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1 Definition of the phase function

The phase function is the angular distribution of light intensity scattered by a particle
at a given wavelength. It is given at an angle θ which is relative to the incident beam.
The phase function is the intensity (radiance) at θ relative to the normalized integral of
the scattered intensity at all angles (Seinfeld & Pandis, p693). It is defined by Seinfeld
& Pandis (eq 15.9) as:

P (θ) =
F (θ)∫

π

0
F (θ)sinθdθ

(1)

where F is intensity (radiance). P (θ) can be thought of as a probability density function,
showing the chances of a photon of light being scattered in a particular direction, θ. This
also means that when integrated over the sphere, the phase function must equal zero,
which is known as the ’normalisation condition,’ and shown by:

1

4π

∫
2π

0

∫
π

0

p(cos θ) sin θdθdφ = 1 (2)

Note that the azimuthal dependence φ of P is often removed, which is possible under the
assumption of a spherical particle.

However, the phase fucntion can also be defined as an infinite series of orthogonal
basis functions, such as the Legendre polylnomials, Pl(cosθ). Expressing the phase func-
tion in this way allows the shape of p(cosθ) to be expressed to whatever level of accuracy
is required by changing N . From Petty, p427 Eq A1,

P (cos θ) =
N−1∑
l=0

βlPl(cos θ) (3)

Here βl are the moments of the phase function, and Pl(cos θ) are the Legendre poly-
nomials.

The first few Legendre polynomials are given by the following, where µ = cos(θ):

P0(µ) = 1 (4)

P1(µ) = µ (5)

P2(µ) =
1

2
(3µ2

− 1) (6)
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P3(µ) =
1

2
(5µ3

− 3µ) (7)

P4(µ) =
1

8
(35µ4

− 30µ2 + 3) (8)

P5(µ) =
1

8
(65µ5

− 70µ3 + 15µ) (9)

βl, the moments of the phase function, can be defined as followed, and are also output
from Mie scattering codes:

βl =
2l + 1

2

∫
1

−1

Pl(cos θ)p(cos θ)d cos θ (10)

β0 will always be 1, due to the normalization condition. This means that the zeroth
moment of the phase function is always 1.

Additionally it turns out that g = β1/3, where g is the asymmetry parameter. This
means that if you use only g as input to a radiation code, then you are essentially using
only two terms (β0 (= 1) and β1 (= 3g)) to represent the phase function.

2 Phase Function from Scatter90

When using the Mie scattering code in Edwards & Slingo, you produce phase function
output, and have the option to choose how many moments of the phase function (χ) you
require.

Firstly it is important to note that the moments of the phase function output by
scatter90 are different to those described above, e.g. as in Petty, and also in many other
text books. Scatter90 uses a phase function described by:

P (cos θ) =
2N−1∑
l=0

(2l + 1)χlPl(cos θ) (11)

where

χl =
1

2

∫
1

−1

Pl(cos θ)p(cos θ)d cos θ (12)

Therefore in this format,
βl = (2l + 1)χl (13)

Note that when the phase function is expressed using χ, the case is still that χ0 = 1, so
that the zeroth moment of the phase function is 1. Note that scatter90 will not produce
output for the zeroth moment.

Secondly, when using the χ format of the phase function equation, the relation of g
to the first moment changes. We can see that:

βl = (2l + 1)χl (14)

Since when l = 1, g = β1/3, then
β1 = 3χ1 (15)

g = χ1 (16)

Therefore, in the out put from Scatter90, g is indeed the first moment of the phase
function.
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2.1 Number of Moments Requested in Scatter90

It is interesting to run scatter90 with different numbers of moments of the phase function
requested. You will find as you change the number of moments requested, the value
of the moments themselves change, including the first one. For example, for a case
of Saharan dust, the first moment changes from 0.7 for 220 moments, to 0.6 when 4
moments are requested. These differences are quite significant. This is not surprising
when you understand what the code is doing - the more moments requested mean that
the overall representation of the phase function will be more accurate, and the first N
moments of the phase function will be more accurate. Therefore it is always best to
run the code requesting as many moments of the phase function as possible (over 200
recommended, perhaps more for complex phase functions). If applications of the output
are then required which use fewer moments, they can then just be lifted from this more
detailed output.

The above is particularly relevant if you are using the first moment (g) from the
output, and not running with many moments of the phase function. E.g. you ask for 4
moments of the phase function, and take the first as information on g. If you do this,
then your value of g is likely to be very inaccurate. Instead, ask for say 220 moments,
an then lift the first for g.

Conversely, if you ask scatter90 for only 1 moment of the phase function, it will give
you just that. HOWEVER, the code does something different here, and outputs a highly
accurate value of g. I have not looked at Fortran code in detail, but I suspect it does
detailed scattering calculations (e.g. uses many moments of the phase function), and
only outputs the first moment of the phase function. This can be seen and tested by
doing different runs of scatter90.

Various calculations need to be done to convert moments of the phase function
(either βl or χl) into the scattering phase function, p(cos θ). There are some Fortran
codes kicking around which can do this.

2.2 Phase Function for RFM-DISORT

An interesting question is whether other scattering and radiation codes output or re-
quire input of the phase function of βl or χl. If there is a mismatch between what is
output/input and required, then the results could be quite weird!

For RFM-DISORT, the format of the phase function required is χl (see equation 5a
in the DISORT documentation), so scatter90 and ESRAD data can be seamlessly used
in RFM-DISORT. Note that although it is always 1, RFMD does require input of χ0

values, which is dealt with nicely in Nazim’s IDL code.

3 Further Reading

A lot of the background material here came from Petty, ’A First Course in Atmospheric
Radiation’ and some also from Seinfeld & Pandis’ ’Atmospheric Chemistry and Physics.’
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