see in the next section.

Exercise 2.3. Prove Lemma 2.10. For item 4, you need to invoke Jensen’s
inequality, see [1].

Exercise 2.4 (Assessed Exercise 5). Suppose that {Xn, n ∈ N} is a mar-
tingale or a nonnegative submartingale with the property that E(X2

n) < ∞
for all n ∈ N. Show that for m ≤ n we have

E(Xn −Xm)2 ≤ E(X2
n)− E(X2

m).

Proof.

E(Xn −Xm)2 = E(Xn)2 + E(Xm)2 − 2E(XnXm)2

= E(Xn)2 + E(Xm)2 − 2E(E(Xn|Fm)Xm)2

≤ E(Xn)2 + E(Xm)2 − 2E(XmXm)2

= E(Xn −Xm)2,

because E(Xn|Fm) ≥ Xm.

Exercise 2.5 (Assessed Exercise 6). Consider the situation of Lemma 2.11
and suppose that E(Y 2

n−1 · (Xn −Xn−1)2) is finite for all n ∈ N. Show that

E(Z2
n) =

n∑
k=1

E(Y 2
k−1 · (Xk −Xk−1)2).

Proof. Write Rk = Yk−1(Xk − Xk−1) for all k ∈ N. Then Zn =
∑n

k=1Rk

and E(Rk|Fl) = 0 for all l < k. Hence if k > l we have E(RkRl) =
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E(E(Rk|Fl)Rl) = 0. Therefore

E(Zn)2 =
n∑

k,l=1

E(RkRl)

=
∑
k<l

E(RkRl) +
∑
k>l

E(RkRl) +
n∑
k=1

E(R2
k)

=
n∑
k=1

E(R2
k).

2.4 Martingale convergence
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This lecture will only scatch the surface of this extremely important subject.
The most general martingale convergence results are due to J.L.Doob (see [1]
for a comprehensive discussion) but we will show simpler statements here
following the presentation of [5]. Unless otherwise stated, we let {Xn, n ∈ N}
be a martingale with respect to the filtration {Fn, n ∈ N}. Our aim is to
prove that under suitable conditions, {Xn} converges to a random variable
Z as n→∞. We remind ourselves that with sequences of random variables,
“convergence” may be understood in several different ways (for instance in
L1 or almost surely). Here we focus on mean square convergence and almost
sure convergence.

Theorem 2.12. Suppose that there exist C > 0 so that E(X2
n) ≤ C for all

n ∈ N. Then there is a random variable Z so that Xn → Z in mean square
sense as well as almost surely.

Note that E(X2
n) being finite is not sufficient; it needs to be bounded.

Proof. To prove the convergence in the mean square sense, we need to show
that there is a sequence {α(n), n ∈ N} which goes to zero for n→∞ and so
that α(n) ≥ E|Xn+k−Xn|2 for all n, k ∈ N. This would mean that {Xn} is a
Cauchy sequence in the mean square norm. The result then follows because
this norm is complete. Invoking Exercise 2.4 gives

E|Xn+k −Xn|2 ≤ E(X2
n+k)− E(X2

n) (2.5)

for all n, k ∈ N. This shows that the sequence {E(X2
n), n ∈ N} is nondecreas-

ing. Since it is bounded by assumption, it must converge to some a ∈ R.
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Setting α(n) := a − E(X2
n) we see that α(n) → 0 as n → ∞. On the other

hand, we obtain from Equation (2.5) that

E|Xn+k −Xn|2 ≤ α(n)

for all n, k ∈ N, proving that {α(n)} has the desired property. Video
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To prove the almost sure convergence, let us recall that we need to find
the set Ω1 ⊂ Ω so that {Xn(ω), n ∈ N} is a Cauchy sequence whenever
ω ∈ Ω1, and then show that P(Ω1) = 1. For ε > 0 and n,m ∈ N, we define
the “good” sets

Gn,m(ε) := {ω ∈ Ω; sup
1≤k≤m

|Xn(ω)−Xn+k(ω)| ≤ ε}.

Now you need to check for yourself that {Xn(ω)} is a Cauchy sequence for a
given ω if for every ε > 0 there is an n such that ω ∈ Gn,m(ε) for all m ∈ N.
In other words for every ε > 0 we have ω ∈ G(ε) := ∪n∈N ∩m∈N Gn,m(ε). If
you are happy with this, simply turn this around to find that {Xn(ω)} is not
a Cauchy sequence if there is an ε > 0 such ω ∈ B(ε) := ∩n∈N ∪m∈N Bn,m(ε),
where each “bad” set

Bn,m(ε) := {ω ∈ Ω; sup
k≤m
|Xn(ω)−Xn+k(ω)| > ε}.

is the complement of Gn,m(ε). Note that for n fixed, the bad sets are nested,
in the sense that Bn,1(ε) ⊂ Bn,2(ε) ⊂ . . .. We use this fact and the continuity
of probability in the second equality below to get and estimate of P(B(ε))
(valid for all n ∈ N):

P(B(ε)) ≤ P(∪m∈NBn,m(ε)) = lim
m→∞

P(Bn,m(ε)). (2.6)

We haven’t used the martingale property yet; our estimate of P(B(ε)) in
terms of of “bad” sets Bn,m is valid for any stochastic process. For mar-
tingales, the probability of the Bn,m can be estimated by Kolmogorov’s in-
equality, which we will state and prove in Theorem 2.13 below. Applying
Kolmogorov’s inequality to the martingale {Yk := Xn+k−Xn; k ∈ N} (where
n is fixed) gives

P(Bn,m(ε)) = P(sup
k≤m
|Xn(ω)−Xn+k(ω)| > ε)

= P(sup
k≤m
|Yk(ω)| > ε)

≤ E|Ym|2

ε2
(Kolmogorov’s inequ.)

=
E|Xn+m −Xn|2

ε2

≤ α(n)

ε2
.
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Replacing with this in Equation (2.6) and taking n→∞ gives P(B(ε)) = 0
since α(n)→ 0.
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Theorem 2.13 (Kolmogorov’s inequality). Suppose that {Xn, n ∈ N} is a
martingale with E(X2

k) <∞ for all k. Then

P(sup
k≤m
|Xk| > ε) ≤ EX2

m

ε2
(2.7)

for all m ∈ N and ε > 0.

Proof. Consider the stochastic process defined for each n ∈ N through

Zn :=
n∑
k=1

Yk−1 · (Xk −Xk−1),

where

Yk :=

{
1 if |Xl| ≤ ε for all l ≤ k,
0 else

for each k ∈ N. According to Lemma 2.11, {Zn, n ∈ N} is a martingale with
E|Zn|p <∞ for all n ∈ N. To understand what this process is doing, let τ be
the first k where |Xk| > ε or equivalently the first k where Yk = 0. This τ is a
random variable which might even be∞ if the event |Xk| > ε never happens.
For all n ≤ τ we have Zn = Xn but for n > τ we have Zn = Zτ = Xτ , that
is, Zn “freezes” as soon as |Zn| exceeds ε for the first time. In particular,
supk≤m |Xk| > ε if and only if |Zm| > ε, therefore

P(sup
k≤m
|Xk| > ε) = P(|Zm| > ε) ≤ E(Z2

m)

ε2
, (2.8)

the last inequality being Chebychev’s inequality. Now calculate Video
Lecture10 V4

starts
about
here.

E(Z2
m) =

m∑
k=1

E(Y 2
k−1 · (Xk −Xk−1)2) (Exercise 2.5)

≤
m∑
k=1

E((Xk −Xk−1)2) (since Yk ≤ 1)

≤
m∑
k=1

E(X2
k)− E(X2

k−1) (Exercise 2.4)

= E(X2
m).

Using this in Equation (2.8) gives Equation (2.7) and concludes the proof.
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Exercise 2.6 (Assessed Exercise 7). Let {Fn, n ∈ N} be a filtration and
write F∞ for the smallest sigma algebra containing all Fn, n ∈ N. Further,
let Z be a random variable with E(Z2) <∞.

1. Show that E(Z|Fn) converges in mean square sense and almost surely
to a random variable Z̄. (Hint: prove that Zn := E(Z|Fn) for n ∈ N
defines a martingale.)

2. Prove that Z̄ = E(Z|F∞). (Hint: you may use without proof that
if U, V are random variables measurable with respect to F∞, and if
E(U1A) = E(V 1A) for any A ∈ Fk and k ∈ N, then U = V .)

Proof. We have E(Zn|Fn−1) = E(E(Z|Fn)|Fn−1) = E(Z|Fn−1) = Zn−1,
hence {Zn} is a Martingale. Further E(Z2

n) = E(E(Z|Fn)2) ≤ E(E(Z2|Fn)) =
E(Z2) so we can invoke Theorem 2.12 to show that Zn → Z̄ both almost
surely and in mean square sense. To prove the second item, pick A ∈ Fk,
then

E(Z1A) = E(E(Z|Fk)1A) = E(Zn1A) (2.9)

if n ≥ k. We know also that Zn → Z̄ in mean square sense when taking
n → ∞; this implies that E(Zn1A) → E(Z̄1A) as is easy to see. Using
this on the right hand side of Equation (2.9) and invoking the hint we find
Z = Z̄.

2.5 Markov processes

In this section, we will consider another type of stochastic process called
Markov processes. Again, we fix a stochastic process {Xn, n ∈ N} with state
space E on a probability space (Ω,A,P).

