
Chapter 6

Asymmetric SST Profile
(CONTROL 5N, CONTROL)

The multi-model mean comparing the CONTROL and CONTROL 5N experiments excludes
FRCGC, ECM-CY29, UKMO(48) and UKMO(96). In addition the multi-model mean for the
eddy statistics (based on MF files) excludes CGAM and MRI. These same sets will be used later
in Chapter 7 which considers the response to tropical SST anomalies.

6.1 Mean State

6.1.1 Zonal-Time Averages, 2-D Fields

The zonal-time averages for the multi-model mean for single level fields tppn, cppn, dppn, evap,
emp, cld frac, albedo, ps and tauu are shown in Figure 6.1. The fields sw toa, lw toa, rflux toa,
ssw, slw, rfluv sfce, slh, ssh and rflux are shown in Figure 6.2. The same fields for the individual
models, along with tauv, are shown in Figures 6.3 through 6.21.

6.1.2 Zonal-Time Averages, 3-D Fields

Figure 6.22 shows the multi-model mean u, t, v and om while Figure 6.23 shows q and rh. The
individual model om fields are shown in Figure 6.24.

6.2 Parameterization Forcing

The parameterization convection and cloud tendencies for temperature and specific humidity
(t conv, t cld, q conv and q cld) are shown in Figures 6.25 through 6.28.

6.3 Tropical Variability

6.3.1 Wavenumber-Frequency Spectra

Since the tropical precipitation in the CONTROL 5N experiment moves poleward of 10◦N lati-
tude (Figure 6.1 and 6.3) the log of the power is averaged from 20◦S to 20◦N as was done in Sec-
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tion 5.3.1 which showed the response to the SST profile. To help detect any shift from symmetric
modes to anti-symmetric modes in comparing CONTROL 5N to CONTROL, the symmetric and
anti-symmetric modes are plotted side-by-side in the same figures. The wavenumber-frequency
diagrams for the precipitation (tppn) are shown in Figure 6.29 and for diagrams for OLR (lw toa)
in Figure 6.30.
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Figure 6.1: Multi-model mean zonal-time average total precipitation (tppn), convective precip-
itation (cppn), large-scale precipitation (dppn), evaporation (evap), evaporation minus precipi-
tation (emp), cloud fraction (cld frac), albedo (albedo), surface pressure (ps) and zonal surface
stress (tauu) from CONTROL and CONTROL 5N SST distributions.
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Figure 6.2: Multi-model mean zonal-time average TOA net shortwave (sw toa, +ve down-
ward), TOA net longwave (lw toa, +ve upward), TOA residual (rflux toa, +ve upward), surface
net shortwave (ssw, +ve downward), surface net longwave (slw, +ve upward), surface residual
(rflux sfce, +ve downward), surface latent heat (slh), surface sensible heat (ssh) and net total
(rflux, +ve out of atmosphere) fluxes from CONTROL and CONTROL 5N SST distributions.
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Figure 6.3: Zonal-time average precipitation (tppn) for individual models from CONTROL and
CONTROL 5N SST distributions, mm day−1.
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Figure 6.4: Zonal-time average convective precipitation (cppn) for individual models from
CONTROL and CONTROL 5N SST distributions, mm day−1.
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Figure 6.5: Zonal-time average large-scale precipitation (dppn) for individual models from
CONTROL and CONTROL 5N SST distributions, mm day−1.
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Figure 6.6: Zonal-time average evaporation (evap) for individual models from CONTROL and
CONTROL 5N SST distributions, mm day−1.
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Figure 6.7: Zonal-time average evaporation minus precipitation (emp) for individual models
from CONTROL and CONTROL 5N SST distributions, mm day−1.
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Figure 6.8: Zonal-time average cloud fraction (cld frac) for individual models from CONTROL
and CONTROL 5N SST distributions, fraction.
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Figure 6.9: Zonal-time average albedo (albedo) for individual models from CONTROL and
CONTROL 5N SST distributions, fraction.
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Figure 6.10: Zonal-time average surface pressure (ps) for individual models from CONTROL
and CONTROL 5N SST distributions, mb.
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Figure 6.11: Zonal-time average TOA net shortwave radiation (sw toa) for individual models
from CONTROL and CONTROL 5N SST distributions, W m−2, +ve downward.
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Figure 6.12: Zonal-time average TOA net longwave radiation (lw toa) for individual models
from CONTROL and CONTROL 5N SST distributions, W m−2, +ve upward.
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Figure 6.13: Zonal-time average TOA net radiation flux (rflux toa) for individual models from
CONTROL and CONTROL 5N SST distributions, W m−2, +ve upward.
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Figure 6.14: Zonal-time average surface net shortwave radiation (ssw) for individual models
from CONTROL and CONTROL 5N SST distributions, W m−2, +ve downward.
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Figure 6.15: Zonal-time average surface net longwave radiation (slw) for individual models from
CONTROL and CONTROL 5N SST distributions, W m−2, +ve upward.
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Figure 6.16: Zonal-time average surface net flux (rflux sfce) for individual models from
CONTROL and CONTROL 5N SST distributions, W m−2, +ve downward.
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Figure 6.17: Zonal-time average surface latent heat flux (slh) for individual models from
CONTROL and CONTROL 5N SST distributions, W m−2.
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Figure 6.18: Zonal-time average surface sensible heat flux (ssh) for individual models from
CONTROL and CONTROL 5N SST distributions, W m−2.

