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Abstract

Mesoscale eddies mix tracers horizontally in the ocean. This paper com-
pares different methods of diagnosing eddy mixing rates in an idealized,
eddy-resolving model of a channel flow meant to resemble the Antarctic
Circumpolar Current. The first set of methods, the “perfect” diagnostics,
are techniques suitable only to numerical models, in which detailed synoptic
data is available. The perfect diagnostic include flux-gradient diffusivities
of buoyancy, QGPV, and Ertel PV; Nakamura effective diffusivity; and the
four-element diffusivity tensor calculated from an ensemble of passive tracers.
These diagnostics reveal a consistent picture of along-isopycnal mixing by ed-
dies, with a pronounced maximum near 1000 m depth. The only exception
is the buoyancy diffusivity, a.k.a. the Gent-McWilliams transfer coefficient,
which is weaker and peaks near the surface and bottom. The second set
of methods are observationally “practical” diagnostics. They involve mon-
itoring the spreading of tracers or Lagrangian particles in ways that are
plausible in the field. We show how, with sufficient ensemble size, the practi-
cal diagnostics agree with the perfect diagnostics in an average sense. Some
implications for eddy parameterization are discussed.

Keywords: mesoscale eddies, eddy diffusivity, isopycnal mixing, Antarctic
Circumpolar Current

1. Introduction1

The meridional overturning circulation (MOC) of the ocean plays a fun-2

damental role in the climate system by providing a link between the deep3

ocean, where vast quantities of heat and carbon can be stored, and the atmo-4

sphere (Sarmiento and Toggweiler, 1984; Sigman and Boyle, 2000; Marshall5
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and Speer, 2012). Despite its importance, direct observation of the MOC is6

extremely challenging, demanding continuous, high-resolution measurements7

of the ocean flow field across entire basins and through the full water col-8

umn. One such attempt has been made in the North Atlantic through the9

RAPID program, a dense array of moorings and repeat sections along 26.5◦10

N (Bryden et al., 2005; Cunningham et al., 2007). However, doubt remains11

whether even this sophisticated network can distinguish MOC trends from12

slow internal variability and noise from the eddy field (Wunsch, 2008). Given13

the size, remoteness, and hostility of the Southern Ocean, it seems unlikely14

that such direct approaches will be implemented there in the foreseeable fu-15

ture. Instead, various indirect methods will continue to be employed. The16

Southern Ocean presents an additional challenge because of the importance17

of mesoscale eddy fluxes, which occur on relatively small spatial and temporal18

scales (Marshall and Speer, 2012).19

A common approach in the Southern Ocean has been to infer distinct20

components of the MOC in different ways. For instance, Sallée et al. (2010)21

used ARGO data to estimate the steady geostrophic flow, satellite data to22

calculate the Ekman pumping, and the eddy parameterization of Gent and23

McWilliams (1990) to estimate the eddy-induced advection. The divergence24

of these three components of the transport across the base of the mixed25

layer then gives the net subduction and upwelling, i.e. the residual MOC. A26

similar analysis of hydrographic data was performed by Speer et al. (2000).27

One large uncertainty in this approach lies in the Gent-McWilliams param-28

eterization, which requires the specification of an eddy-transfer coefficient.29

Setting this eddy-transfer coefficient also presents a major uncertainty in30

coarse-resolution numerical models.31

Motivated by the importance of the eddy-driven component of the MOC,32

much recent research has focused on characterizing the mixing properties of33

mesoscale eddies in the Southern Ocean (Marshall et al., 2006; Sallée et al.,34

2008; Smith and Marshall, 2009; Shuckburgh et al., 2009a,b; Abernathey35

et al., 2010; Naveira-Garabato et al., 2011; Ferrari and Nikurashin, 2010; Lu36

and Speer, 2010; Klocker et al., 2012a,b; Liu et al., 2012). A field campaign37

to measure mixing rates, the Diapycnal and Isopycnal Mixing Experiment38

in the Southern Ocean (a.k.a. DIMES; Gille et al., 2012), is also underway.39

The isoypcnal mixing rates from these studies will be particularly valuable if40

they can lead to improved estimates of the eddy-induced component of the41

MOC in the Southern Ocean. However, a wide range of mixing diagnostics42

have been employed, and the link between such diagnostics of mixing and43
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the actual eddy-induced transport is somewhat obscure. Furthermore, the44

mixing rates measured by these studies are not necessarily the same as the45

Gent-McWilliams eddy transfer coefficient (Smith and Marshall, 2009).46

The goal of this paper is to directly compare various methods of diagnos-47

ing lateral mixing. Some of these diagnostics are possible only in the context48

of a numerical model, in which all the dynamical fields are known exactly.49

We call these “perfect” diagnostics. We also consider less precise diagnostics50

which can potentially be applied to the real ocean, for example, in DIMES.51

We call these “practical” diagnostics.52

This study builds on many previous works, beginning with Plumb and53

Mahlman (1987), who first proposed the method for inferring K, the eddy54

diffusivity tensor, in an atmospheric model. A comparison between the diffu-55

sivities of passive tracers, potential vorticity, and buoyancy was performed by56

Treguier (1999) in a primitive-equation model and later in a quasi-geostrophic57

model by Smith and Marshall (2009, henceforth SM09). Our study builds58

on their approach by using primitive equations, including a more realistic59

residual meridional overturning circulation, and by calculating diffusivities as60

functions of y and z, rather than z alone. Marshall et al. (2006), Abernathey61

et al. (2010), Ferrari and Nikurashin (2010), and Lu and Speer (2010) all cal-62

culated “effective diffusivity” based on the method of Nakamura (1996), but63

did not compare their calculations to other mixing diagnostics. Klocker et al.64

(2012a) demonstrated the equivalence between tracer and particle-based dif-65

fusivities, but did so only in a 2D flow; here we work in three dimensions.66

In summary, the program of this paper is to synthesize and summarize these67

disparate methods in a flow with a plausible meridional overturning circula-68

tion, and then to compare them with the less precise methods available in69

the field.70

Our central conclusion is that disparate methods do in fact give reason-71

ably similar results; we find roughly the same diffusivities for passive tracers,72