Definition 2.14. The process {Xn} is called a Markov process if for any
n ∈ N, the distribution of the future {Xn+k, k ∈ N} given the past and
present {Xk, k ≤ n} only depends on the present Xn. More formally, for any
n ∈ N and any set A ∈ σ(Xn+1, Xn+2, . . .) we have

P(A|X1, . . . , Xn) = P(A|Xn).

We will soon identify a lot of properties of Markov processes, but given
that we have just discussed martingales, we first stress a couple of important
differences between the two types of processes. Most importantly, the defi-
nition of a martingale just refers to the first conditional moment, while the
definition of a Markov process refers to the whole distribution. Furthermore,
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the definition of a martingale is linear; this means that if {Xn} is a mar-
tingale with state space Rd and if M : Rd → Rd′ is a linear mapping, then
Yn := MXn for n ∈ N defines again a martingale. In particular, each coordi-
nate of a martingale is again a martingale. The statement however becomes
wrong if M is nonlinear; then {Yn} is no longer a martingale. Markov pro-
cesses behave differently. Whether M is linear or nonlinear, {Yn} is in general
not a Markov processes! The definition of a Markov process basically says
that if you know the full current state of a Markov process, then additional
information about the past will not improve your knowledge about what will
happen in the future. This clearly is no longer true if you have only partial
information about the current state (for instance if M is not a one–to–one
mapping); in that case, additional information about the past can quite well
improve your knowledge about what will happen in the future. A notable
exception however is if M is one–to–one (linear or nonlinear). In that case,
{Yk, k ≤ n} and {Xk, k ≤ n} provide exactly the same information about
the future of {Xn} which in turn determines the future of {Yn}.

In these lectures, we restrict attention to homogenous Markov processes
(a definition will follow below). An important feature of Markov processes
(homogenous ones in particular) is that their distribution is defined through
relatively few objects. This renders Markov processes convenient for mod-
elling dynamical phenomena. For the remainder of this section it is worth
recapping Section 1.6, especially the last paragraph on regular conditional
probabilities.

Definition 2.15. 1. A Markov kernel or transition kernel on a state space
(E,BE) is a mapping K : BE × E → [0, 1] so that

(a) for each B ∈ BE, the mapping x→ K(B, x) is measurable;

(b) for each x ∈ E, the mapping B → K(B, x) is a probability mea-
sure on BE.

2. Let {Xn, n ∈ N} be a Markov process. A sequence {Kn, n ∈ N} of
transition kernels on E will be referred to as the transition kernels of
the Markov process {Xn} if for each n ∈ N and any B ∈ B(E) we have

P(Xn+1 ∈ B|Xn) = Kn(B,Xn) almost surely. (2.10)

3. A Markov process is called homogenous if the kernel can be chosen
independent of n.

Lemma 2.16. For any Markov process {Xn} with state space E there exists
a corresponding sequence {Kn, n ∈ N} of transition kernels.
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Proof. Due to our convention that E = Rd with d finite, this is a direct
consequence of Theorem 1.38 (which in fact also holds for E a Polish space).

From now on, we will consider only homogenous Markov processes. Call
a pair (K, π), where K is a kernel and π a distribution on a state space
E, a Markov pair, or the Markov pair of the Markov process {Xn, n ∈ N}
if K is the transition kernel of that Markov process and π = PX1 is the
distribution of X1. Although this nomenclature is not standard, it will allow
us to formulate our next theorem concisely. Before we do that though, two
examples:

Example 2.17 (Random walk on the circle). Consider E = {0, . . . , d − 1}
and define inductively

Xn+1 = (Xn +Rn+1) mod d, n ∈ N,

where {X0, R1, R2, . . .} are independent, X0 has some given distribution π on
E, and P(Rm = 1) = P(Rm = −1) = 1

2
for all m ∈ N. The state space E can

be imagined as d points arranged on a circle, while Xn denotes the position of
a particle which jumps one step in either clockwise or anticlockwise direction
with equal probability (see Figure 2.1). The point labelled d is identified
with the point labelled 0. To see that this is a Markov process, fix n ∈ N,
k ∈ E and (m0, . . . ,mn) ∈ En+1. Assuming that P({Xl = ml, l = 0:n}) > 0
we calculate (using “≡” for “equal mod d”)

P(Xn+1 = k|Xl = ml, l = 0:n)

= P(Xn +Rn+1 ≡ k|Xl = ml, l = 0:n)

= P(mn +Rn+1 ≡ k|Xl = ml, l = 0:n)

= P(mn +Rn+1 ≡ k),

the last equation because Rn+1 is independent of {Xl, l = 0:n}. Exactly the
same argument gives

P(Xn+1 = k|Xn = mn) = P(mn +Rn+1 ≡ k),

proving the Markov property. Furthermore, we can calculate the kernel;
according to the above, we have

K({k}|j)
= P(Xn+1 = k|Xn = j)

= P(j +Rn+1 ≡ k)

=

{
1
2

if either j + 1 ≡ k or j − 1 ≡ k,
0 else.
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Figure 2.1: A particle jumps one step in either clockwise or anticlockwise
direction with equal probability. The state space E is formed by d points
arranged on a circle in “periodic” fashion, that is, the point d is identified
with the point 0. Here d = 8.

This shows that the Markov process is homogenous.

Example 2.18 (Randomly selected measurable mappings). Consider E =
Rd and define inductively

Xn+1 = f(Xn, Rn+1), n ∈ N,

where f : E × F → E is a measurable mapping (and F is another state
space). Further {X0, R1, R2, . . .} are independent, X0 has some given distri-
bution π on E, and Rn has some given distribution ρ on F for all n ∈ N.
This system can be interpreted as a random (in fact independent and identi-
cally distributed) sequence of maps f(., R1), f(., R2), . . . applied in iterative
fashion.

To see that {Xn} is a Markov process, we first make a good guess how
the Markov kernel K might look like. Fix n ∈ N, B ∈ B(E) and x ∈ E. Now
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imagine that Xn = x. Then we would have Xn+1 = f(x,Rn+1), so

P(Xn+1 ∈ B|Xn = x)

= P(f(x,Rn+1) ∈ B|Xn = x)

= P(f(x,Rn+1) ∈ B) (as Rn+1 is independent of Xn)

=

∫
1B(f(x, r)) dρ(r)

=: K(B, x)

(2.11)

You will show in Exercise 2.8 that K is indeed a transition kernel in the sense
of Definition 2.15. In order that {Xn, n ∈ N} is a Markov process, we need
to show that

P(Xn+1 ∈ B|X0, . . . , Xn)
?
= K(B,Xn)

almost surely for any B ∈ B(E) and any n ∈ N0. The left hand side is just a
conditional expectation, so we have to check the properties of the conditional
expectation from definition 1.31. It is clear that K(B,Xn) is measurable with
respect to X0, . . . , Xn for any B fixed. Now let ψ : En+1 → R be any bounded
measurable function. We need to show that

E(1B(Xn+1)ψ(X0, . . . , Xn))
?
= E(K(B,Xn)ψ(X0, . . . , Xn)). (2.12)

Our arguments will be very similar to those in the last example. As a short-
hand, we will write Pn for the distribution of X0, . . . , Xn on En+1.

E(1B(Xn+1) · ψ(X0, . . . , Xn))

= E(1B(f(Xn, Rn+1)) · ψ(X0, . . . , Xn))

=

∫ ∫
1B(f(ξn, r)) · ψ(ξ0, . . . , ξn)Pn(dξ0, . . . , dξn)ρ(dr)

(as Rn+1 is independent from X0, . . . , Xn)

=

∫ ∫
1B(f(ξn, r)) ρ(dr)ψ(ξ0, . . . , ξn)Pn(dξ0, . . . , dξn)

(Fubini)

=

∫
K(B, ξn)ψ(ξ0, . . . , ξn)Pn(dξ0, . . . , dξn)

= E(K(B,Xn) · ψ(X0, . . . , Xn)),

demonstrating Equation (2.12). We also note that this Markov process is
homogenous as K does not depend on n, effectively because the distribution
of Rn is independent of n. This finishes the example.
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Now a general theorem about Markov pairs and the distribution of Markov
processes.

Theorem 2.19. 1. Given a Markov pair (K, π) there exist a Markov pro-
cess {Xn, n ∈ N} with state space E so that (K, π) is the Markov pair
of that process.

2. Two Markov processes {X} and {Y } with the same Markov pair have
the same distribution.

The proof of the first item is a sophisticated application of the Measture
Extension Theorem (Thm. 1.5) which we will defer to Appendix A.1. First
we need the following Lemma (the second item really belongs to the section
on the conditional expectation).

Lemma 2.20. 1. Let K be a Markov kernel on E and φ : E → R be a
bounded and measurable function. Then the function Kφ : E → R, x→∫
E
φ(z)K(dz, x) is measurable.

2. Let {Yn, n ∈ N} be a sequence of nonnegative integrable random vari-
ables s.th. Yn ↑ Y , with Y integrable. Further, let F ⊂ A be a sigma
algebra. Then E(Yn|F) ↑ E(Y |F) almost surely. (Compare this with
the Monotone Convergence Theorem).