384



Figure 6.19: Zonal-time average net flux (rflux) for individual models from CONTROL and
CONTROL 5N SST distributions, W m−2, +ve out of atmosphere.
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Figure 6.20: Zonal-time average zonal surface stress (tauu) for individual models from
CONTROL and CONTROL 5N SST distributions, N m−2.
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Figure 6.21: Zonal-time average meridional surface stress (tauv) for individual models from
CONTROL and CONTROL 5N SST distributions, N m−2.
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Figure 6.22: Zonal-time average multi-model mean zonal wind (u), temperature (t), meridional
wind (v) and vertical wind (om) for CONTROL and CONTROL 5N SST.
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Figure 6.23: Zonal-time average multi-model mean specific humidity (q) and relative humidity
(rh) for CONTROL and CONTROL 5N SST.
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CONTROL CONTROL 5N CONTROL CONTROL 5N

Figure 6.24: Zonal-time average vertical velocity (om), CONTROL and CONTROL 5N, indi-
vidual models, mb day−1.
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CONTROL CONTROL 5N CONTROL CONTROL 5N

Figure 6.24 (continued): Zonal-time average vertical velocity (om), CONTROL and
CONTROL 5N, individual models, mb day−1.
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Figure 6.25: Zonal-time average parameterized convection temperature tendency (t conv) for
individual models for CONTROL and CONTROL 5N, K day−1.
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Figure 6.26: Zonal-time average parameterized cloud temperature tendency (t cld) for individual
models for CONTROL and CONTROL 5N, K day−1.
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Figure 6.27: Zonal-time average parameterized convection specific humidity tendency (q conv)
for individual models for CONTROL and CONTROL 5N, g kg−1 day−1.
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Figure 6.28: Zonal-time average parameterized cloud specific humidity tendency (q cld) for
individual models for CONTROL and CONTROL 5N, g kg−1 day−1.
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SYMMETRIC ANTI-SYMMETRIC

CONTROL CONTROL 5N CONTROL CONTROL 5N

Figure 6.29: Wavenumber-frequency diagrams of log of power of symmetric and anti-symmetric
modes of equatorial precipitation (tppn) for CONTROL and CONTROL 5N, 20◦S to 20◦N.
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SYMMETRIC ANTI-SYMMETRIC

CONTROL CONTROL 5N CONTROL CONTROL 5N

Figure 6.29 (continued): Wavenumber-frequency diagrams of log of power of symmetric and
anti-symmetric modes of equatorial precipitation (tppn) for CONTROL and CONTROL 5N,
20◦S to 20◦N.
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SYMMETRIC ANTI-SYMMETRIC

CONTROL CONTROL 5N CONTROL CONTROL 5N

Figure 6.29 (continued): Wavenumber-frequency diagrams of log of power of symmetric and
anti-symmetric modes of equatorial precipitation (tppn) for CONTROL and CONTROL 5N,
20◦S to 20◦N.
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SYMMETRIC ANTI-SYMMETRIC