Lagrangian floats, quasigeostrophic potential vorticity, and planetary Ertel73

potential vorticity. These all have similar magnitudes and vertical structures,74

with a pronounced mid-depth maximum. But, as previously reported by75

Treguier (1999) and SM09, none of them is similar to the Gent-McWilliams76

coefficient, which has a lower magnitude and weak vertical structure.77
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Figure 2: The residual overturning streamfunction in Sv (red for positive, blue for neg-
ative), calculated according to (1) in buoyancy coordinates (left) and depth coordinates
(right). In the left panel, the gray contours delineate the upper and lower boundaries of
the surface diabatic layer, and the black contour the mean sea-surface temperature. In the
right panel, the black contours are the mean isopycnals and the gray contour is the bottom
of the surface diabatic layer. [[How do we get permission to use this from Abernathey et al.
(2011)]]

will be used to advect passive tracers and particles.127

3. Perfect Mixing Diagnostics128

The perfect mixing diagnostics are quantities which can be calculated129

only with very detailed synoptic observation of the flow. Such diagnostics130

provide the most complete characterization of mixing and transport possible.131

They are straightforward to extract from numerical models but nearly im-132

possible for the real ocean. (By contrast, in the atmosphere, where detailed133

observations and reanalysis products provide sufficient spatial and tempo-134

ral resolution, many perfect diagnostics can be calculated (e.g. Haynes and135

Shuckburgh, 2000a,b).)136

Observational problems aside, the interpretation of perfect mixing diag-137

nostics still poses a challenge. Different diagnostics have been used through-138

out the literature to characterize eddy mixing, and the relationship between139

these diagnostics is not always obvious. Our purpose here is to consolidate140

many different diagnostics in one place and show their relationship. A similar141
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of the surface diabatic layer. [[How do we get permission to use this from Abernathey et al.
(2011)]]
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Figure 1: Overview of the model forcing and and snapshot of temperature field. The
colored box is the instantaneous temperature, ranging from 0 to 8◦C. Above are the surface
wind stress and heat flux fields. To the right is the time- and zonal-mean zonal velocity,
contoured every 2.5 cm s−1. [[How do we get permission to use this from Abernathey et al.
(2011)]]

and H is the depth. In Fig. 2 we plot Ψiso in its native buoyancy coordinates112

and also mapped back into depth coordinates. The figure reveals two distinct113

cells: a clockwise lower cell, analogous to the Antarctic-Bottom-Water branch114

of the global MOC (Ito and Marshall, 2008); and a counterclockwise mid-115

depth cell, analogous to the upper branch of the global MOC (Marshall and116

Speer, 2012). There is also a shallow subduction region in the north of the117

domain that can be viewed as a mode-water formation region.118

The fact that our model has non-zero interior residual circulation also119

implies that there are non-zero gradients and eddy fluxes of potential vorticity120

(PV) in the interior. These PV fluxes are directly related to the residual121

transport (Andrews et al., 1987; Plumb and Ferrari, 2005). The presence122

on non-zero interior PV is a key property that allows us to demonstrate123

the similarity in the mixing of dynamically passive tracers and floats to the124

dynamically active mixing of PV.125

In the following sections, the velocity field from the equilibrated model126
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ative), calculated according to (1) in buoyancy coordinates (left) and depth coordinates
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the surface diabatic layer, and the black contour the mean sea-surface temperature. In the
right panel, the black contours are the mean isopycnals and the gray contour is the bottom
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Figure 1: Overview of the model setup. On the left, the colored box is a snapshot of
the instantaneous temperature, ranging from 0 to 8◦C; immediately to the right is the
time-mean zonal flow, contoured every 2.5 cm s−1. Above are the surface wind stress and
heat flux fields. The panels on the right two views of the residual overturning stream-
function Ψiso in Sv (red for positive, blue for negative), calculated according to (1). On
top, Ψiso is plotted in buoyancy coordinates; the gray contours delineate the upper and
lower boundaries of the surface diabatic layer, and the black contour the mean sea-surface
temperature. On the bottom in, Ψiso has been mapped back to depth coordinates; the
black contours are the mean isopycnals and the gray contour is the bottom of the surface
diabatic layer.

2. Numerical Model78

The model flow is meant to resemble the Antarctic Circumpolar Current.79

The domain, numerical configuration, and forcing are identical to the model80

described in Abernathey et al. (2011) and Hill et al. (2012), which the reader81

should consult for a detailed description.82

The Boussinesq primitive equations are solved using the MITgcm (Mar-83

shall et al., 1997a,b). The domain is a zonally reentrant channel on a β-plane,84