Proof. Since K is a transition kernel, the function Kφ is well defined. Let us
first assume that φ is nonnegative and of the form φ(x) =

∑
ak1Bk

(x) where
the sum is finite (i.e. φ is simple). Then Kφ(x) =

∑
akK(Bk, x) which is

clearly a measurable function. For φ nonnegative but not necessarily simple,
by step 4 in the construction of the integral we can find simple functions
{φn, n ∈ N} so that φn ↑ φ as n → ∞, while Kφn is measurable as just
discussed. By the monotone convergence theorem we have Kφn(x) ↑ Kφ(x)
for every x . As the pointwise limit of measurable functions is measurable,
Kφ is measurable. For general φ, we may write φ = φ+ − φ− and note that
by linearity Kφ = Kφ+ −Kφ−. Since both φ+ and φ− are nonnegative and
measurable, the right hand side is measurable.

To prove the second item, we observe that since {Yn, n ∈ N} is increasing,
the same is true for {E(Yn|F), n ∈ N}. Therefore E(Yn|F) ↑ supn E(Yn|F) =:
Ȳ . Since Y ≥ Yn we have E(Y |F) ≥ E(Yn|F) so E(Y |F) ≥ Ȳ . On the other
hand

E(E(Y |F)− Ȳ )

= E(E(Y |F)− E(Yn|F)) + E(E(Yn|F)− Ȳ )

= E(Y − Yn) + E(E(Yn|F)− Ȳ ).
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Taking the limit n → ∞ and applying the Monotone Convergence The-
orem once again, the right hand side goes to zero and we can conclude
0 ≤ E(E(Y |F)− Ȳ ) = 0, which implies E(Y |F) = Ȳ almost surely.

Proof of Theorem 2.19, item 2. Let now {Xn, n ∈ N} be a homogenous Markov
process with Markov pair (K, π) and state space E. Our aim is to find ex-
pressions for the marginals of the distribution of {Xn} that only involve
the Markov pair (K, π). This implies that Markov processes with the same
Markov pair will have the same marginals and therefore (by Thm. 1.21) the
same distributions. Equipped with Lemma 2.20, we will now prove that for
φ : E → R measurable and bounded, we have the identities

E(φ(Xn+1)|X1, . . . , Xn) = E(φ(Xn+1)|Xn) = Kφ(Xn). (2.13)

Indeed, if φ = 1B for some Borel set B ∈ B(E), then the identities follow
directly from the Markov property and the definition of K, respectively. By
linearity, the identities are true for φ simple. If φ is not simple but nonneg-
ative, we may approximate φ by simple functions and invoke Lemma 2.20,
item 2. For general φ, we again split into positive and negative part. Fur-
ther, we conclude from Lemma 2.20, item 1 that Kφ(Xn) is bounded and
measurable.

Now let B1, . . . , Bl be sets in B(E). We also let φ : E → R once again a
bounded and measurable function. We then have

E(φ(Xl+1) · 1Bl
(Xl) · . . . · 1B1(X1))

= E
(
E(φ(Xl+1)|Xl, . . . , X1) · 1Bl

(Xl) · . . . · 1B1(X1)
)

(by def. of conditional expectation)

= E
(
E(φ(Xl+1)|Xl) · 1Bl

(Xl) · . . . · 1B1(X1)
)

(by Eq. 2.13 first part)

= E
(
Kφ(Xl) · 1Bl

(Xl) · . . . · 1B1(X1)
)

(by Eq. 2.13 second part).

(2.14)

We use this key identity as follows: first fix k ∈ N and use Equation (2.14)
with l = k and φ := ψk := 1Bk

. This gives

P(Xk ∈ Bk, . . . , X1 ∈ B1)

= E(1Bk
(Xk) · . . . · 1B1(X1))

= E
(
Kψk(Xk−1) · 1Bk−1

(Xk−1) · . . . · 1B1(X1)
)
.

We could now again use Equation (2.14) with l = k − 1 and redefining
φ := ψk−1 := Kψk · 1Bk−1

. More generally, we set inductively ψl−1(x) :=
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Kψl(x) · 1Bl−1
(x) for l = k, . . . , 2 and find (using Eq. 2.14 in each induction

step)

P(Xk ∈ Bk, . . . , X1 ∈ B1) = E(ψ1(X1)) =

∫
E

ψ1(x) dπ(x).

For given sets B1, . . . , Bk, the right hand side is entirely determined by the
Markov pair (K, π). This finishes the proof; for completeness, we unroll the
inductive definition of ψk to find a more explicit expression of the marginals:

P(Xk ∈ Bk, . . . , X1 ∈ B1)

=

∫
E

· · ·
∫
E

1Bk
(xk)K(dxk, xk−1) · . . . · 1B2(x2)K(dx2, x1) · 1B1(x1)π(dx1).

(2.15)

Exercise 2.7. Let Xn, n ∈ N be a homogenous Markov process with pair
(K, π1) and let πn := PXn . Prove the Chapman–Kolmogorov–Identity

πn+1 = Kπn, (2.16)

(see Eq. 2.27 below for notation).

Proof. For n = 1, this follows from Equation (2.15) by taking k = 2 and
B1 = E. Suppose it has been proved for all l ≤ n. Then use Equation (2.15)
with k = n+ 1 and Bl = E for all l ≤ n while Bn+1 = B for some B ∈ B(E).
Then the left hand side is just πn+1(B), while the right hand side, after
applying the Chapman–Kolmogorov equation for all l ≤ n, can be written
as Kπn.

Exercise 2.8. Prove that the object K(B, x) defined in Equation (2.11) is
indeed a transition kernel in the sense of Definition 2.15.

Proof. Since f is a measurable mapping in both arguments, the mapping
r → f(x, r) is measurable as a mapping from F to E for each x ∈ E fixed.
Therefore f(x,Rn+1) is a random variable for each x ∈ E fixed and hence
B → P(f(x,Rn+1) ∈ B) is the distribution of that random variable and
thus a probability distribution for each x ∈ E fixed. On the other hand,
for fixed B ∈ B(E) the mapping x → P(f(x,Rn+1) ∈ B) is measurable as a
consequence of the Fubini–Tonelli theorem.
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2.6 Ergodic theory of Markov processes with

finite state space

In this section we will consider Markov processes with finite state space E =
{1, . . . , d}, as for instance the Random walk on the circle (Example 2.17). In
this situation, Markov processes are also called Markov chains. In particular,
we are interested in the “long term” behaviour of the Markov chain. To
explain what we mean by this, note first that distributions over E are given by
vectors π = (π(1), . . . , π(d)) ∈ Rd with π(k) ≥ 0 for all k ∈ E and

∑
k π

(k) = 1.
The set of all such distributions will be written as PE. Furthermore, a Markov
kernel on E has an equivalent description through a matrix M with elements
Mk,l := K({k}, l) for k, l ∈ E. A square matrix M ∈ Rd×d evidently defines
a kernel on E if and only if M is a Stochastic matrix, that is any column
of M is a distribution over E, or equivalently Mk,l ≥ 0 for all k, l ∈ E and∑

kMk,l = 1 for all l ∈ E.
Fix a Markov chain with pair (M,π1) (where now M is a stochastic matrix

and π1 ∈ PE). We will again write πn := P(Xn ∈ .) for the distribution
of Xn, and we have the following version of the Chapman–Kolmogorov–
Identity (2.16):

πn+1 := Mπn =

(
d∑
l=1

Mk,lπ
(l)
n

)
1≤k≤d

. (2.17)

The first question we have is whether M has eigenvectors π̄ ∈ PE corre-
sponding to the eigenvalue λ = 1. This would mean that π̄ = Mπ̄, so if we
put π1 = π̄ then πn = π̄ for all n according to Equation (2.17), meaning that
the Xn would have distribution π̄ for all n ∈ N. Such a π̄ will be referred to
as an invariant distribution of M .

The second question is whether πn converges to some π∞ for n → ∞
(both the limit π∞ and whether this happens at all might depend on π0).
Note that π∞ will be an invariant distribution. Indeed, since PE is closed we
will have π∞ ∈ PE, and furthermore π∞ = limn→∞ πn = limn→∞Mπn−1 =
M limn→∞ πn−1 = Mπ∞. As to why this section is called “Ergodic theory of
Markov processes . . . ”, this will only become clear in the next section.

The first question is sorted in the following theorem

Theorem 2.21. A stochastic matrix M always has λ = 1 as an eigenvalue
and a corresponding eigenvector π ∈ PE. Furthermore, any eigenvector λ of
M satisfies |λ| ≤ 1.

Proof. On Rd, introduce the norm ‖v‖ :=
∑d

k=1 |v(k)|. Then for any v ∈ Rd
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we have

‖Mv‖ =
d∑

k=1

|
d∑
l=1

Mk,lv
(l)| ≤

d∑
k,l=1

Mk,l|v(l)| =
d∑
l=1

|v(l)| = ‖v‖, (2.18)

hence if the relation λv = Mv holds, we can conclude |λ|‖v‖ = ‖Mv‖ ≤ ‖v‖
so |λ| ≤ 1.

To find an eigenvector in PE, take any π0 ∈ PE and let πn := 1
n

∑n−1
k=0 M

kπ0.
Then πn ∈ PE for all n ∈ N as can be easily checked. Since PE is compact,
{πn, n ∈ N} has a convergent subsequence, or in other words there is a se-
quence n1 ≤ n2, . . . in N so that 1

nl

∑nl−1
k=0 Mkπ0 → π∞ for l → ∞, and we

have

Mπ∞ = M lim
l→∞

1

nl

nl−1∑
k=0

Mkπ0

= lim
l→∞

M
1

nl

nl−1∑
k=0

Mkπ0

= lim
l→∞

1

nl

nl−1∑
k=0

Mk+1π0

= lim
l→∞

1

nl

nl∑
k=1

Mkπ0

= lim
l→∞

1

nl

nl−1∑
k=0

Mkπ0 + lim
l→∞

1

nl
Mnlπ0 − lim

l→∞

1

nl
M0π0.