CONTROL CONTROL 5N CONTROL CONTROL 5N

Figure 6.30: Wavenumber-frequency diagrams of log of power of symmetric and anti-symmetric
modes of equatorial OLR (lw toa) for CONTROL and CONTROL 5N, 20◦S to 20◦N.
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SYMMETRIC ANTI-SYMMETRIC

CONTROL CONTROL 5N CONTROL CONTROL 5N

Figure 6.30 (continued): Wavenumber-frequency diagrams of log of power of symmetric and
anti-symmetric modes of equatorial OLR (lw toa) for CONTROL and CONTROL 5N, 20◦S to
20◦N.
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SYMMETRIC ANTI-SYMMETRIC

CONTROL CONTROL 5N CONTROL CONTROL 5N

Figure 6.30 (continued): Wavenumber-frequency diagrams of log of power of symmetric and
anti-symmetric modes of equatorial OLR (lw toa) for CONTROL and CONTROL 5N, 20◦S to
20◦N.
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Chapter 7

Response to Tropical SST Anomalies
(1KEQ, 3KEQ, 3KW1, CONTROL)

The multi-model mean comparing the CONTROL, 1KEQ, 3KEQ and 3KW1 experiments ex-
cludes FRCGC, ECM-CY29, UKMO(48) and UKMO(96). In addition the multi-model mean
for the eddy statistics (based on MF files) excludes CGAM and MRI. These are the same sets of
models that were used in the preceding Chapter 6 which considered the asymmetric SST profile.

After the analyses presented in this section were completed it was discovered that the lat-
itudinal extent of the 3KW1 SST anomaly in ECM-CY32 was accidentally set to 30◦ latitude
instead of the specified 60◦ (Eqn. 2.8). As a test of the effect of this error on the multi-model
mean, the mean for single level fields was re-calculated omitting ECM-CY32. For most fields it
had no observable effect on the graphs of the latitudinal structure, for a few the lines shifted
about the thickness of the lines. The impact on the multi-model mean of omitting ECM-CY32
is at most small and almost certainly dominated by the ”bias” of ECM-CY32 seen in all the
experiments (including CONTROL), rather than demonstrably due to the SST error. With 11
models for most of the variables and 9 for the MF fluxes, ECM-CY32 shifts the multi-model
mean by only ∼10% of its difference from the mean. There is also good reason to think that
the impact of the latitudinal width of the 3KW1 SST anomaly is modest. Most variables in this
chapter do not show the width clearly. Precipitation anomalies take the width of the ITCZ in
CONTROL and the circulation response appears to be rather insensitive to the width, presum-
ably because the Rossby wave source is determined by the latitudinal scale of the divergence
which is similar to that of the precipitation. Since the effect on the multi-model mean is small
the Figures in this Chapter were left as originally produced and the multi-model mean includes
ECM-CY32.

7.1 Mean State

7.1.1 Zonal-Time Averages, 2-D Fields

The zonal-time averages for the multi-model mean for single level fields tppn, cppn, dppn, evap,
emp, cld frac, albedo, ps and tauu are shown in Figure 7.1. The fields sw toa, lw toa, rflux toa,
ssw, slw, rfluv sfce, slh, ssh and rflux are shown in Figure 7.2. The same fields for the individual
models, with the addition of tauv, are shown in Figures 7.3 through 7.21.

403



Table 7.1: Ratio of the maximum precipitation of 3KEQ-[CONTROL] to the maximum precip-
itation of 1KEQ-[CONTROL].

MODEL RATIO MODEL RATIO MODEL RATIO

AGU 4.2 ECM-CY32 2.1 LASG 2.4
CGAM 4.0 GFDL 2.1 MIT 2.2
CSIRO 2.4 GSFC 3.5 MRI 3.4
DWD 2.1 K1JAPAN 2.3 NCAR 2.9

7.1.2 Zonal-Time Averages, 3-D Fields

The zonal-time averages for the multi-model mean u, t, v and om are shown in Figure 7.22 and
q and rh in Figure 7.23. The zonal wind for the individual models is shown in Figure 7.24 for
3KW1 and in Figure 7.25 for 3KW1 minus the CONTROL.

7.1.3 Time Averages, Latitude-Longitude

Horizontal plots of precipitation (tppn) from the individual models are shown in Figures 7.26,
7.27 and 7.28 for 1KEQ minus zonal average of CONTROL, 3KEQ minus zonal average of
CONTROL and 3KW1 minus zonal average of CONTROL, respectively. Horizontal plots of
the zonal wind at 200mb (u200) are shown in Figure 7.29 for 3KW1 minus zonal average of
CONTROL.

