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In Gaussian data assimilation explicit expressions can be given for 

each of the three measures of observation impact: 

• 𝐒G = 𝐇𝐏a𝐇
T𝐑−1, where 𝐏a = (𝐁−𝟏 + 𝐇𝐓𝐑−𝟏𝐇)−𝟏 and 𝐑 are 

the analysis and observation error covariance matrices 

respectively (Cardinali et al. (2004)). 𝐁 is the prior error 

covariance matrix.  

• 𝑀𝐼G =
1

2
𝑙𝑛 𝐁𝐏a

−1  (Rodgers (2000)).  

• This can also be written in terms of the eigenvalues of 

𝐒G. 𝑀𝐼G = −
1

2
 ln⁡(1 − 𝜆𝑖)
𝑟
𝑖=1 ,⁡where 𝜆𝑖  is the 𝑖𝑡ℎ 

eigenvalue of 𝐒G and r is the rank of 𝐒G 

•  𝑅𝐸𝐺=
1

2
𝛍a − 𝛍x

T𝐁−1 𝛍a − 𝛍x +
1

2
𝑙𝑛 𝐁𝐏a

−1 +
1

2
t𝑟 𝐁−1𝐏a −

𝑛

2
, 

where 𝛍x is the mean of the prior and n is the size of state 

space. 

Except for relative entropy these are all dependant solely on H, B 

and R. The first term of relative entropy is a quadratic function of 

the observation value, as 𝛍a is linearly related to 𝛍y. However a 

study by Xu (2009) found that when defining the optimum radar 

scan configurement it did not matter which measure was used, 

suggesting 𝑅𝐸𝐺 , in this case, had a small dependence on 𝛍y 

compared its dependence on the ratio 𝐇𝐁𝐇T𝐑−1. 

Abstract  
Here we study the effect of relaxing the assumption of 

Gaussian errors on the impact of the observations on the 

analysis. 

Introduction  

It has traditionally been assumed in data assimilation (DA) that 

the error distributions of the prior and likelihood are Gaussian. 

However there are many different potential sources of non-

Gaussianity, e.g. if the prior information has come from a 

highly non-linear forecast model. Approximating the error 

distributions as Gaussian can have a detrimental impact on the 

accuracy of the analysis . As such there has been much interest 

in developing non-Gaussian/non-linear DA methods for the 

Geosciences. Many of these methods are based on the direct 

application of Bayes’ theorem to find the full posterior 

distribution, 𝑝 𝐱 𝐲 : 

 𝑝 𝐱 𝐲 =
𝑝 𝐱 𝑝(𝐲|𝐱)

 𝑝 𝐱 𝑝 𝐲 𝐱 𝑑𝐱
. 

In applying Bayes’ theorem there is no restriction on the 

choice of prior, p(x), or likelihood, p(y|x). 

A measure of the impact observations are having in these new 

methods of DA can help to make the best use of the available 

data. This information can also allow us to understand the 

effect of approximating the error distributions as Gaussian.  

Measures of observation impact 
There are many measures of observation impact, here we 
introduce 3: 

The analysis sensitivity to observations 

This is given by  

𝐒 =
𝜕𝐇𝛍𝑎

𝜕𝛍𝑦
, 

where 𝛍𝑎 is the mean of the posterior distribution, our 
analysis, 𝛍𝑦 is the mean of the likelihood, our observation, 

and H is the linearised transform from observation to state 
space. 

Relative entropy 

This measures the entropy (uncertainty) of the posterior 
relative to the prior. It is sensitive to the change in the position 
and shape of the posterior. 

𝑅𝐸 =  𝑝 𝐱 𝐲 𝑙𝑛
𝑝(𝐱|𝐲)

𝑝(𝐱)
𝑑𝐱. 

Mutual information 

Mutual information is a measure of the change in entropy 
when an observation is made. This is only sensitive to a change 
in the shape of the posterior. 

𝑀𝐼 = − 𝑝 𝐱 𝑙𝑛𝑝 𝐱 𝑑𝐱 +  𝑝(𝐲)  𝑝 𝐱 𝐲 𝑙𝑛𝑝 𝐱 𝐲 𝑑𝐱dy. 

Note 𝑀𝐼 =  𝑝 𝐲 𝑅𝐸𝑑𝐲 

Sensitivity in non-Gaussian DA 
The sensitivity of the analysis w.r.t to the observation can be 

calculated when either the likelihood is Gaussian and the prior is 

arbitrary or vice versa. 