1000 km x 2000 km x 2985 m, forced at the surface with a zonal wind stress85

and a fixed heat flux. The forcing and domain, along with a snapshot of the86

temperature field, are illustrated in Fig. 1. The wind stress forcing is a sinu-87
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soid which peaks in the center of the domain at 0.2 N m−2. The heat flux88

consists of sinusoidally alternating regions of cooling, heating, and cooling,89

with with an amplitude of 10 W m−2. There is a sponge layer at the north-90

ern boundary, in which the temperature is relaxed to an exponential strat-91

ification profile with an e-folding scale of 1000 m. A second-order-moment92

advection scheme is used to minimize spurious numerical diffusion (Prather,93

1986), resulting in an effective diapycnal diffusivity of approx. 10−5 m2 s−1
94

(Hill et al., 2012). The model contains no salt and uses a linear equation of95

state; the buoyancy is simply b = gαθ, where θ is the potential temperature.96

The fine resolution (5 km in the horizontal, 40 vertical levels), together97

with the forcing, which maintains a baroclinically unstable background state,98

allows an energetic mesoscale eddy field to develop. Without the sponge99

layer, the eddy-induced overturning circulation would completely cancel the100

wind-induced Eulerian-mean Ekman overturning circulation, resulting in zero101

residual overturning circulation, a situation described by Kuo et al. (2005).102

However, the presence of the sponge layer, in conjunction with the applied103

pattern of heating and cooling, produces a residual overturning that qual-104

itatively resembles the real Southern Ocean, as described by Marshall and105

Radko (2003) or Lumpkin and Speer (2007) (see Abernathey et al., 2011, for106

further detail).107

This residual overturning circulation is obtained by averaging the merid-108

ional transport v in layers of constant buoyancy b; the streamfunction ob-109

tained this way is defined as110

Ψiso(y, b) =
1

∆t

∫ t0+∆t

t0

∫ ∫ 0

−D
vhH(b)dzdxdt , (1)

where h = −∂z/∂b is the layer thickness, H is the heaviside function, and D111

is the depth. In Fig. 1 we plot Ψiso in its native buoyancy coordinates and also112

mapped back into depth coordinates. The figure reveals two distinct cells:113

a clockwise lower cell, analogous to the Antarctic-Bottom-Water branch of114

the global MOC (Ito and Marshall, 2008); and a counterclockwise mid-depth115

cell, analogous to the upper branch of the global MOC (Marshall and Speer,116

2012). There is also a shallow subduction region in the north of the domain117

that can be viewed as a mode-water formation region.118

The fact that our model has non-zero interior residual circulation also119

implies that there are non-zero gradients and eddy fluxes of potential vorticity120

(PV) in the interior. These PV fluxes are directly related to the residual121
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transport (Andrews et al., 1987; Plumb and Ferrari, 2005). The presence122

on non-zero interior PV is a key property that allows us to demonstrate123

the similarity in the mixing of dynamically passive tracers and floats to the124

dynamically active mixing of PV.125

In the following sections, the velocity field from the equilibrated model126

will be used to advect passive tracers and particles.127

3. Perfect Mixing Diagnostics128

The “perfect” mixing diagnostics are quantities which can be calculated129

only with very detailed synoptic knowledge of the flow. Such diagnostics130

provide the most complete characterization of mixing and transport possi-131

ble. They are straightforward to extract from numerical models but nearly132

impossible for the real ocean. By contrast, in the atmosphere, some per-133

fect diagnostics can be calculated directly from observations (e.g. Nakamura134

and Ma, 1997) or from reanalysis products (e.g. Haynes and Shuckburgh,135

2000a,b).136

Observational problems aside, the interpretation of perfect mixing diag-137

nostics still poses a challenge. Different diagnostics have been used through-138

out the literature to characterize eddy mixing, and the relationship between139

these diagnostics is not always obvious. Our purpose here is to consolidate140

many different diagnostics in one place and show their relationship. A similar141

study was made for the atmosphere by Plumb and Mahlman (1987, hereafter142

PM87), who also review some theoretical aspects. Here we basically repeat143

their methodology for this ACC-like flow.144

3.1. Passive Tracers145

Our starting point is to examine the mixing of passive tracers. Passive146

tracers obey an advection-diffusion equation of the form147

∂c

∂t
+ v · ∇c = κ∇2c+ C (2)

where c is the tracer concentration, v is the velocity field, κ is a small-scale148

diffusivity, and C is a source or sink. We will focus on cases where C = 0 and149

the diffusive term is negligible for the large-scale budget of c. (Some small-150

scale diffusion is necessary for mixing to occur, and likewise it is impossible to151

eliminate diffusion completely from numerical models. But for flows of large152

Peclét number, diffusion is an important term only in the tracer variance153

budget, not the mean tracer budget itself.)154
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3.1.1. Diffusivity Tensor155

PM87 performed a detailed study of the transport characteristics of a156

model atmosphere using passive tracers. Here we briefly review their def-157

inition of K, the diffusivity tensor, which we view as the most complete158

diagnostic of eddy transport. The reader is referred to PM87 or Bachman159

and Fox-Kemper (2013) for a more in-depth discussion.160

Taking a zonal average of (2) (indicated by an overbar) and neglecting161

the RHS terms, we obtain162

∂c

∂t
+ v · ∇c = −∇ · Fc (3)

where Fc = (v′c′, w′c′) is the eddy flux of tracer in the meridional plane.163

The diffusivity tensor K relates this flux to the background gradient in each164

direction; it is defined by165

Fc = −K · ∇c . (4)

This equation is underdetermined for a single tracer, but PM87 used multiple166

tracers with different background gradients to calculate it. This method has167

also recently been applied by Bachman and Fox-Kemper (2013) in an oceanic168

context.169

We found K by solving (4) for six independent tracers. In this case, (4) is170

overdetermined, and the “solution” is a least-squares best fit (Bachman and171

Fox-Kemper, 2013). The initial tracer concentrations used were as follows:172

c1 = y, c2 = z, c3 = cos(πy/Ly) cos(πz/H), c5 = sin(πy/Ly) sin(πz/H),173

c5 = sin(πy/Ly) sin(2πz/H), c6 = cos(2πy/Ly) cos(πz/H). (We experi-174

mented with different initial concentrations, but found the results to be in-175

sensitive to this detail, provided many tracers with different gradients were176

used.) The tracers were allowed to evolve from these initial conditions for177

one year. (An experiment with two years of evolution produced very similar178

results.) Fc and ∇c were calculated for each tracer by performing a zonal179

and time average over the one-year period and then over an ensemble of 20180

different years. In matrix form, the equation solved to find K(y, z) was181 [
v′c′1 v′c′2 ... v′c′6
w′c′1 w′c′2 ... w′c′6