The response of the models to the tropical SST anomalies is shown in Table 7.1 calculated
from the precipitation (tppn) as the ratio of the maximum value of the difference of 3KEQ minus
the zonal average of the CONTROL to the maximum value of the difference of 1KEQ minus
the zonal average of the CONTROL. We note that Neale and Hoskins (2000b) report a value of
five for HadAM3 which is larger than any value reported here. For APE, CGAM used the same
model at the same horizontal resolution but different vertical resolution than Neal and Hoskins.
It gives the smaller value seen here.

7.1.4 Time Averages, Equatorial Slice (Longitude-Height)

The multi-model means and standard deviations of meridional-time averages taken from 10◦S
to 10◦N latitude are shown in Figures 7.30 through 7.35. The averages of the zonal wind (u),
temperature (t) and deviation of temperature from the zonal mean (t-[t]) for 1KEQ, 3KEQ
and 3KW1 are shown in Figures 7.30, 7.32 and 7.34, respectively. Those of vertical wind (om),
specific humidity (q) and relative humidity (rh) for 1KEQ, 3KEQ and 3KW1 are shown in
Figures 7.31, 7.33 and 7.35, respectively. The square brackets [ ] denote the zonal average.

The meridional-time averages of the zonal wind (u) and vertical wind (om) for the individual
models are shown in figures 7.36 and 7.37.
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7.2 Maintenance of Mean State (1KEQ, 3KEQ, 3KW1,

CONTROL)

7.2.1 Dynamical Budgets (variances and co-variances)

Figure 7.38 shows the multi-model mean transient eddy (co-)variances te uu
[

(u′∗)2
]

, te vv
[

(v′∗)2
]

, te uv [u′
∗

v′
∗ ] and te vt [v′∗T ∗ ]. Figure 7.39 shows the multi-model mean stationary

eddy (co-)variances se uu [u ∗u ∗], se vv [v ∗v ∗], se uv [u ∗v ∗] and se vt
[

v ∗T ∗

]

. Plots of the

above (co-)variances for the individual models are shown in Figures 7.40 through 7.47.

7.2.2 Parameterization Forcing (1KEQ, 3KEQ, 3KW1, CONTROL)

The zonal-time average of the parameterization convection (t conv) and cloud (t cld) tempera-
ture tendencies are shown in Figures 7.48 and 7.49, respectively. The equatorial-time average
from 7◦S to 7◦N of the parameterization convection (t conv) and cloud (t cld) temperature ten-
dencies are shown in Figures 7.50 and 7.51. The zonal-time averages in Figures 7.48 and 7.49
indicate that this latitudinal averaging range captures the major signal for these terms.

7.3 Tropical Variability

7.3.1 Wavenumber-Frequency Spectra

Even though in these experiments the zonal average tropical precipitation is confined within
latitudes 10◦S to 10◦N as seen in Figures 7.1 and 7.3, we continue to average the power from 20◦S
to 20◦N. As was discussed in Section 5.3.1, for experiments where the tropical precipitation is
within 10◦S to 10◦N, the different domains have little effect on the structure of the wavenumber-
frequency plots. They primarily affect the magnitudes.

Figure 7.52 shows the wavenumber-frequency diagrams of symmetric modes of tropical pre-
cipitation (tppn) for CONTROL, 1KEQ, 3KEQ and 3KW1 for each model. Figure 7.53 shows
the anti-symmetric modes of tropical precipitation. Figures 7.54 and 7.55 show the symmetric
and anti-symmetric modes of OLR (lw toa), respectively.

7.3.2 Precipitation Frequency Distributions

We also continue to use the domain 20◦S to 20◦N to calculate the frequency distributions of
precipitation even though in this set of experiments the zonal average tropical precipitation is
confined within latitudes 10◦S to 10◦N. Such a change simply reduces the fraction of large values
of precipitation and increases the fraction of small values. But the relative differences between
the experiments is not affected. We continue to base the calculation on the 6-hour averages (TR
data.)

