1	Corrigendum
2	
3	Jake Aylmer, ^a David Ferreira, ^a Daniel Feltham ^b
4	^a Department of Meteorology, University of Reading, Reading, United Kingdom
5	^b Centre for Polar Observation and Modelling, University of Reading, Reading, United Kingdom
6	
7	Corresponding author: Jake Aylmer, j.r.aylmer@pgr.reading.ac.uk
8	

±

9	We have become aware of a calculation error in Aylmer et al. (2020; hereafter A20). For
10	the mean ice thickness, $\langle H_i \rangle$, and mean heat transport convergences, h_o and h_a , the area-
11	weighting factor was omitted. This has not had a substantial impact and the main results and
12	conclusions of A20 are unaffected.
13	Figure 2b shows the corrected time series of $\langle H_i \rangle$ (<i>c.f.</i> Fig. 2b of A20). The annual-mean
14	ice thickness was stated to be 1.44 m in the EBM; this should be 1.21 m, which remains a
15	reasonable value. Using the unweighted average in Eq. (13) of A20 amounts to a 1%
16	difference in the estimate of s_o/s_a compared to using the correct average. Testing of Eq. (13)
17	of A20 with different values of B_{OLR} and B_{dn} (appendix B of A20) still yields estimates of
18	s_o/s_a accurate to within 5% of the (corrected) experimentally-derived values.
19	Because the heat transport convergences are roughly independent of latitude at high
20	latitudes, the impacts on the K_a and F_{bp} sensitivity experiments (Figs. 4 and 5 of A20) are
21	negligible. The sensitivities are affected by a few percent (Table 2).
22	The K_o sensitivity experiment (Fig. 3) is moderately affected because increases in h_o due
23	to varying K_o are concentrated near the ice edge where the area weighting is greater. The
24	range of variation of h_o is about 3 times larger than given in A20, and the seasonal
25	sensitivities are about a factor of 3 smaller. The reduction in $\Delta \phi_i / \Delta h_o$ between the seasonal
26	and perennial ice cover cases is about a factor of 40 (not 20 as given in A20). We stated that
27	the value of h_o required to give a seasonally ice-free solution when varying F_{bp} was about the
28	same as that when varying K_o —actually, it is about half, which is consistent with our
29	discussion in section 4c paragraph 3. Overall, our qualitative description of the K_o sensitivity
30	analysis holds with the corrected numerical results. Particularly, we concluded that in a
31	seasonally-ice-free climate, enhanced OHTC near the ice edge plays a less dramatic role than
32	in a perennial-ice climate, which is (more-so) consistent with the numbers given here.

File generated with AMS Word template 1.0

2

33	REFERENCES
34	Aylmer, J., D. Ferreira, and D. Feltham, 2020: Impacts of Oceanic and Atmospheric Heat
35	Transports on Sea Ice Extent. J. Climate, 33, 7197–7215, https://doi.org/10.1175/JCLI-D-
36	19-0761.1.
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	

			TABLES			
<i>p</i>	Ice o	cover	$\Delta \phi_i / \Delta h_a$	$\Delta \phi_i / \Delta h_o$	Sa	So
K	La Pere Seas	nnial onal	0.35 0.83		0.35 0.83	
K	Seas Lo Pere	onal* nnial	0.44	~~1.9	0.44	
	Seas Seas	onal onal*	_	0.05 0.06	_	0.18 0.13
F	<i>T_{bp}</i> Pere Seas	nnial onal	_	0.43 0.52		0.68 0.82
	Seas	onal*		0.26		0.42
	pracer summary	or results, with s	ignificantiy impa			