]
= −

[
Kyy Kyz

Kzy Kzz

] [
∂c1/∂y ∂c2/∂y ... ∂c6/∂y
∂c1/∂z ∂c2/∂z ... ∂c6/∂z

]
(5)

where each element of K at each point in (y, z) space is a least-squares es-182

timate that minimizes the error across all tracers. In general the fit is very183

good, with R2 > 0.99 in much of the domain and R2 > 0.9 nearly everywhere.184
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It is most informative to decompose K into two parts,185

K = L + D , (6)

where L is an antisymmetric tensor and D is symmetric. Because the flux due186

to L is normal to ∇c, its effects are advective, rather than diffusive (Plumb,187

1979; Plumb and Mahlman, 1987; Griffies, 1998). Using this fact, we can188

rewrite (3) as189

∂c

∂t
+ (v + v†) · ∇c = ∇ · (D · ∇c) (7)

where v† = (v†, w†) is an eddy-induced effective transport velocity, defined190

by a streamfunction χ, such that191

v† = −∂χ/∂z , w† = ∂χ/∂y (8)

and192

L =

[
0 −χ
χ 0

]
. (9)

Under adiabatic conditions, χ is approximately equal to the transformed-193

Eulerian-mean eddy-induced streamfunction, or the “bolus transport” stream-194

function in thickness-weighted isopycnal coordinates. Again, for more de-195

tailed discussion, the reader is referred to PM87.196

Because L is advective in nature (and doesn’t appear in the tracer variance197

budget), all of the actual mixing due to eddies is contained in D (Nakamura,198

2001). Since D is symmetric, it can be diagonalized by coordinate rotation.199

Let Uα be the rotation matrix for angle α. In the rotated coordinate system,200

the flux due to D is201

−UαD∇c = −UαDUT
αUα∇c = −D′Uα∇c (10)

where D′ = UαDUT
α . Solving for the α that makes D′ diagonal, we find202

tan 2α =
2Dyz

Dyy −Dzz

. (11)

The rotated matrix,203

D′ =

[
D′yy 0

0 D′zz

]
(12)

describes the eddy diffusion along (D′yy, the major-axis diffusivity) and across204

(D′zz, the minor-axis diffusivity) the plane defined by α, which we call the205

mixing angle.206
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Figure 2: Decomposition of eddy diffusivity tensor K into a major-axis diffusivity D′yy,
minor-axis diffusivity D′zz, and eddy-induced transport stream function χ. χ has been
converted to Sv by multiplying by Lx. The mean isopycnals are shown in white contours
(contour interval 0.5◦ C), and the thermal-wind component of the zonal-mean velocity is
shown in grey (contour interval 1 cm s−1). In the left two panels, the mixing angle α is
indicated by the black dashes. See text for discussion.

The physical interpretation of K is therefore best summarized by four207

quantities: χ, α, D′yy, and D′zz. These quantities are plotted in Fig. 2. The208

mixing angle is along isopycnals throughout most of the domain, except close209

the surface, where the mixing acquires a more horizontal character. This210

pattern is consistent with the paradigm that ocean eddies mix adiabatically211

in the interior and diabatically in the “surface diabatic layer,” i.e. the layer212

over which isopycnals outcrop (Treguier et al., 1997; Cerovecki and Marshall,213

2008). Consequently, D′yy can be described as an isopycnal eddy diffusivity,214

and D′zz as diapycnal eddy diffusivity. The adiabatic condition implies α '215

−by/bz.216

An obvious feature in the spatial structure of D′yy is a pronounced peak at217

mid-depth (approx. 1200 m). Enhanced lateral mixing at a mid-depth “crit-218

ical layer” is a general feature of baroclinically unstable jets (Green, 1970;219

Killworth, 1997). Many studies have confirmed the presence of an enhanced220

mid-depth mixing layer in the ACC (Smith and Marshall, 2009; Abernathey221

et al., 2010; Naveira-Garabato et al., 2011; Klocker et al., 2012a). Our highly222

idealized model evidently shares this behavior. It is also important to note,223

though, that D′yy varies even more strongly with y, with the strongest mixing224

being in the center of the channel.225

The interpretation of D′zz is more puzzling. The major-axis diffusivity226
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is much greater than the minor: |D′yy|/|D′zz| ' 107. Combined with the227

fact that α departs only very slightly from 0 (due to the aspect ratio of the228

domain), this means that D′yy ' Dyy. On the other hand, each individual229

component of D is much greater in magnitude than D′zz, whose value de-230

pends on large cancellations in (12). The implied diapycnal diffusivity of231

O(10−4) m2 s−1 is at odds with a previous study focused exclusively on di-232

apycnal mixing (Hill et al., 2012), which found values of O(10−5) m2 s−1 and233

below in the same model using different methods. Our conclusion is that234

even a very small error in α can cause D′zz to be polluted with spurious large235