Figure 7.56 shows the fraction of time precipitation (tppn) is in 1 mm day−1 bins ranging
from 0 to 120 mm day−1 for all models for CONTROL, 1KEQ, 3KEQ and 3KW1 experiments.
Figure 7.57 shows the fractions for 10 mm day−1 bins ranging from 0 to 1200 mm day−1.
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Several models, most notably AGU, CGAM and NCAR, show an increase in fraction of
larger rainfall rates from CONTROL to 1KEQ to 3KEQ to 3KW1. The zonal average precipi-
tation (Figure 7.3) does not mirror this behavior, unlike the PEAKED to CONTROL to QOBS
to FLAT variation discussed earlier. In fact, the 3KW1 experiment has lower zonal average
precipitation at the equator than the other experiments. The different behavior in the series
of experiments arises from the longitudinal variation in precipitation in the equatorial region
(Figure 7.26.)
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Figure 7.1: Multi-model mean zonal-time average total precipitation (tppn), convective precip-
itation (cppn), large-scale precipitation (dppn), evaporation (evap), evaporation minus precipi-
tation (emp), cloud fraction (cld frac), albedo (albedo), surface pressure (ps) and zonal surface
stress (tauu) from CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions.
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Figure 7.2: Multi-model mean zonal-time average TOA net shortwave (sw toa, +ve down-
ward), TOA net longwave (lw toa, +ve upward), TOA residual (rflux toa, +ve upward), surface
net shortwave (ssw, +ve downward), surface net longwave (slw, +ve upward), surface resid-
ual (rflux sfce, +ve downward), surface latent heat (slh), surface sensible heat (ssh) and net
total (rflux, +ve out of atmosphere) fluxes from CONTROL, 1KEQ, 3KEQ and 3KW1 SST
distributions.
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Figure 7.3: Zonal-time average precipitation (tppn) for individual models from CONTROL,
1KEQ, 3KEQ and 3KW1 SST distributions, mm day−1.
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Figure 7.4: Zonal-time average convective precipitation (cppn) for individual models from
CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, mm day−1.
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Figure 7.5: Zonal-time average large-scale precipitation (dppn) for individual models from
CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, mm day−1.
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Figure 7.6: Zonal-time average evaporation (evap) for individual models from CONTROL,
1KEQ, 3KEQ and 3KW1 SST distributions, mm day−1.
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Figure 7.7: Zonal-time average evaporation minus precipitation (emp) for individual models
from CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, mm day−1.
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Figure 7.8: Zonal-time average cloud fraction (cld frac) for individual models from CONTROL,
1KEQ, 3KEQ and 3KW1 SST distributions, fraction.
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Figure 7.9: Zonal-time average albedo (albedo) for individual models from CONTROL, 1KEQ,
3KEQ and 3KW1 SST distributions, fraction.
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Figure 7.10: Zonal-time average surface pressure (ps) for individual models from CONTROL,
1KEQ, 3KEQ and 3KW1 SST distributions, mb.
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Figure 7.11: Zonal-time average TOA net shortwave radiation (sw toa) for individual models
from CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, W m−2, +ve downward.
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Figure 7.12: Zonal-time average TOA net longwave radiation (lw toa) for individual models
from CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, W m−2, +ve upward.
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Figure 7.13: Zonal-time average TOA net radiation flux (rflux toa) for individual models from
CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, W m−2, +ve upward.
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Figure 7.14: Zonal-time average surface net shortwave radiation (ssw) for individual models
from CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, W m−2, +ve downward.
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Figure 7.15: Zonal-time average surface net longwave radiation (slw) for individual models from
CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, W m−2, +ve upward.
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Figure 7.16: Zonal-time average surface net flux (rflux sfce) for individual models from
CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, W m−2, +ve downward.
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Figure 7.17: Zonal-time average surface latent heat flux (slh) for individual models from
CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, W m−2.
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Figure 7.18: Zonal-time average surface sensible heat flux (ssh) for individual models from
CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, W m−2.
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Figure 7.19: Zonal-time average net flux (rflux) for individual models from CONTROL, 1KEQ,
3KEQ and 3KW1 SST distributions, W m−2, +ve out of atmosphere.
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Figure 7.20: Zonal-time average zonal surface stress (tauu) for individual models from
CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, N m−2.
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Figure 7.21: Zonal-time average meridional surface stress (tauv) for individual models from
CONTROL, 1KEQ, 3KEQ and 3KW1 SST distributions, N m−2.
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Figure 7.22: Zonal-time average multi-model mean zonal wind (u), temperature (t), meridional
wind (v) and vertical wind (om) for CONTROL, 1KEQ, 3KEQ and 3KW1.
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Figure 7.23: Zonal-time average multi-model mean specific humidity (q) and relative humidity
(rh) for CONTROL, 1KEQ, 3KEQ and 3KW1.
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Figure 7.24: Zonal-time average zonal wind (u) from 3KW1, individual models, m s−1.
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Figure 7.25: Zonal-time average zonal wind (u) from 3KW1 minus CONTROL, individual
models, m s−1.
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Figure 7.26: Time average precipitation (tppn), 1KEQ minus the zonal average of the
CONTROL for individual models, mm day−1.
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Figure 7.27: Time average precipitation (tppn), 3KEQ minus the zonal average of the
CONTROL for individual models, mm day−1