The first term converges to π∞. The second term converges to zero because
|Mnlπ0| ≤ 1 by Equation (2.18) and the fact that |π0| = 1. The third term
converges obviously to zero. This shows that π∞ is the desired eigenvector.

We now turn to the second question, but will not address this in full
generality. Rather, we restrict ourselves to irreducible stochastic matrices.

Definition 2.22. A stochastic matrix M is irreducible if for any k, l ∈ E
there exists an n ∈ N such that Mn

k,l > 0.

We emphasise that Mn
k,l refers to the element in row k and column l of the

matrix Mn, which is the n’th power of M in terms of matrix multiplication.
We will illustrate this concept, first through the following Lemma
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Lemma 2.23. Let {Xn, n ∈ N} be a Markov chain with Markov pair (M,π)
and consider k1, . . . , kn with kl ∈ E for all l = 1, . . . , n. Then

P(X1 = k1, . . . , Xn = kn) = Mkn,kn−1·, . . . , ·Mk2,k1 · π(k1). (2.19)

Furthermore, if π(k1) > 0, we have

P(Xn = kn|X1 = k1) = Mn
kn,k1

. (2.20)

Proof. By basic probability calculus we have

P(X1 = k1, . . . , Xn = kn) = P(Xn = kn|Xn−1 = kn−1, . . . , X1 = k1)

· P(Xn−1 = kn−1|Xn−2 = kn−2, . . . , X1 = k1)

...

· P(X2 = k2|X1 = k1)

· P(X1 = k1).

Using the Markov property and the definition of both M and π gives Equa-
tion (2.19). By summing Equation (2.19) over all possible kn−1, . . . , k1 in E
we obtain Equation (2.20).

We now see that irreducibility, in conjuction with Equation (2.20), means
that for any k, l ∈ E there exists an n ∈ N such that P(Xn = k|X1 = l) > 0.
If we interprete Xn as the position of a particle at time n (with the elements
of E being the possible positions), irreducibility means a particle starting
at position l ∈ E has positive probability of arriving at k ∈ E at some
point in time, for any two states k, l ∈ E. A way to visualise the qualitative
behaviour of a Markov chain (and in particular irreducibility) is via directed
graphs (see Fig. 2.2 for an example). Given a stochastic matrix M on E,
we first draw a circle for each element of E; these circles are called nodes
Next, for each pair k, l so that Mk,l > 0, we draw an arrow from node l to
node k (pointing from l to k, this is important!) Note that each arrow only
points one way; if both Mk,l > 0 and Mk,l > 0, we draw two separate arrows
pointing each way. Further, a node k gets an arrow pointing back at itself
only if Mk,k > 0! In order to draw the directed graph, you don’t actually
need the matrix M , you just need to know which entries are zero and which
not. Given the corresponding directed graph, it is easy to see if a stochastic
matrix M is irreducible: if you are able to go from any given node to any
other (using potentially many arrows but always in the right direction), then
M is irreducible. The matrix in Figure 2.2 is not irreducible since there is no
way to get from either 2, 3, or 4 to node 1. Between the nodes 2, 3, and 4
however, it is possible to get from any node to any other.
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∗ 0 0 0
∗ 0 0 ∗
0 ∗ 0 0
∗ ∗ ∗ 0

4

1 3

2
M =


1/2 0 0 0
1/4 0 0 1
0 2/3 0 0

1/4 1/3 1 0


Figure 2.2: Directed graph corresponding to a stochastic matrix.

Theorem 2.24. Suppose that M is an irreducible stochastic matrix. Then
the eigenvector π ∈ PE from Theorem 2.21 is unique an furthermore has only
positive entries.

Proof. We first assume that M is mixing, which means that there is a dis-
tribution ρ ∈ PE and an α > 0 such that Mk,l ≥ αρk for all k, l in E. (In
particular, a stochastic matrix M is mixing if all entries are strictly positive.)
Now define the subspace V ⊂ Rd of all v ∈ Rd such that

∑d
k=1 v

(k) = 0. It is
easy to check that this is a subspace, and further that if v ∈ V then Mv ∈ V ,
too. Now we use the same norm as in Theorem 2.21 and find for v ∈ V that

(Mv)k =
∑
l∈E

Mk,lvl =
∑
l∈E

(Mk,l − αρk)vl + α
∑
l∈E

ρkvl =
∑
l∈E

(Mk,l − αρk)vl

(2.21)
by the property of v. Furthermore, (Mk,l − αρk)k,l∈E is still a matrix with
nonnegative entries (albeit not a stochastic one). Therefore

‖Mv‖ =
∑
k∈E

|
∑
l∈E

(Mk,l − αρk)vl|

≤
∑
k,l∈E

(Mk,l − αρk)|vl|

=
∑
l

∑
k

(Mk,l − αρk)|vl|

= (1− α)‖v‖.

Note that 0 ≤ (1 − α) < 1. If now M has two eigenvectors π1, π2 ∈ PE
corresponding to eigenvalue 1, then π1 − π2 ∈ V and therefore

‖π1 − π2‖ = ‖Mπ1 −Mπ2‖ = ‖M(π1 − π2)‖ ≤ (1− α)‖π1 − π2‖.
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This implies 0 = ‖π1 − π2‖ and hence π1 = π2.
If M is not mixing, we consider T := 1

m

∑m−1
l=0 M l, with m large enough

so that all entries of T are strictly positive (this is possible because M is
irreducible). Hence T is mixing. On the other hand, any eigenvector π ∈ PE
of M corresponding to eigenvalue 1 is also an eigenvector of T corresponding
to eigenvalue 1. But since T is mixing, by our previous results π must be
unique. Furthermore, it is easy to see that because T is a stochastic matrix
with strictly positive entries and π ∈ PE, also Tπ is a vector with strictly
positive entries. Hence the relation π = Tπ implies that π itself has strictly
positive entries.

Finally, we will investigate the question whether πn = Mnπ0 → π∞ for
n → ∞. It may already be evident that something like that can be shown
for mixing stochastic matrices. Actually, a bit less will suffice:

Theorem 2.25. Suppose that M is a stochastic matrix so that Mp is mixing
for some p ∈ N. Then πn := Mnπ0 → π as n → ∞ for any π0 ∈ PE.
Furthermore, π is the unique eigenvector in PE of M for eigenvalue 1 (i.e.
the unique stationary distribution). Finally, if λ is another eigenvalue of M ,
then |λ| < 1.

Proof. If Mp is mixing, then a calculation similar to Equation (2.21) will
show that

‖Mpv‖ ≤ (1− α)‖v‖ (2.22)

for any v ∈ V and some α > 0. Any n ∈ N may be represented as n = n1p+n2

with some n1 ∈ N and n2 ∈ {0, . . . , p− 1} (divide n by p and take n1 and n2

as the integer part and the remainder, respectively). Therefore

‖Mnv‖ = ‖Mn1p+n2v‖ ≤ (1− α)n1‖Mn2v‖ ≤ (1− α)n1‖v‖, (2.23)

where we have also used Equation (2.18) which is valid for any stochastic
matrix. Since n1 ≥ n

p
− 1, we may write Equation (2.23) as

‖Mnv‖ ≤ Cβn‖v‖, (2.24)

with β = (1− α)1/p and C = 1
1−α . Equation (2.24) implies that {πn, n ∈ N}

is a Cauchy sequence. Indeed, since Mkπ0 − π0 ∈ V we have

‖Mn+kπ0 −Mnπ0‖ ≤ Cβn‖Mkπ0 − π0‖ ≤ Cβn(‖Mkπ0‖+ ‖π0‖) ≤ 2Cβn.
(2.25)

This shows that πn → π and, as we have seen at the beginning of this section,
π is a stationary distribution. If π̄ is another stationary distribution, then
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π − π̄ ∈ V , so Equation (2.22) implies ‖π − π̄‖ = ‖Mp(π − π̄)‖ ≤ β‖π − π̄‖,
and hence π = π̄ since β < 1.

To show the last claim we use the following standard fact from linear
algebra: if w is an eigenvector of M with eigenvalue λ 6= 1, then w must be
perpendicular to any eigenvector ρ of Mtr with eigenvalue 1. But since we
may take ρ = (1, . . . , 1), this implies w ∈ V . Therefore

|λ|p‖w‖ = ‖λpw‖ = ‖Mpw‖ = (1− α)‖w‖

so that |λ| ≤ β < 1.

Note that mixing stochastic matrices are not necessarily irreducible, and
an irreducible stochastic matrix (or any power of it) might not be mixing
(an example is the random walk on the circle with even number of states).
Further, for mixing stochastic matrices the stationary distribution π might
have zero entries, while this cannot happen for irreducible matrices according
to Theorem 2.24.