values, and that the multiple-tracer method described here is not a robust236

diagnostic of diapycnal mixing. The focus of the present study is on lateral237

mixing, and we will not concern ourselves with D′zz further here.238

The eddy transport streamfunction χ, shown in the third panel of Fig. 2,239

describes a counterclockwise overturning circulation that opposes the Ekman240

circulation. It has the same magnitude and structure as the eddy-induced241

overturning computed using thickness-weighted isopycnal averaging, as de-242

scribed in detail in Abernathey et al. (2011).243

3.1.2. Nakamura Effective Diffusivity244

The framework developed by Nakamura (1996) has gained widespread use245

in assessing lateral mixing in the ocean and atmosphere (Nakamura and Ma,246

1997; Haynes and Shuckburgh, 2000a,b; Marshall et al., 2006; Abernathey247

et al., 2010; Klocker et al., 2012a). This framework relies on a tracer-based248

coordinate system, in which the flux across tracer isosurfaces can be charac-249

terized by an effective diffusivity, which depends only on the instantaneous250

tracer geometry. A similar concept was developed by Winters and D’Asaro251

(1996).252

The effective diffusivity is defined as253

Keff = κ
L2
e

L2
min

(13)

where Le is the equivalent length of a tracer contour that has been stretched254

by eddy stirring and Lmin is the minimum possible length of such a contour,255

in this case, simply the domain width in the zonal direction. For further256

background and details regarding the Keff calculation, the reader is referred257

to Marshall et al. (2006).258

As described in the preceding section, the model was constructed to be259

as adiabatic as possible, with explicit horizontal and vertical diffusion set to260
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Figure 3: Nakamura effective diffusivity calculated on a passive tracer after 10 months of
evolution. Values shown are an average over an ensemble of 10 independent tracer-release
experiments. In the left panel, KH

eff was calculated on slices of c at constant z (horizontal).

In the middle panel, Kiso
eff was calculated on slices of c at constant T (isopycnal). The

right panel shows Kiso
eff mapped back to depth space using the mean isopycnal depths.

zero. However, the effective diffusivity framework requires a constant small-261

scale background horizontal diffusivity κ. Therefore, in the tracer advection262

for the effective diffusivity experiments, we used an explicit horizontal diffu-263

sivity of κ = 50 m2 s−1. Analysis of the tracer variance budget indicated that264

numerical diffusion elevated this value slightly, to 55 m2 s−1. We performed265

our experiments by initializing a passive tracer with concentration c = y266

and allowing it to evolve under advection and diffusion for two years. Every267

month, a snapshot of c and T was output. This procedure was repeated for268

10 consecutive two-year periods, to create a smooth ensemble-average picture269

of the evolution of Keff over two years.270

The 3D tracer field must be sliced into 2D surfaces in order to compute271

Keff (y). The most straightforward way to accomplish this is to examine272

surfaces of c at constant z; we call this KH
eff . However, since the mixing273

angle is along isopycnals, a more physically relevant choice is to project c into274

isopycnal coordinates; the effective diffusivity computed from this projection275

we call Kiso
eff . Abernathey et al. (2010) tried both methods, and here we do276

the same.277

After two months, the overall magnitude of both Keff calculations sta-278

bilizes and remains roughly constant, as does the spatial structure of Kiso
eff .279

The spatial structure of KH
eff , on the other hand, continues to evolve over the280
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two year period, departing further and further from Kiso
eff . The results of one281

Keff ensemble calculation (at 10 months) are shown in Fig. 3. Comparing282

this figure with Fig. 2, we see that Kiso
eff is strikingly similar in magnitude283

and spatial structure to D′yy. This agreement between these two diagnostics,284

based on quite different methods, is expected but nevertheless encouraging.285

KH
eff , on the other hand, while having the right general magnitude, has sig-286

nificant differences in spatial structure. From this we conclude that KH
eff287

is somewhat misleading diagnostic whose physical interpretation is unclear.288

Kiso
eff , on the other hand, is a robust diagnostic of isopycnal mixing.289

3.2. Active Tracers290

Now we compute flux-gradient diffusivities for active tracers. By active291

tracers we mean scalars which are advected by the flow but which also affect292

the dynamics of the flow. The active tracers we consider are potential vor-293

ticity (both planetary Ertel and quasi-geostrophic varieties) and buoyancy.294

Also, unlike the passive tracers, these active tracers are forced at the surface,295

and their zonal means have reached a steady-state equilibrium. Therefore,296

it is interesting to ask whether they experience the same diffusivity as the297

passive tracers.298

3.2.1. QGPV Diffusivity299

Quasi-geostrophic theory predicts that stirring by mesoscale eddies will300

lead to a down-gradient flux of quasi-geostophic potential vorticity (QGPV)301

in the ocean interior (Rhines and Young, 1982). Although this down-gradient302

relationship cannot be expected to hold locally at every point in the ocean,303

it is much more robust in a zonally-averaged context, which eliminates rota-304

tional fluxes from the enstrophy budget (Marshall and Shutts, 1981; Wilson305

and Williams, 2004). Although our model is based on primitive equations,306

certain quasi-geostrophic quantities can nevertheless be calculated (Treguier307

et al., 1997). Of interest here is the eddy QGPV flux 1
308

v′q′ = f0
∂

∂z

(
v′b′

bz

)
(14)

1The QGPV flux also includes a Reynolds-stress term ∂y(u′v′). In our model, this
term is an order of magnitude smaller, as expected from standard oceanographic scaling
arguments (Vallis, 2006), and has therefore been neglected.
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Figure 4: Left panel: mean meridonal QGPV gradient Qy. Middle: eddy qgpv flux v′q′.
Right: qgpv diffusivity Kq. The left two quantities were masked where bz < 2 × 10−7

s−1 (i.e. weak stratification) to avoid dividing by this small number. Kq was additionally
masked in places where |Qy| < β/2, where the QGPV gradient crosses zero. The masked
areas are colored gray.