433



Figure 7.28: Time average precipitation (tppn), 3KW1 minus the zonal average of the
CONTROL for individual models, mm day−1
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Figure 7.29: Time average zonal wind at 200mb (u200), 3KW1 minus the zonal average of the
CONTROL for individual models, m sec−1.
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Figure 7.30: Meridional-time average, −10 < ϕ < +10, multi-model mean and standard devia-
tion zonal wind (u), temperature (t) and temperature minus zonal average temperature (t-[t])
for 1KEQ.
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Figure 7.31: Meridional-time average, −10 < ϕ < +10, multi-model mean and standard devia-
tion vertical wind (om), specific humidity (q) and relative humidity (rh) for 1KEQ.
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Figure 7.32: Meridional-time average, −10 < ϕ < +10, multi-model mean and standard devia-
tion zonal wind (u), temperature (t) and temperature minus zonal average temperature (t-[t])
for 3KEQ.
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Figure 7.33: Meridional-time average, −10 < ϕ < +10, multi-model mean and standard devia-
tion vertical wind (om), specific humidity (q) and relative humidity (rh) for 3KEQ.
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Figure 7.34: Meridional-time average, −10 < ϕ < +10, multi-model mean and standard devia-
tion zonal wind (u), temperature (t) and temperature minus zonal average temperature (t-[t])
for 3KW1.
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Figure 7.35: Meridional-time average, −10 < ϕ < +10, multi-model mean and standard devia-
tion vertical wind (om), specific humidity (q) and relative humidity (rh) for 3KW1.
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Figure 7.36: Meridional-time average, −10 < ϕ < +10, zonal wind (u) for 3KW1 for individual
models, m s−1.
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Figure 7.37: Meridional-time average, −10 < ϕ < +10, vertical velocity (om) for 3KW1 for
individual models, mb day−1.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.38: Multi-model mean transient eddy te uu,
[

(u′∗)2
]

, te vv,
[

(v′∗)2
]

, te uv, [u′
∗

v′
∗ ] and

te vt, [v′∗T ∗] for CONTROL, 1KEQ, 3KEQ and 3KW1.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.39: Multi-model mean stationary eddy se uu, [u ∗u ∗], se vv, [v ∗v ∗], se uv, [u ∗v ∗] and

se vt,
[

v ∗T ∗

]

for CONTROL, 1KEQ, 3KEQ and 3KW1.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.40: Individual model u variance, transient eddy, te uu,
[

(u′∗)2
]

, m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.40 (continued): Individual model u variance, transient eddy, te uu,
[

(u′∗)2
]

, m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.40 (continued): Individual model u variance, transient eddy, te uu,
[

(u′∗)2
]

, m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.41: Individual model u variance, stationary eddy, se uu, [u ∗u ∗], m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.41 (continued): Individual model u variance, stationary eddy, se uu, [u ∗u ∗], m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.41 (continued): Individual model u variance, stationary eddy, se uu, [u ∗u ∗], m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.42: Individual model v variance, transient eddy, te vv,
[

(u′∗)2
]

, m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.42 (continued): Individual model v variance, transient eddy, te vv,
[

(u′∗)2
]

, m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.42 (continued): Individual model v variance, transient eddy, te vv,
[

(u′∗)2
]