We will now identify irreducible stochastic matrices M for which some
power Mk is mixing. Fix l ∈ E. We define R(l) ⊂ N as the set of all
numbers n > 0 so that Mn

l,l > 0. In other words, n ∈ R(l) if there is nonzero
probability that starting at l, the particle returns to l in n steps. Note that
R(l) is not empty by irreducibility. Further, R(l) is closed with respect to
addition, that means whenever n1 and n2 are in R(l), then so is n1 +n2. The
period γ(l) of l is the greatest common divisor of R(l). The following Lemma
is remarkable, but we will not actually use it.

Lemma 2.26. If M is irreducible, all states l ∈ E will have the same period.

Proof. (This proof can be skipped as we will not use the Lemma.) Pick two
states l1, l2. Then there exist N1, N2 so that MN1

l1,l2
> 0 and MN2

l2,l1
> 0, that is

the particle may travel from l2 to l1 in N1 steps, and from l1 to l2 in N2 steps.
As a result, N := N1 + N2 is contained in R(l2), therefore γ(l2) divides N .
This means that γ(l2) divides all elements of N+R(l2) := {n+N, n ∈ R(l2)}
and is in fact the greatest common divisor of these numbers. On the other
hand, N +R(l2) ⊂ R(l1); this is because the particle might first travel from
l1 to l2 in N2 steps, then take a loop of n steps back to l2 (for any n ∈ R(l2)),
and then return to l1 in N1 steps. Hence γ(l1), too, divides all elements of
N +R(l2) so we obtain γ(l2) ≥ γ(l1). The argument is entirely symmetrical,
so reversing the roles of l1 and l2 gives γ(l1) ≥ γ(l2), proving the claim.

This motivates the following
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Definition 2.27. The period of an irreducible matrix M is the period of
the states l ∈ E (which is the same for all l according to Lemma 2.26).
Furthermore, an irreducible matrix M with period 1 is called aperiodic.

We are now ready to formulate the main theorem in this section:

Theorem 2.28. Suppose that M is irreducible and aperiodic. Then there
is a q ∈ N so that M q is mixing. Therefore, the conclusions of both Theo-
rems 2.24, 2.25 hold.

Our proof will merely use that there is a state with period 1.

Proof. Fix a state l ∈ E with period 1. We can find a finite set of elements
{r1, . . . , rp} ⊂ R(l) that have gcd equal to one. Using Euclid’s algorithm,
one may find numbers {a1, . . . , ap} ⊂ Z such that 1 = a1r1 + . . . + aprp.
Setting s = r1 + . . . + rp, we may write any number n as n = n1s + n2 with
0 ≤ n2 < s. Therefore

n = n1s+ n2 · 1 = n1s+ n2(a1r1 + . . .+ aprp) =

p∑
j=1

(n1 + n2aj)rj.

Although the {aj} may contain negative numbers, there exists a K ∈ N so
that if n ≥ K, the coefficiens n1 + n2aj are positive for all j = 1, . . . , p. But
then the right hand side is in R(l), so we conclude that any n ≥ K is in
R(l). In other words, for any n ≥ K we have Mn

l,l > 0.
Now consider another state j 6= l. Since M is irreducible, we find m

(depending on j and l) so that Mm
l,j > 0. Hence for n ≥ K we get Mn+m

l,j ≥
Mn

l,lM
m
l,j > 0. Stated differently, for each n ≥ K + m we get Mn

l,j > 0. Since
j was arbitrary, we can conclude (increasing K if necessary) that for any
n ≥ K we have Mn

l,j > 0 for each j ∈ E. This means that the l’th row of MK

has only positive entries, which implies that MK is mixing by Exercise 2.9.
We set q := K and the proof is complete.

Exercise 2.9. Let M be a stochastic matrix with one row having only pos-
itive entries. Show that M is mixing. (Hint: If the l’th row of M has all
entries larger than or equal to α > 0, choose ρ ∈ PE with ρ(l) = 1 and ρ(i) = 0
for i 6= l.)

Proof. We take ρ as in the hint. Then Mi,j ≥ αρ(i) for all j and all i 6= l
because ρ(i) = 0 for those i. Further, we have Ml,j ≥ α = αρ(l) by assumption
and because we have set ρ(l) = 1. Hence Mi,j ≥ αρ(i) for all i, j, establishing
the mixing condition from the proof of Theorem 2.24.

Exercise 2.10.
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Exercise 2.11 (Assessed Exercise 8). Consider the Random walk on the
circle (Example 2.17).

1. By analysing the Markov matrix M or otherwise, find an invariant
distribution of this Markov process.

2. Demonstrate that this Markov process can have at most one invariant
distribution.

Exercise 2.12 (Assessed Exercise 9). 1. Consider a Markov matrix of
the form

M =


0 ∗ 0 0
∗ ∗ 0 0
∗ ∗ ∗ ∗
0 0 ∗ 0


where “∗” indicates a nonzero entry. Show that M is not irreducible
but nonetheless has a unique invariant distribution, which must be of
the form π = (0, 0, ∗, ∗), where again “∗” indicates a nonzero entry.
(Hint: show that M is mixing and revisit the proof of Thm. 2.24.)

2. Consider a Markov matrix of the form

M =

 M1 0
0 M2


where the blocks M1,M2 are irreducible Markov matrices. Show that
M is not irreducible. Furthermore, find at least two invariant distribu-
tions for M . (Hint: Use the invariant distributions π1, π2 of M1,M2,
respectively).

3. Consider a Markov process {Xn, n ∈ N} on E = {1, 2} with X0 = 1
and a Markov matrix of the form

M =

 α 0
1− α 1


for some 0 < α < 1. Let τ be the index n at which Xn = 2 for the first
time. Compute P (τ = n) as a function of n.

2.7 Introduction to ergodic theory of Markov

processes with general state space

Ergodic theory of Markov processes with general state space is again a vast
topic which we can only scrape the surface of. Fix a Markov pair (K, π) on
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some state space (E,BE), and let φ : E → R be a measurable function so
that

∫
E
|φ(z)|K(dz, x) <∞ for π–almost all x. We introduce the shorthand

Kφ for the function defined through

Kφ(x) =

∫
E

φ(z)K(dz, x) (2.26)

for all x ∈ E, while Kπ denotes the distribution defined through

Kπ(B) :=

∫
E

K(B, x)π(dx) (2.27)

for all B ∈ BE.
Given that the entire distribution of a homogenous Markov process is

uniquely defined through its Markov pair (K, π), it is probably not surprising
that stationarity and ergodicity of such processes (which are concepts which
usually refer to the entire distribution) can be characterised in terms of the
Markov pair (K, π) only. This will be demonstrated in the next theorem
after the following

Definition 2.29. Let (K, π) and φ be as above.

1. The distribution π is invariant with respect to the kernel K if

π = Kπ

2. The function φ is invariant with respect to the pair (K, π) if

φ(x) = Kφ(x)

for π–allmost all x ∈ E.

Theorem 2.30. Consider a Markov process {X} with Markov pair (K, π).

1. The process is stationary if and only if π is invariant with respect to
the kernel K

2. The process is ergodic if and only if π is invariant for K and every
bounded invariant function φ is π–almost surely equal to a constant.

Proof. To prove the first item, we use the same notation as in Exercise 2.7
(Chapman–Kolmogorov–Identity), that is, we let πn := PXn . Clearly π0 = π.
We now invoke Equation (2.15) in the form

P(Xn+k ∈ Bk, . . . , Xn+1 ∈ B1)

= P(Xn+k ∈ Bk, . . . , Xn+1 ∈ B1, Xn ∈ E, . . .X1 ∈ E)

=

∫
E

· · ·
∫
E

1Bk
(xn+k)K(dxn+k, xn+k−1) · . . . · 1B1(xn+1)K(dxn+1, xn)

·K(dxn, xn−1) · . . . ·K(dx2, x1) · π1(dx1),
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using that 1E = 1. The integrals over x1, . . . , xn−1 can be carried out using
the Chapman-Kolmogorov-Identity. Using also the fact that πl = π for all
l ∈ N we obtain

P(Xn+k ∈ Bk, . . . , Xn+1 ∈ B1)

=

∫
E

· · ·
∫
E

1Bk
(xn+k)K(dxn+k, xn+k−1) · . . . · 1B1(xn+1)K(dxn+1, xn) · π(dxn).

If we rename the integration variables xn, . . . , xn+k with, say z0, . . . , zk, any
mention of n on the right hand side disappears, and we obtain that the left
hand side does not depend on n, showing that {Xn} is stationary. If on the
other hand {Xn} is stationary, then πn = PXn does not depend on n.

To prove the second item, we need the following consequence of the
Markov property, which is proved in Exercise 2.13. If ψ : E∞ → R is
bounded and measurable, then

E(ψ(Xn+1, Xn+2, . . .)|X1, . . . , Xn) = E(ψ(Xn+1, Xn+2, . . .)|Xn). (2.28)

Furthermore, for any bounded and measurable ψ we define ψ̄ through

ψ̄(x) := E(ψ(Xn+1, Xn+2, . . .)|Xn = x).

Note that ψ̄ for given ψ only depends on the distribution of {Xn, Xn+1, . . .}
and is therefore independent of n.

After these preliminaries, we now assume that any (K, π)–invariant func-
tion φ is π-a.s. constant and want to establish ergodicity of {Xn}. To this
end, let ψ : E∞ → R be bounded, measurable and invariant for {Xn}. Then

ψ̄(Xn) = E(ψ(Xn+1, Xn+2, . . .)|Xn)

= E(ψ(Xn+2, Xn+3, . . .)|Xn) (by invariance of ψ)

= E (E(ψ(Xn+2, Xn+3, . . .)|Xn+1, Xn)|Xn) (by law of iterated exp.)