and the background meridional QGPV gradient309

Qy = β − f0
∂sb
∂z

(15)

where sb = −(∂b/∂y)/(∂b/∂z) is the mean isopycnal slope. The QGPV310

diffusivity is then defined as311

Kq = −v′q′/Qy . (16)

The importance of the QGPV flux in the momentum budget is reviewed in312

Appendix A.313

All three of these quantities are plotted in Fig. 4. First we note that,314

where Qy is nonzero, there is indeed a strong anti-correlation between Qy315

and v′q′, supporting the notion of a down-gradient transfer of QGPV. This is316

reflected by the fact that Kq is positive nearly everywhere. (The relationship317

breaks down near the surface, which we attribute to the presence of strong318

forcing terms and an unstratified mixed layer, making the QG approximation319

itself invalid.) Furthermore, comparing Fig. 4 with Fig. 2, we see a strong320

resemblance between Kq and D′yy, both in magnitude and spatial structure.321

The calculation of Kq involves computing many derivatives in both y and322

z. We expected to find a very noisy result, and are consequently pleasantly323
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Figure 5: Left panel: mean meridonal / isopycnal Ertel PV gradient ρb
∗P
∗
y, plotted in

buoyancy space. (Multiplication by the factor ρb
∗ gives the same units as the QGPV

gradient in Fig. 4.) See Appendix B for details. Middle: eddy Ertel PV flux ρb
∗v̂P̂

∗
.

Right: Ertel PV diffusiviy KP . As in Fig. 4, the gradient has been masked where its
absolute value is less than β/2. The masked areas are colored gray. The black contours
indicate the 5%, 50%, and 95% levels of the surface buoyancy cumulative distribution
function.

surprised by this agreement. Kq is also very similar to Kiso
eff , supporting the324

choice by Abernathey et al. (2010) to equate these quantities in a diffusive325

closure for the eddy QGPV flux.326

3.2.2. Isopycnal Planetary Ertel PV Diffusivity327

Through the well-known correspondence between the quasigeostrophic328

framework and analysis in isopycnal coordinates, the QGPV flux can be329

recast as a flux of Ertel potential vorticity along isopycnals (Andrews et al.,330

1987). Analysis of the tracer variance budget in isopycnal coordinates also331

supports a down-gradient diffusive closure for the PV flux in this framework332

(Jansen and Ferrari, 2013). Here we calculate the along-isopycnal Ertel PV333

diffusivity directly. In our context, the Ertel PV is very well captured by334

the planetary approximation, in which relative vorticity is neglected; our335

definition of Ertel PV is therefore P = f∂b/∂z.336

The isopycnal diffusivity of Ertel potential vorticity is defined as337

KP = −v̂P̂
∗
/
∂P
∗

∂y
. (17)

The ∗̄ symbol indicates a generalized thickness-weighted zonal average along338
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isopycnals, and the ˆ symbol the anomaly from that average. Further details339

the thickness-weighted averaging in isopycnal coordinates are described in340

Appendix B. All the factors in (17) are plotted in Fig. 5, in buoyancy space341

rather than depth. The strong similarity between the fluxes and gradients in342

the QG and isopycnal frameworks confirms the mathematical correspondence343

between these two forms of analysis. Furthermore, the spatial structure and344

magnitude of KP in the interior is quite similar to Kiso
eff and, when mapped345

back to depth coordinates (not plotted), to D′yy and Kq. The down-gradient346

nature of the flux also clearly breaks down in the surface layer, due to factors347

such as the presence of strong forcing terms and the intermittent outcropping348

of isopycnals.349

3.2.3. Buoyancy Diffusivity350

The horizontal buoyancy diffusivity is an important yet problematic quan-351

tity, defined as352

Kb = −v
′b′

by
. (18)

This quantity plays a central role in eddy parameterization (Gent and McWilliams,353

1990; Gent et al., 1995; Griffies, 1998) and in the theory of the Southern354

Ocean overturning circulation (Marshall and Radko, 2003; Nikurashin and355

Vallis, 2012). (It is commonly also referred to as the Gent-McWilliams eddy356

transfer coefficient.) Yet it is not, properly speaking, a diffusivity in the357

Fickian sense. This is because, in the adiabatic interior, the eddy buoy-358

ancy flux Fb (of which v′b′ is only one component) is directed almost en-359

tirely perpendicular to the buoyancy gradient (Griffies, 1998; Plumb and Fer-360

rari, 2005). There is no down-gradient eddy flux of buoyancy, only a “skew361

flux.” In Sec. 3.1.1, we found that the mixing angle α in the interior satisfies362

α ' −by/bz. This means that the contribution to v′b′ from −D∇b is due only363

to the diapycnal diffusvity D′zz, which is negligibly small. Therefore, using364

(4) and (6), we see that365

Kb ' χ/sb (19)

where sb = −by/bz is the mean isopycnal slope. The buoyancy diffusivity366

Kb is related to the eddy-induced streamfunction χ and the isopycnal slope.367

This relation is in fact a key assumption of the Gent and McWilliams (1990)368

parameterization.369

We have plotted both sides of (19) in Fig. 6, illustrating the strong sim-370

ilarity between the two quantities. (The small differences between Kb and371
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Figure 6: Left panel: horizontal buoyancy diffusivity Kb calculated from (18). Right panel:
χ/sb.