, m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.43: Individual model v variance, stationary eddy, se vv, [v ∗v ∗], m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.43 (continued): Individual model v variance, stationary eddy, se vv, [v ∗v ∗], m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.43 (continued): Individual model v variance, stationary eddy, se vv, [v ∗v ∗], m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.44: Individual model uv co-variance, transient eddy, te uv, [u′
∗

v′
∗ ], m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.44 (continued): Individual model uv co-variance, transient eddy, te uv, [u′∗v′
∗ ], m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.44 (continued): Individual model uv co-variance, transient eddy, te uv, [u′
∗

v′
∗ ], m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.45: Individual model uv co-variance, stationary eddy, se uv, [u ∗v ∗], m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.45 (continued): Individual model uv co-variance, stationary eddy, se uv, [u ∗v ∗],
m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.45 (continued): Individual model uv co-variance, stationary eddy, se uv, [u ∗v ∗],
m2 s−2.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.46: Individual model vT co-variance, transient eddy, te vt, [v′∗T ∗], K m s−1.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.46 (continued): Individual model vT co-variance, transient eddy, te vt, [v′∗T ∗ ],
K m s−1.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.46 (continued): Individual model vT co-variance, transient eddy, te vt,
(

[v′∗T ′
∗ ]
)

,

K m s−1.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.47: Individual model vT co-variance, stationary eddy, se vt,
[

v ∗T ∗

]

, K m s−1.

467



CONTROL 1KEQ 3KEQ 3KW1

Figure 7.47 (continued): Individual model vT co-variance, stationary eddy, se vt,
[

v ∗T ∗

]

,

K m s−1.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.47 (continued): Individual model vT co-variance, stationary eddy, se vt,
[

v ∗T ∗

]

,

K m s−1.
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Figure 7.48: Zonal-time average parameterized convection temperature tendency (t conv) for
individual models for CONTROL, 1KEQ, 3KEQ and 3KW1, K day−1.
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Figure 7.48 (continued): Zonal-time average parameterized convection temperature tendency
(t conv) for individual models for CONTROL, 1KEQ, 3KEQ and 3KW1, K day−1.
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Figure 7.48 (continued): Zonal-time average parameterized convection temperature tendency
(t conv) for individual models for CONTROL, 1KEQ, 3KEQ and 3KW1, K day−1.

472



Figure 7.49: Zonal-time average parameterized cloud temperature tendency (t cld) for individual
models for CONTROL, 1KEQ, 3KEQ and 3KW1, K day−1.
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Figure 7.49 (continued): Zonal-time average parameterized cloud temperature tendency (t cld)
for individual models for CONTROL, 1KEQ, 3KEQ and 3KW1, K day−1.
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Figure 7.50: Equatorial-time average, −7 < ϕ < +7, parameterized convection temperature
tendency (t conv) for individual models for CONTROL, 1KEQ, 3KEQ and 3KW1, K day−1.
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Figure 7.50 (continued): Equatorial-time average, −7 < ϕ < +7, parameterized convection
temperature tendency (t conv) for individual models for CONTROL, 1KEQ, 3KEQ and 3KW1,
K day−1.
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Figure 7.50 (continued): Equatorial-time average, −7 < ϕ < +7, parameterized convection
temperature tendency (t conv) for individual models for CONTROL, 1KEQ, 3KEQ and 3KW1,
K day−1.
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Figure 7.51: Equatorial-time average, −7 < ϕ < +7, parameterized cloud temperature tendency
(t cld) for individual models for CONTROL, 1KEQ, 3KEQ and 3KW1, K day−1.
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Figure 7.51 (continued): Equatorial-time average, −7 < ϕ < +7, parameterized cloud temper-
ature tendency (t cld) for individual models for CONTROL, 1KEQ, 3KEQ and 3KW1,
K day−1.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.52: Wavenumber-frequency diagrams of log of power of symmetric modes of equatorial
precipitation (tppn) for CONTROL, 1KEQ, 3KEQ and 3KW1, 20◦S to 20◦N.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.52 (continued): Wavenumber-frequency diagrams of log of power of symmetric modes
of equatorial precipitation (tppn) for CONTROL, 1KEQ, 3KEQ and 3KW1, 20◦S to 20◦N.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.52 (continued) Wavenumber-frequency diagrams of log of power of symmetric modes
of equatorial precipitation (tppn) for CONTROL, 1KEQ, 3KEQ and 3KW1, 20◦S to 20◦N.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.53: Wavenumber-frequency diagrams of log of power of anti-symmetric modes of equa-
torial precipitation (tppn) for CONTROL, 1KEQ, 3KEQ and 3KW1, 20◦S to 20◦N.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.53 (continued): Wavenumber-frequency diagrams of log of power of anti-symmetric
modes of equatorial precipitation (tppn) for CONTROL, 1KEQ, 3KEQ and 3KW1, 20◦S to
20◦N.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.53 (continued): Wavenumber-frequency diagrams of log of power of anti-symmetric
modes of equatorial precipitation (tppn) for CONTROL, 1KEQ, 3KEQ and 3KW1, 20◦S to
20◦N.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.54: Wavenumber-frequency diagrams of log of power of symmetric modes of equatorial
OLR (lw toa) for CONTROL, 1KEQ, 3KEQ and 3KW1, 20◦S to 20◦N.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.54 (continued): Wavenumber-frequency diagrams of log of power of symmetric modes
of equatorial OLR (lw toa) for CONTROL, 1KEQ, 3KEQ and 3KW1, 20◦S to 20◦N.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.54 (continued): Wavenumber-frequency diagrams of log of power of symmetric modes
of equatorial OLR (lw toa) for CONTROL, 1KEQ, 3KEQ and 3KW1, 20◦S to 20◦N.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.55: Wavenumber-frequency diagrams of log of power of anti-symmetric modes of equa-
torial OLR (lw toa) for CONTROL, 1KEQ, 3KEQ and 3KW1, 20◦S to 20◦N.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.55 (continued): Wavenumber-frequency diagrams of log of power of anti-symmetric
modes of equatorial OLR (lw toa) for CONTROL, 1KEQ, 3KEQ and 3KW1, 20◦S to 20◦N.
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CONTROL 1KEQ 3KEQ 3KW1

