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1 Introduction

In this tutorial we shall look at the assimilation of observations distributed in time using two techniques based on the
Kalman filter. These are the ‘extended Kalman filter’ and the ‘ensemble Kalman filter’.

Both techniques assimilate the observations sequentially in time. Their algorithms, detailed below, involve a
forecast step, in which a previous estimate of the state is evolved forward to the time of the observation, and an
update step, where the evolved estimate of the state is updated using information from the observations.

In this practical these two schemes will be applied to the highly non-linear Lorenz 1963 model equations.

2 The Extended Kalman Filter

The extended Kalman filter (EKF) uses an explicit formula for the evolution of the prior estimate and its’ error
covariance. The EKF is optimal for linear models and Gaussian errors.

2.1 Algorithm
INPUTS:
e Prior guess of initial state, x”,
e a description of how the state evolves in time, x"** = M (x°?),
e observations throughout the assimilation window, y,
e a description of how the observations relate to the state, y = H(x).
We also need the error covariance matrices of
e the prior guess, B,
e the observations, R, and
e the computer model, Q.
1. Set xf(1) = x* and P'(1) = B.
2. Prediction step:
(a) Propagate the prior guess forward in time:
x'(t 4+ At) = M(xL(1))
At is the model time step.
(b) Propagate the prior guess error covariance matrix forward in time:
Pi(t + At) = MP ()M + Q
M is the tangent linear of M(x) evaluated at x = x!(¢).



3. Update step, at time of the ith observation, 7;:
(a) Calculate the Kalman gain matrix:
K = P/(r,)H' (R + HP'(7;,)H") ™!

H is the tangent linear of H(x) evaluated at x = xf(7;).

(b) Update the estimate of the state using the observations, this is the analysis at time 7;:
x*(i) = x' (1) + K(y — H(x' ()
(c) Calculate the analysis error covariance matrix:
P*(i) = (I- KH)P'(r;)
4. Set x!(7;) = x*(i) and Pf(7;) = P2(4).

5. Repeat steps 2 and 3 until all observations have been assimilated.

3 The Ensemble Kalman Filter

For large systems, the EKF is infeasible due to the need to calculate and store Pf and P?. The ensemble Kalman filter
(EnKF) [Evensen, 1994, Houtekamer and Mitchell, 1998] gives a statistical approximation to the EKF by sampling
the errors of the forecast and analysis.

There are many different types of Ensemble Kalman filter. Here we shall look one of the most simple types: the
perturbed observation ensemble Kalman filter.

3.1 Algorithm
INPUTS: x°, y, B, R, Q, M(x), H(x) (see §2.1).
1. Generate ensemble of size N at initial time given xP, and B.
x;(0) = xP 4+, for j=1,N.
7 has been randomly drawn from a normal distribution with zero mean and covariance B.
2. Prediction step:
(a) Propagate each ensemble member forward using a stochastic model.
xj(t + At) = M(x;(t)) + VAL, for j =1, N.
¢ has been randomly drawn from a normal distribution with zero mean and covariance Q.
3. Update step, at time of the ith observation, 7;:
(a) Calculate the Kalman gain matrix.
K = P'HHPHT + R)™ L.
P! is the evolved B matrix, represented by the spread in the evolved ensemble at time 7.

Pl = S (x5(m) ~ D)s(m) - %),

where X is the mean of the ensemble.



(b) Update each ensemble member using the perturbed observations

xj(7i) = x;(7:) + K (y(7i) + € = H(x;(7:)))

€ has been randomly drawn from a normal distribution with zero mean and covariance R. The analysis

can be calculated as the mean of this updated ensemble, x*(7;) = =5 > x;(7;)

(c) Calculate the analysis error covariance matrix:

a __ 1 () — 2 () — %@
P “N_1 (xj () — x*)(x;(7:) X)T'

As can be seen, this step is not necessary but provides a useful diagnostic in toy experiments.

4. Repeat steps 2 and 3 until all observations have been assimilated.

4 The Lorenz 63 model

To test these data assimilation schemes we will use the low-dimensional Lorenz 1963 model [Lorenz, 1963], given by

&5 =0y —ux)
d—?:—xz—kpx—y
T =y — Bz

(1)

Using the following parameters, 0=10, p = 28 and § = 8/3, (1) gives rise to a chaotic system with a strange attractor.

The solution is seen to orbit around two equilibrium points giving two ‘regimes’.
The model is discretised using a modified Euler scheme, as follows:

P+ ky(1) = B2 + k(1))

kx(1) = Ato(y'=! — 21

ky(1) = At(—a'~ 1zt — 14 pxt=t — ¢t

kz(1) = At(xt Lyt=1 — Bzt=1)
kx(2) = Ato(y' ! + ky(1) — 271 — k(1))
ky(2) = At(— ('~ + kx (1)) (2t — 1+ kz(1)) + ( = k(1) — (v + ky(1)))
kz(2) = At((2'1 + kz (1)) (y*~

:E =271+ 0.5(kz(1) + kx(2))
y' =y 05(ky(1) + ky(2))
2t =271 1 0.5(kz(1) + kz2(2))

5 Running the code

The code can be run by open MATLAB, navigating to the KF directory and typing KF_menu. You will then be
asked to choose between the Extended Kalman filter or Ensemble Kalman filter. You must then give the necessary

inputs when prompted. To use the suggested values simply press ‘OK’.

This is a ‘twin’ experiment, in which the truth is known and used to generate the observations and background.

6 Suggested exercises

1. First compare EKF and EnKF using the suggested inputs. Look at the true error in the analysis given by

X, — X¢ and the analysis error variances approximated by the chosen DA method.
2. For both the extended and ensemble Kalman filter look at:

(a) the sensitivity of the solution to the errors in the background.

(b) the sensitivity of the solution to the accuracy and frequency of observations: is it better to have frequent

but inaccurate observations or infrequent but accurate ones?



(c) the sensitivity of the solution to the model error. This involves finding where Q is defined in the respective
code. What is the impact of excluding the model error correlations? What is the impact of increasing the
magnitude of model error variances?

3. For just the ensemble Kalman filter, what is the effect of changing:

(a) the size of the ensemble?

(b) the size of the observation perturbation? This involves finding the update step in the code, EnKF.m.

7 Extended exercises

It is interesting to see how robust these methods are to the validity of assumptions made. For example have a look
at what happens when:

1. the observation error is correlated in time or simply biased.

2. the model of the evolution of the state is biased compared to the true evolution of state.
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