χ/sb can be attributed to diabatic effects.) Comparison with (2) reveals sig-372

nificant differences between Kb and D′yy. Noting the different color scales373

used in Figs. 6 and 2, it is evident that overall magnitude of Kb is roughly374

half that of D′yy. Significant differences in spatial structure are also present.375

For instance, Kb has its highest values at the bottom and top of the wa-376

ter column, while D′yy has its maximum at mid-depth. It is particularly377

important to point out these differences because it is quite common to as-378

sume that D′yy = Kb in the context of eddy parameterization (Gent and379

McWilliams, 1990; Gent et al., 1995; Griffies, 1998). Such an assumption is380

clearly not supported by our simulations. Similarly, Liu et al. (2012) used381

an adjoint-based method to infer Kb and then discussed the results in terms382

of the mixing-length ideas of Ferrari and Nikurashin (2010). Our results383

suggest this comparison is unsound. In Sec. 5, we will further explore the384

relationship between Kb and D′yy and discuss the parameterization problem.385
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3.3. Summary386

So far in this section we have seen strong agreement between different387

perfect diagnostics of isopycnal mixing. In particular, D′yy, K
iso
eff , Kq, and388

KP all give a similar picture of along-isopycnal mixing rates. The strength of389

along-isopycnal mixing varies between 3000 and 7000 m2 s−1 in the middle390

of the domain, with a pronounced peak between 1000 and 1500 m depth.391

Mixing rates fall off sharply at the northern and southern edges of the domain.392

However, the buoyancy diffusivity Kb does not agree with the other mixing393

diagnostics, differing both in magnitude and vertical structure. This result394

has been found by previous authors (Treguier, 1999, SM09) and results from395

the fact that Kb is a “skew” diffusivity rather than an isopycnal diffusivity396

(Griffies, 1998). We now turn to the question of how, and how accurately,397

the isopycnal mixing rates can be inferred from experiments in the field.398

4. Practical Mixing Diagnostics399

4.1. Lagrangian Diffusivity400

One of the two most common methods to estimate isopycnal diffusion in401

observational programs is the use of Lagrangian trajectories of either surface402

drifters or subsurface floats (e.g. Davis, 1991; LaCasce, 2008). (The other403

method, described in the next subsection, is to use tracer release experi-404

ments.) Lagrangian diffusivities are calculated from the mean square sepa-405

ration of an ensemble of N drifters or floats (called simply “particles” from406

here on) from their starting positions. This is the single-particle diffusivity407

of Taylor (1921):408

K1y(y0, t) =
1

2

d

dt

[
1

N

N∑
i=1

(yi(t)− yi0)2

]
. (20)

Here yi(t) is the meridional position of a particle released at yi0 at t = 0.409

Lagrangian diffusivities can also be calculated using the mean-square sepa-410

ration of particles relative to each other. Both the single-particle diffusivity411

and the relative diffusivity asymptote at long times (e.g. Davis, 1985). As412

shown by Taylor (1921), these eddy diffusivities are equal to the integral of413

the Lagrangian autocorrelation function, which in case of the single-particle414

diffusivity can be written as:415

K1y(y0, t) =

∫ t

0

Rvv(y0, τ) (21)
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where416

Rvv(y0, τ) =
1

N

N∑
i=1

vi(τ)vi(0) . (22)

Here vi(t) is the meridional velocity of particle i. If the Lagrangian veloc-417

ities decorrelate after a certain time, and the integral of the correlation is418

finite. The Lagrangian diffusivity K1y(y0, t) will consequently asymptote to419

a constant value (Taylor, 1921).420

Here it is important to note that it is necessary to have sufficient La-421

grangian statistics to resolve this Lagrangian autocorrelation function until422

it decorrelates; the error is expected to decrease as n−1/2, where n is the423

number of particles (Davis, 1994). Klocker et al. (2012b) have shown that424

this Lagrangian autocorrelation function has two parts—an exponential de-425

caying part and an oscillatory part. If integrating just over the exponential426

decaying part, one would derive an eddy diffusivity for the case in which427

the mean flow does not influence the diffusivity. But as shown by several428

recent studies (Marshall et al., 2006; Abernathey et al., 2010; Ferrari and429

Nikurashin, 2010), eddy diffusivities are influenced by the mean flow; this430

can be seen as the oscillatory part of the Lagrangian autocorrelation func-431

tion (Klocker et al., 2012b). Resolving this oscillatory part requires a much432

larger number of particles, and therefore leads to strong limitations in obser-433

vational programs due to the limited number of drifters and floats deployed434

in those programs. (See Klocker et al. (2012b) for a more detailed exploration435

of the issue of using limited Lagrangian statistics to derive eddy diffusivities436

in observational studies.)437

In numerical simulations, we can just increase the number of floats until438

the errors are vanishingly small. To calculate eddy diffusivities in this study,439

floats are deployed at every grid point (i.e. every 5 km) within a region which440

extends over the whole model domain in the zonal direction and over a width441

of 100 km, centered in the channel, in meridional direction. This results in442

a total of 4000 floats at each depth. In the vertical, there were 40 differ-443

ent release depths corresponding to the model’s vertical grid. The floats are444

then advected for one year, with positions output every day. Lagrangian445

eddy diffusivities are calculated at each depth according to (21), with the446

eddy diffusivity being calculated as an average over days 30-40. Examples447

for the Lagrangian autocorrelation function, Rvv, and the Lagrangian eddy448

diffusivity, K1y are shown in Fig. 7a for floats deplayed at a depth of 100449

m and 7b for floats deployed at a depth of 1500 m. Fig. 7a shows a typ-450
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(a) (b)

Figure 7: Lagrangian autocorrelation function Rvv (dashed) and K1y (solid) from the
particle release experiments at depths of (a) 100 m and (b) 1500 m.