= E (E(ψ(Xn+2, Xn+3, . . .)|Xn+1)|Xn) (by Eq. 2.28)

= E
(
ψ̄(Xn+1)|Xn

)
(by def. of ψ̄)

= Kψ̄(Xn) (by Eq. 2.13).

We obtain that ψ̄ is (K, π)-invariant and therefore ψ̄ is π-almost surely equal
to a constant c. Using the definition of ψ̄ in conjuction with Equation (2.28)
and the invariance of ψ once again we find

c = ψ̄(Xn)

= E(ψ(Xn+1, Xn+2, . . .)|Xn)

= E(ψ(Xn+1, Xn+2, . . .)|X1, . . . , Xn)

= E(ψ(X1, X2, . . .)|X1, . . . , Xn) (by invariance of ψ).
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Now we take the limit n→∞ and use the Martingale result in Exercise 2.6
on the right hand side to conclude that ψ(X1, X2, . . .) is almost surely equal
to a constant.

To prove the other direction, start with assuming that {Xn, n ∈ N} is
ergodic. If φ : E → R is measurable and bounded, the Ergodic Theorem
implies that

1

n

n−1∑
k=0

φ(Xk)→ c

in L1 for some constant c. Take the conditional expectation with respect to
X1 on both sides. Exercise 2.10 shows that this can be interchanged with
the L1-limit in the Ergodic Theorem. We obtain

1

n

n−1∑
k=0

E(φ(Xk)|X1)
L1→ c. (2.29)

On the other hand, it is easy to see from Equation (2.28) that E(φ(Xk)|X1) =
Kk−1φ(X1) for any k ∈ N. For a (K, π)–invariant φ, this means E(φ(Xk)|X1) =
φ(X1). Using this in Equation (2.29), we find that φ is equal to c almost
surely with respect to π.

Exercise 2.13. If {Xn, n ∈ N} is a Markov process and ψ : E∞ → R is
bounded and measurable, demonstrate Equation (2.28).

Proof. We recall that a finite dimensional rectangle in B(E∞) is a set of
the form {x = (x1, x2, . . .) ∈ E∞;x1 ∈ B1, . . . , xk ∈ Bk} for some sets
B1, . . . , Bk ∈ B(E) and some k ∈ N. If ψ = 1B where B is a finite dimen-
sional rectangle, Equation (2.28) follows (after some calculations) from the
identity (2.15). If ψ = 1B for some general set B ∈ B(E∞), it follows from
the MET (Thm. 1.5) that ψ can be approximated in L1 by functions of the
form

∑n
l=1 1Bn where B1, . . . , Bn are finite dimensional rectangles; since the

identity (2.28) is linear, it also holds for functions of this form. We have es-
tablished that Equation (2.28) holds for general characteristic functions, and
again by linearity it holds for general simple functions. Since any bounded
and measurable ψ can be approximated in L1 by simple functions, the proof
is complete.

Exercise 2.14.
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2.8 A simple sufficient condition for ergodic-

ity

In the previous section, we saw that stationarity and ergodicity of a homoge-
nous Markov process can be studied in terms of the corresponding Markov
pair (K, π), checking if π is invariant (for stationarity) or, in addition, if every
(K, π)–invariant bounded φ is π–almost surely equal to a constant. In the
present section, we will prove a theorem which provides a simple criterion
sufficient for ergodicity. It is worth stressing though that it is by no means
necessary, and a plethora of different approaches have been investigated.

Theorem 2.31. Consider a Markov kernel K on a state space E. Suppose
that there exists a constant c > 0 and a probability measure ν on BE such that
K(B, x) ≥ cν(B) for all B ∈ BE and all x ∈ E. Then there exists a unique
K-invariant probability distribution π. Furthermore, a Markov process with
pair (K, π) is ergodic.

Definition 2.29 should make it plain that an invariant distribution π is
a fixed point of K if we regard the latter as a mapping on the space of
probability distributions over E into itself. Our proof will proceed by finding
such a fixed point through Banach’s fixed point theorem. With regards to
ergodicity, a fundamental statement in ergodic says that if there is only
one invariant measure, it must be ergodic, so given that Banach’s theorem
provides uniqueness of the invariant measure, ergodicity would follow. We
will however give and independent and simple proof that an invariant function
is almost surely constant.

Proof. Our proof will rely on results established in Exercises 2.15–2.18. We
let PE be the space of probability measures over (E,BE) and equip PE with
the total variation metric

TV(π, ρ) := sup
B∈BE

|π(A)− ρ(A)|.

It can be shown (see Ex. 2.15) that TV is indeed a metric and (PE,TV)
is a complete metric space. We now need to show that K is contracting,
that is there exists an α < 1 such that TV(Kπ,Kρ) ≤ αTV(π, ρ) for any
π, ρ ∈ PE. We first note that the lower bound on K in our conditions
automatically define an upper bound as well, namely

K(B, x) = 1−K(B{, x) ≤ 1− cν(B{) = 1− c(1− ν(B)).
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Next we fix π, ρ ∈ PE and invoke Exercise 2.16 to get that for any B ∈ BE,
we have

Kπ(B)−Kρ(B) =

∫
E

K(B, x) (π(dx)− ρ(dx))

=

∫
E

(K(B, x)− cν(B) + cν(B)) (π(dx)− ρ(dx))

=

∫
E

(K(B, x)− cν(B)) (π(dx)− ρ(dx))

= sup
x∈E

(K(B, x)− cν(B)) TV(π, ρ),

(2.30)

where in the third line we have used that cν(B) does not depend on x. Our
use of Exercise 2.16 is based on the fact that x → K(B, x) − cν(B) is a
nonnegative function due to our assumptions. But using the upper bound
we find

sup
x∈E

(K(B, x)− cν(B)) ≤ 1− c(1− ν(B))− cν(B) ≤ 1− c. (2.31)

By combining Equations (2.30,2.31) and since B was arbitrary, we find the
contraction property with α = 1− c.

To prove ergodicity, we introduce the space C of measurable and bounded
functions φ so that π(φ) = 0, equipped with the norm ‖φ‖ := supx,y∈E |φ(x)−
φ(y)|. Note that if ‖φ‖ = 0 then φ must be constant, but since π(φ) = 0
this constant must be zero. In Exercise 2.17 we prove that (C , ‖.‖) is a
Banach space. We let φ be a bounded measurable and invariant function.
Since the function φ− b, where b is a constant, is still an invariant function,
by taking b = π(φ) we may assume φ ∈ C . We now want to show that
φ = 0. In Exercise 2.18 we show that for a nonnegative, measurable and
bounded function φ we have Kφ(x) − Kφ(y) ≤ (1 − c) supx φ(x) for all
x ∈ E. A function φ ∈ C can be decomposed as φ = φ+−φ−, where φ+(x) :=
max{φ(x), 0} and φ−(x) := max{−φ(x), 0} are nonnegative, measurable and
bounded functions. With these, we have

φ(x)− φ(y) = Kφ(x)−Kφ(y) (By invariance of φ)

= Kφ+(x)−Kφ+(y)− (Kφ−(x)−Kφ−(y)) (decomposing φ)

≤ (1− c)(sup
z
φ+(z) + sup

z
φ−(z)) (Exercise 2.18)

≤ (1− c)‖φ‖ (Exercise 2.17.2).

Since x, y are arbitrary, we have ‖φ‖ ≤ (1− c)‖φ‖ which implies φ = 0 since
1− c < 1.
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Exercise 2.15. Show that TV is a metric on PE, turning (PE,TV) into a
complete metric space.

Exercise 2.16. For π, ρ ∈ PE and φ : E → R bounded, nonnegative and
measurable, show that

|
∫
E

φ(x)π(dx)−
∫
E

φ(x)ρ(dx)| ≤ sup
x∈E

φ(x) TV(π, ρ).

Proof. Write c := supx∈E φ(x); we have∫
E

φ(x)π(dx) =

∫ c

0

π{x;φ(x) ≥ z} dz,

and the same for ρ. Hence

|
∫
E

φ(x)π(dx)−
∫
E

φ(x)ρ(dx)|

≤ |
∫ c

0

π(φ(x) ≥ z)− ρ(φ(x) ≥ z) dz|

≤ cTV(π, ρ).

Exercise 2.17. Show that in the context of Theorem 2.31

1. (C , ‖.‖) is a Banach space.

2. For an element φ ∈ C it holds that ‖φ‖ = supz φ+(z) + supz φ−(z).

Partial solution to item 1. To show that (C, ‖.‖) is complete, let {φn, n ∈ N}
be a Cauchy sequence in the norm ‖.‖. Define the sequence {ψn} of functions
through ψn(x, y) := φn(x) − φn(y). Due to how the norm ‖.‖ is defined, we
find that {ψn} is a Cauchy sequence in the space D of bounded measurable
functions on E × E with the usual sup norm |||f ||| := supx,y∈E |f(x, y)|. This
space is complete, as can be proved exactly as was shown in the tutorial by
group GOLF (here we don’t even need to prove continuity). Hence there is
a ψ ∈ D such that supx,y∈E |ψ(x, y)− (φn(x)− φn(y))| → 0.