Figure 7.55 (continued): Wavenumber-frequency diagrams of log of power of anti-symmetric
modes of equatorial OLR (lw toa) for CONTROL, 1KEQ, 3KEQ and 3KW1, 20◦S to 20◦N.
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Figure 7.56: Fraction of time precipitation (tppn) from −20◦ to +20◦ latitude is in 1 mm day−1

bins ranging from 0 to 120 mm day−1 for individual models for CONTROL, 1KEQ, 3KEQ and
3KW1 experiments.
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Figure 7.57: Fraction of time precipitation (tppn) from −20◦ to +20◦ latitude is in 10 mm day−1

bins ranging from 0 to 1200 mm day−1 for individual models for CONTROL, 1KEQ, 3KEQ and
3KW1 experiments.
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Chapter 8

Comments

Historically, model intercomparison projects were proposed in order to identify systematic model
errors, i.e. errors common to the majority of participating models, in the hope that the devel-
opment community could reduce those errors over time to the benefit of all models. Of course,
identification of model specific errors was also an outcome of the intercomparisons. Unlike other
model intercomparison projects, the APE climate is unknown and thus aqua-planet model er-
rors cannot be determined. Likewise systematic errors cannot be separated from model specific
errors.

This Atlas presents a wide variety of statistics from the 14 participating models for the 8
different aqua-planet experiments. It compares the statistics of the APE simulations but does
not contain interpretive analyses of the differences between models. Such analyses are left for
journal papers such as those included in the Special Issue of the Journal of the Meteorological
Society of Japan (2013, Vol. 91A) devoted to the APE.

As with most model intercomparisons the APE shows a large variation in model behaviors
even though the problem is a highly constrained, idealized setting. For many statistics, a multi-
model mean and standard deviation are included in the Atlas to concisely show the variation
between the models. The multi-model mean should not be considered as a reference solution
for the aqua-planet. Without variation in the surface forcing, the model APE climates consist
primarily of free motions. Many forced phenomena found in earth-like simulations are not
included.

Analyses of the APE simulations to date have only scratched the surface. The APE experi-
ment data base holds a wealth of data that is now publicly available. We hope that this Atlas
will stimulate future analysis and investigations to understand the cause of the large variation
seen in the model behaviors. We also hope that as new models are developed they will repeat
the APE simulations.
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