𝛛𝐇𝛍𝐚
𝛛𝛍𝐲

=

 𝐇𝐱p(𝐱)
𝜕p(𝐲|𝐱)
𝜕𝛍y

d𝐱

 p 𝐱 p 𝐲 𝐱 d𝐱
− 𝐇𝛍𝐚

 p 𝐱
∂p 𝐲 𝐱
∂𝛍𝐲

d𝐱

 p 𝐱 p 𝐲 𝐱 d𝐱
 

Arbitrary prior, Gaussian likelihood 

In this case 
𝜕p(𝐲|𝐱)

𝜕𝛍y
 is known to be −p(𝐲|𝐱)(𝛍𝐲 − 𝐇 𝐱 )𝐓𝐑−𝟏and so it 

is easy to prove 

𝐒𝑛𝐺𝑝(𝑥) =
𝜕𝐇𝛍a

𝜕𝛍y
= 𝐇𝐏𝒂𝐇

𝐓𝐑−𝟏.          (1) 

This has the same form as in Gaussian DA but now 𝐏𝒂⁡is a function of 

the observation value. 

Gaussian prior, Arbitrary likelihood (but linear 

observation operator) 

In this case 
𝜕p(𝐲|𝐱)

𝜕𝛍y
 is unknown however 

𝜕p(𝐲|𝐱)

𝜕𝛍y
= -

𝜕p(𝐲|𝐱)

𝜕𝐱
, and so we 

can use integration by parts to find 

𝐒𝑛𝐺𝑝(𝑦|𝑥) =
𝜕𝐇𝛍a

𝜕𝛍y
= 𝐈𝒑 − 𝐇𝐏𝒂𝐁

−𝟏𝐇𝐓 𝐇𝐇𝐓 −𝟏
.⁡⁡⁡⁡⁡⁡⁡⁡ (2) 

When the likelihood is Gaussian, and 𝐏𝒂 = (𝐁−𝟏 +𝐇𝐓𝐑−𝟏𝐇)−𝟏, this 

is also the same form as in Gaussian DA. 

As a function of 𝛍y there is an interesting symmetry between 𝐒𝑛𝐺𝑝(𝑥) 

and 𝐒𝑛𝐺𝑝(𝑦|𝑥), as one is proportional to the analysis error covariance 

and the other is inversely proportional to the analysis error 

covariance. This is illustrated in Fig. 1. 

Comparison of measures in non-

Gaussian DA  
In Fig 2. we compare the error in approximating the different 

measures of observation impact assuming Gaussian distributions as 

a function of  𝛍𝑦. 

Relative entropy is sensitive to both i) the change in the position of 

the posterior compared to the prior and ii) the change in its shape. 

The error in the change in the position when making Gaussian 

approximations will be zero when 𝛍𝑦 = 𝛍𝑥  and proportional to the 

error in the sensitivity away from this. The error in the change of 

shape is inversely related to the error in 𝐏𝒂. This part of the error in 

relative entropy is therefore inversely related to the sensitivity when 

the prior is non-Gaussian and directly related to the sensitivity when 

the likelihood is non-Gaussian. This explains the difference between 

Fig, 2a) (non-Gaussian prior) and Fig. 2b) (non-Gaussian likelihood). 

This also means there is a difference in the error in MI which is the 

expected value of relative entropy. 

Figure 1.  Sensitivity in non-Gaussian DA: A comparison between the 
sensitivity of the analysis to observations when I: the prior is non-
Gaussian and when II: the likelihood is non-Gaussian.  
a) The likelihood and prior in case I. 
b) The likelihood and prior in case II. 
c) The sensitivities in the two cases (solid lines) along with their 
estimates when the prior/likelihood is approximated by a Gaussian 
(dashed lines). 
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Observation impact in Gaussian DA 

a) b) 

c) 

Figure 2.  A comparison between the different measures of observation 
impact each normalised by their Gaussian approximation. 
a) When the prior is non-Gaussian  
b) When the likelihood is non-Gaussian. 

a) b) 

Non-Gaussian prior, 
Gaussian likelihood 

Gaussian prior, 
Non-Gaussian likelihood 

Conclusions 

• For a given observation value, the error in observation impact 

when Gaussian distributions are assumed can be very different 

depending on how it is measured. 

• When the prior is non-Gaussian the error in relative entropy 

has a smaller range of values as a function of the observation 

than the error in the sensitivity and vice versa when the 

likelihood is non-Gaussian. This can be understood by the 

different relationship the sensitivity has with the analysis error 

covariances in each of theses cases (see Eqns. (1) and (2)). 

• Mutual information, which is the expected relative entropy, 

tends to be much closer to it’s Gaussian approximation. 

However the error in the Gaussian approximation is again 

sensitive to the source of the non-Gaussianity. 
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