We now define the function φ through φ(x) := ψ(x, z) −
∫
ψ(r, z)π(dr),

where z is an arbitrary element of E. Clearly, φ is bounded, measurable, and∫
φ(r)π(dr) = 0, so φ ∈ C. We now claim that ‖φn − φ‖ → 0. Indeed,

|φn(x)− φn(y)− (φ(x)− φ(y))|
= |φn(x)− φn(y)− (ψ(x, z)− ψ(y, z))|
= |φn(x)− φn(z)− ψ(x, z)− (φn(y)− φn(z)− ψ(y, z))|
≤ |φn(x)− φn(z)− ψ(x, z)|+ |φn(y)− φn(z)− ψ(y, z)|
= |ψn(x, z)− ψ(x, z)|+ |ψn(y, z)− ψ(y, z)|.
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Taking the sup over x, y, z we find ‖φn − φ‖ ≤ 2|||ψn − ψ|||. The right hand
side goes to zero, finishing the proof.

Alternative solution to item 1. Since φ(x) =
∫
φ(x)− φ(y)π(dy) for any φ ∈

C , we have supx |φ(x)| ≤
∫

supx,y |φ(x) − φ(y)|π(dy) = ‖φ‖. So if we let
|||φ||| := supx |φ(x)| be the usual sup norm, we have shown |||φ||| ≤ ‖φ‖. On
the other hand, by the triangle inequality supx,y |φ(x)−φ(y)| ≤ 2 supx |φ(x)|,
so ‖φ‖ ≤ 2|||φ|||. Hence the two norms are equivalent. Since the space of
bounded measurable functions is complete with respect to the |||.|||-norm, we
can conclude that there is a bounded measurable function φ so that ‖φn −
φ‖ → 0. It remains to show that

∫
φ(x)π(dx) = 0 but this follows from

bounded convergence.

Exercise 2.18. Show that in the context of Theorem 2.31, a nonnegative,
measurable and bounded function φ satisfies the estimate

Kφ(x)−Kφ(y) ≤ (1− c) sup
x
φ(x) for all x, y ∈ E.

Proof. Define the probability kernel L through L(B, x) := 1
1−c(K(B, x) −

cν(B)) for all B ∈ BE and x ∈ E; note that due to our assumptions, this is in-
deed a probability kernel. Further, Kφ(x)−Kφ(y) = (1−c)(Lφ(x)−Lφ(y)).
According to Exercise 2.16 we have Lφ(x)−Lφ(y) ≤ supx∈E φ(x) TV(L(., x), L(., y)).
But TV ≤ 1 on probabilities. Combining these facts, we get the result.
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Appendix A

Miscellaneous proofs

A.1 Proof of Theorem 2.19, item 1

.

A.2 Completeness of the total variation met-

ric
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Appendix B

Solutions to selected exercises

Exercise 1.1

1. For a set Ω the power set 2Ω of Ω is the set of all of its subsets. Following
Definition 3, we need to verify three properties for the power set to be
a sigma algebra. First, since ∅ is a subset of Ω, ∅ ∈ 2Ω. Second,
if A ∈ 2Ω then A ⊂ Ω which implies that A{ ⊂ Ω. This means that
A{ ∈ 2Ω. Finally for countably many elements A1, A2, · · · ∈ 2Ω, we have
A1, A2, · · · ⊂ Ω, hence ∪∞k=1Ak ⊂ Ω. This means that ∪∞k=1Ak ∈ 2Ω as
required.

2. Suppose S1,S2 are sigma algebras. Following Definition 3, we need to
verify three properties for S1 ∩ S2 to be a sigma algebra. First, since
∅ ∈ S1 and ∅ ∈ S2 we have that ∅ ∈ S1 ∩ S2. Second, if A ∈ S1 ∩ S2

then A ∈ Sk, k = 1, 2. Since Sk, k = 1, 2 are sigma algebras, we deduce
that Ac ∈ Sk, k = 1, 2 which further implies that Ac ∈ S1∩S2. Finally,
let A1, A2, · · · ∈ S1 ∩ S2. Then, A1, A2, · · · ∈ Sk, k = 1, 2. Since Sk,
k = 1, 2 are sigma algebras we deduce that ∪∞j=1Aj ∈ Sk, k = 1, 2 which
further implies that ∪∞j=1Aj ∈ S1∩S2. In conclusion the three required
properties for a sigma algebra are satisfied.

3. For a set Ω, let A be an arbitrary family of subsets of Ω. We define F
to be the family of all sigma algebras on Ω that contain the family A of
subsets of Ω. The power set 2Ω by definition contains A and from the
previous item it is a sigma algebra on Ω. Hence, 2Ω ∈ F. So F contains
at least one sigma algebra (and maybe more). We take the intersection
of all these sigma algebras and call the result Ā. For sure, Ā ⊃ A.
But since the intersection of sigma algebras is also a sigma algebra we
deduce that Ā is a sigma algebra on Ω containing A. Further, Ā is
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contained in any other sigma algebra in F and is therefore the smallest
sigma algebra containing A.

Exercise 1.2

1. Since ∅ and Ω are disjoint, the additivity property implies:

P (∅) + P (Ω) = P (∅ ∪ Ω) = P (Ω),

and since P (Ω) = 1 <∞ we deduce that P (∅) = 0.

2. (⇒) Consider countably many pairwise disjoint sets An, n = 1, 2, . . . in
A so that ∪An is in A as well. We want to show that

∑∞
n=1 P (An) =

P (∪An). We define:

Bn = ∪Ak \ (A1 ∪ · · · ∪ An)

for n ∈ N. We then have that B1 ⊃ B2 ⊃ . . . and ∩Bn = ∅. Hence,
since we assume that continuity at the empty set holds we deduce:

lim
n→∞

P (Bn) = P (∩Bn) = 0.

Furthermore, due to the disjointness of the Ai’s, we have

0 = lim
n→∞

P (Bn) = lim
n→∞

(
P (∪Ak)−

n∑
k=1

P (Ak)
)

= P (∪Ak)−
∞∑
k=1

P (Ak),

which gives the required equality.

(⇐) For countably many sets An, n = 1, 2, . . . in A such that A1 ⊃
A2 ⊃ . . . and ∩Ak = ∅, we need to show that limn→∞ P (An) = 0. We
define:

Bn = An ∩ Acn+1

for n ∈ N. We then have that for i 6= j, Bi ∩ Bj = ∅. Moreover,
∪Bk = ∪Ak = A1 ∈ A and from the sigma additivity of the family of
subsets {Bn}n∈N we also have that

∑∞
k=1 P (Bk) = P (∪Bk) = P (A1).

So we have:

0 = lim
n→∞

(
P (∪Bk)−

n∑
k=1

P (Bk)
)

= lim
n→∞

P (∪Bk \ (B1 ∪ · · · ∪Bn))

= lim
n→∞

P (A1 \ (A1 ∩ Acn+1))

= lim
n→∞

P (An+1),

namely, limn→∞ P (An) = 0 as required.
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3. Using the previous item we will show that sigma additivity is equivalent
to continuity from above.

(⇒) Consider countably many sets An, n ∈ N with A1 ⊃ A2 ⊃ . . . . We
define

Bn = An \ An+1

for all n ∈ N. We have then that for i 6= j, Bi ∩ Bj = ∅ and ∪Bk =
∪Ak = A1 ∈ A. Moreover, using the sigma additivity of the family
{Bn}n∈N, we have

∑
P (Bk) = P (∪Bk). Furthermore,

0 = lim
n→∞

(
P (∪Bk)−

n∑
k=1

P (Bk)
)

= lim
n→∞

P (∪Bk \ (B1 ∪ · · · ∪Bn))

= lim
n→∞

P (A1 \ (A1 ∩ Acn+1))

= lim
n→∞

P (An+1).

(⇐) Consider sets {An}n∈N with Ai ∩ Aj = ∅ for i 6= j. We define:

Bn = ∪∞k=nAk

for all n ∈ N. Then we have that B1 ⊃ B2 ⊃ . . . and ∪Bk = ∪Ak.
Moreover, it is not difficult to verify that

∩Bn = ∩∞n=1(∪∞k=nAk) = ∅.

From the continuity from above property on the family {Bn}n∈N we
have that limn→∞ P (Bn) = P (∩Bn) = 0. Furthermore,

∪Ak =
(
∪nk=1 Ak

)
∪
(
∪∞k=n+1 Ak

)
= ∪nk=1 ∪Bn+1,

and therefore

P (∪Ak) =
n∑
k=1

P (Ak) + P (Bn+1),∀n ∈ N.

By taking the limit n→∞, we get

P (∪Ak) =
∞∑
k=1

P (Ak) + P (∩Bk) =
∞∑
k=1

P (Ak).
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4. Using a previous item we will show that sigma additivity is equivalent
to continuity from below.

(⇒) Consider countably many sets with A1 ⊂ A2 ⊂ . . . and ∪Ak ∈ A.
We define:

Bn = An \ (A1 ∪ · · · ∪ An−1)

for all n ∈ N. Then we have that for i 6= j, Bi∩Bj = ∅ and ∪Bk = ∪Ak
and ∪kj=1Bj = Ak. So we have that P (Ak) =

∑k
j=1 P (Bj) which implies

that:

lim
k→∞

P (Ak) =
∞∑
k=1

P (Bk) = P (∪Bk) = P (∪Ak),

where for the second equality we have used the sigma additivity for the
family of sets {Bn}n∈N.

(⇐) Consider countably many pairwise disjoint sets An, n ∈ N. We
define:

Bn = A1 ∪ · · · ∪ An
for all n ∈ N. Then we have that B1 ⊂ B2 ⊂ . . . and ∪Bk = ∪Ak.
Furthermore:

∞∑
n=1

P (An) = lim
n→∞

n∑
k=1

P (Ak) = lim
n→∞

P (A1 ∪ · · · ∪ An)

= lim
n→∞

P (Bn) = P (∪Bk) = P (∪Ak),

where the fourth equality follows from the continuity from below prop-
erty of the family {Bi}i∈N of subsets.

5. For A1, A2, . . . countably many disjoint sets in A. Then from the ad-
ditivity property we have for all n ∈ N:

n∑
k=1

P (Ak) = P (∪nk=1Ak) ≤ P (Ω) = 1.

Since for all n ∈ N,
∑n

k=1 P (Ak) ≤ 1 by taking the limit as n→∞ we
have:

∞∑
n=1

P (An) <∞,

i.e. the series converges. This implies that P (An)→ 0 as n→∞.
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Exercise 1.3

1. We check Definition 3.

(a) ∅ ∈ B, and f−1(∅) = ∅, so ∅ ∈ A0.

(b) Let A ∈ A0. Then ∃B ∈ B : f−1(B) = A. Now B{ ∈ B and

f−1(B{) = f−1(B)
{

= A{, hence A{ ∈ A0.

(c) If A1, A2, ... ∈ A0, then ∃B1, B2, ... ∈ B so that f−1(Bk) = Ak.

Therefore
⋃
k Ak =

⋃
k f
−1(Bk) = f−1 (

⋃
k

Bk)︸ ︷︷ ︸
∈B

∈ A0.

2. We check Definition 3.

(a) Since f−1(∅) = ∅ ∈ A, ∅ ∈ B0.

(b) If f−1(B) ∈ A, then f−1(B{) = f−1(B)
{ ∈ A. This shows B ∈

B0 =⇒ B{ ∈ B0.

(c) If f−1(Bk) ∈ A ∀k ∈ N, then f−1(
⋃
k

Bk) =
⋃
k

f−1(Bk) ∈ A. This

shows B1, B2, ... ∈ B0 =⇒
⋃
k

Bk ∈ B0.

3. If B0 contains B, then f−1(B) ∈ A for all sets B ∈ B. Hence f is a
random variable.

4. Let D be the sets of the form {x ∈ R, x > a}, and B0 as in item 2. We
know by assumption D ⊂ B0. Since B0 is a σ-algebra by (2), we have
σ(D) ⊂ B0. But by (4.2), σ(D) = B. Hence B ⊂ B0. It follows from
(3) that f is a random variable.

Exercise 1.5

1. You can find simple g̃ ≤ f so that
∫
g̃dP is arbitrarily close to sup

∫
gdP

in the theorem. Hence if c < sup
∫
gdP, you could find g so that

c <
∫
gdP, violating the statement, i.e. the statement implies c ≥

sup
∫
gdP. On the other hand, since all fn are simple and no greater

than f , we must have c ≤ sup
∫
gdP.

2. fn − g is measurable, so Mn = {fn − g > −ε} are measurable sets.
M1 ⊂ M2 ⊂ ... follows because fn is monotone increasing. Suppose
that ω were in none of the Mn, then

fn(ω) ≤ g(ω)− ε ≤ f(ω)− ε
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∀n, so fn(ω) 9 f(ω), which is a contradiction. Hence
⋂
n

Mn = ∅ =⇒⋃
n

Mn = Ω.

3. We know that fn, g and 1Mn are simple, so fn ·1Mn , g ·1Mn ,
∑

1Mn are
too. Now fn ≥ fn · 1Mn ≥ (g − ε) · 1Mn due to the definition of Mn.
Now the relation (1.7) follows from monotonicity.

4. P(Mn) = P(
n⋃
k=1

Mk)→ P(
∞⋃
k

Mk) = 1. Now let g1Mn =
m∑
k=1

gk · 1Bk∩Mn .

By the same argument as above we get P(Bk ∩ Mn) = P(
n⋃
l=1

(Bk ∩

Mk))
n→∞−−−→ P(Bk). Hence

∫
1MngdP =

m∑
k=1

gk · P(Bk ∩ Mn)
n→∞−−−→

m∑
k=1

gk · P(Bk) =
∫
gdP.

Exercise 1.6

Put An = {ω; f(ω) > 1
n
}, then for ω ∈ An; n · f(ω) ≥ 1, and if ω /∈

An, n · f(ω) ≥ 0, so n · f(ω) ≥ 1An(ω) ∀ω ∈ Ω. This gives 0 = n
∫
fdP ≥

n ·
∫
1AndP = P(An), so

P(
∞⋃
n=1

An) = lim
m→∞

P(
m⋃
n=1

An) ≤
m∑
n=1

P(An) = 0.

But if f(ω) > 0 for some ω, then f(ω) > 1
n

for some n, hence ω ∈ An for
some n, hence ω ∈

⋃
n∈N

An, but this set has probability zero.

Exercise 1.8

1. We shall check the three defining properties of probability one by one.

(a) Note that T−1(Ω2) = Ω1. Then T?P(Ω2) = P(T−1(Ω2)) = P(Ω1) =
1, using the assumption that P is a probability on (Ω1,A1).

(b) If A,B ∈ A2 and A∩B = φ then T−1(A)∩T−1(B) = T−1(A∩B) =
T−1(φ) = φ, hence T−1(A) and T−1(B) are disjoint. Therefore by
additivity of P, T?P(A ∪ B) = P(T−1(A ∪ B)) = P(T−1(A) ∪
T−1(B)) = P(T−1(A)) + P(T−1(B)) = T?P(A) + T?P(B), i.e. T?P
is additive.
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(c) Suppose Ak ∈ A2 for all k ∈ N and A1 ⊇ A2 ⊇ · · · with
∩k∈NAk = φ. It follows that T−1(A1) ⊇ T−1(A2) ⊇ · · · and
∩k∈NT−1(Ak) = T−1(∩k∈NAk) = φ. Hence by continuity of P at
φ, T?P(Ak) = P(T−1(Ak))→ 0, so T?P is continuous at φ as well.

2. If f : (Ω2,A2) → (R,B) is a random variable, then f−1(B) ∈ A2 for
all B ∈ B. Further, if T : (Ω1,A1) → (Ω2,A2) is measurable, then
T−1(A2) ∈ A1 for all A2 ∈ A2, in particular if we take A2 = f−1(B).
Hence (f ◦ T )−1(B) = T−1(f−1(B)) ∈ A1 for all B ∈ B, implying that
f ◦ T is a random variable.

Exercise 1.9

1. Suppose f : (Ω2,A2) → (R,B) is measurable and non-negative. Take
(fn)n∈N a sequence of simple functions with fn ↑ f (e.g. as in step 4 of
the integral construction). We have, from theorem 5.1,∫

Ω2

fn d(T?P) =

∫
Ω1

fn ◦ T dP.

By monotone convergence, the left-hand-side converges to
∫

Ω2
fd(T?P).

Further, since fn◦T ↑ f◦T , the right-hand-side converges to
∫

Ω1
f◦TdP,

again by monotone convergence. By uniqueness of limits we get∫
Ω2

f d(T?P) =

∫
Ω1

f ◦ T dP.

2. If f = f+ − f− is integrable with respect to T?P, then

∞ >

∫
Ω2

f+ d(T?P) =

∫
Ω1

f+ ◦ T dP

and

∞ >

∫
Ω2

f− d(T?P) =

∫
Ω1

f− ◦ T dP

using part (1). Subtracting the second expression from the first and
observing f+ ◦ T − f− ◦ T = (f+ − f−) ◦ T = f ◦ T gives the result.
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Exercise 1.10

We first prove the statement “f is a random variable implies fk are random
variables for all k ∈ N.” Fix k ∈ N and B ∈ B, and consider the rectangular
cylinder C := {x ∈ R∞ : xk ∈ B}. Then C ∈ B∞ and hence by our
assumption f−1(C) ∈ A. But

f−1(C) = {ω ∈ Ω : fk(ω) ∈ B}
= f−1

k (B).

Hence f−1
k (B) ∈ A, implying that fk is a random variable.

For the converse statement, fix a non-negative integer L, the indices
k1, · · · , kL ∈ N, the Borel sets B1, · · · , BL ∈ B, and the rectangular cylinder

C = {x ∈ R∞ : xk1 ∈ B1, · · · , xkL ∈ BL}.

Then

f−1(C) = {ω ∈ Ω : fk1(ω) ∈ B1, · · · , fkL(ω) ∈ BL}
= ∩Lm=1{ω ∈ Ω : fkm(ω) ∈ Bm}
= ∩Lm=1f

−1
km

(Bm).

Since we have assumed that fk are random variables for all k ∈ N and A is a
sigma-algebra (which is closed under finite and countable intersections), the
right-hand-side is in A. So we have shown f−1(C) ∈ A for any rectangular
cylinder. The conclusion now follows as in Exercise 4.1: B0, the family of
all sets B ⊆ R∞ such that f−1(B) ∈ A, is a sigma-algebra. Since we have
shown that B0 contains all rectangular cylinders, we have B∞ = σ({C :
C is a rectangular cylinder}) ⊆ B0 and in particular the pre-image of any
rectangular cylinder is in A.
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