ical example for a depth where the mean flow plays an important role in451

suppressing eddy diffusivities, with Rvv showing an exponential decay and452

an oscillatory part, leading to an eddy diffusivity K1y which first increases453

to approx. 8000 m2 s−1 and then converges at approx. 4000 m2 s−1. Fig. 7b454

shows both Rvv and K for a depth where the mean flow does not play an455

important role, i.e. Rvv only shows an exponential decay and K increases456

until converging at approx. 3700 m2 s−1. In both cases the Lagrangian auto-457

correlation function decorrelates after approx. 30 days. The vertical profile458

of Lagrangian diffusivities is shown in Fig. 11 (the overall comparison fig-459

ure, discussed subsequently) and agrees well with other estimates of eddy460

diffusivities.461

4.2. Tracer Release462

Another possible method to measure isopycnal diffusion in the ocean is463

through the use of deliberate tracer release experiments. Such techniques464

have already been successfully employed to estimate diapycnal mixing by465

Ledwell and collaborators (Ledwell and Bratkovich, 1995; Ledwell et al.,466

1998, 2011). In these experiments, a passive dye is released as close as techni-467

cally possible to a target isopycnal in the ocean and its subsequent evolution468

monitored over a few years. To quantify the vertical diffusion, the tracer469

field is first averaged isopycnaly into one vertical profile. These profiles are470

well approximated by a Gaussian whose width σ evolves linearly with time471

19



Figure 8: (top, left) Horizontal tracer distribution at 975 m depth, 100 days after release
near (x, y) = (500, 1000) km at 975 m depth. Note that only a subdomain is shown. Only
tracer concentration larger than 10−5 are plotted. (top, right) Meridional section though
the channel at X = 1000 km showing a snap-shot of the tracer distribution (color) and
temperature surfaces (white contours) 300 days after release (same release as that show
in top left panel). (bottom left) Meridional profiles of the vertically and zonally averaged
tracer concentration (in 10−4 units) 100 days after release: the red and blue curves shows
two examples of a single tracer release while the solid black surge shows the ensemble mean
of all 16 tracer releases. The dashed black line is the least-squared fit Gaussian curve to
the ensemble mean distribution. (bottom right) Same as bottom left but after 300 days
(in 10−5 units).
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(as expected if the tracer field spread vertically according to a simple one472

dimensional diffusion equation). The vertical diffusion κv is then given by473

κv = (1/2)dσ/dt. This method was also successfully applied to the estima-474

tion of the effective diapycnal diffusion in a numerical model in a setup very475

similar to the one used here (Hill et al., 2012).476

One hopes that isopycnal diffusion in the ocean could be estimated using477

similar techniques by taking advantage of already collected data (e.g. from478

the NATRE and DIMES campaigns; Ledwell et al., 1998; Gille et al., 2012).479

To achieve this, one could monitor the isopycnal spreading of the tracer480

by summing its 3D distribution vertically. To simplify further the problem481

here, we will zonally average the resulting 2D map into a 1D profile and482

focus on the meridional diffusivity KI . Unfortunately, one can readily see483

that the tracer distribution is very patchy and its meridional profile is poorly484

approximated by a Gaussian. Fig. 8 illustrates this point in the channel,485

plotting the tracer distribution 100 days after release. (Details of the tracer-486

release experiments and diagnostic methods are given in Appendix C.) The487

tracer patch is stretched into long narrow filaments, cascading to small scales.488

Such behavior is also observed in the real ocean (see Fig. 18 from Ledwell489

et al., 1998). Unlike the diapycnal case, the isopycnal dispersion of a tracer490

patch does not fit a one-dimensional diffusion equation, at least initially,491

effectively preventing a reliable estimation of KI .492

One possible way to circumvent this issue is to consider an ensemble of493

tracer releases. One expects that in an average sense, the tracer does behave494

in a diffusive way. To test this, we perform 16 tracer releases in the model:495

8 tracers are released simultaneously 125 km apart along the center of the496

channel, followed by a second set of 8 releases 300 days later. The ensemble-497

mean profiles at 100 and 300 days after release are shown in Fig. 8 (bottom,498

black solid). Contrary to profiles from single releases, the ensemble-mean499

profile already approaches a Gaussian shape after 100 days. Importantly, the500

width of the best-fit Gaussian curve to the ensemble-mean profile (dashed501

black) grows linearly with time after 150 days at most depths (see Appendix502

B for details).503

The isopycnal diffusivity in the channel, estimated from the 16-member504

ensemble mean, is plotted as a function of depth in Fig. 9. It increases505

from about 500 m2 s−1 in subsurface to slightly more than 4000 m2 s−1
506

around 1100 m depth, and then decreases to 3500 m2 s−1 near the bottom.507

Note that subsurface (300-400 m) values are likely underestimates because,508

at these depths, the tracers rapidly spread along isopycnals up to the surface509
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Figure 9: Vertical profiles of the isopycnal diffusivity KI estimated from tracer release
experiments in the channel. The thick line denotes values estimated from monitoring the
evolution of the 16-member ensemble-mean tracer at each depth. The mean (± one stan-
dard deviation) of isopycnal diffusivities computed by following each tracer individually
(16 values) are shown by a dashed-dotted line and light grey shading. Similar quantities
from 2-member ensemble-mean are shown in solid black and dark grey shading.

diabatic layer and then horizontally at the surface (see details in Appendix510

B). To obtain a more robust estimate near the surface, a set of 16 tracer511

patches were released right into the mixed layer, leading to an estimation512

of a surface (horizontal) diffusivity of about 1500 m2 s−1; a slightly higher513

value than in subsurface which is more consistent with the other estimates.514

To give a sense of the uncertainties, the diffusivities estimated from single515

tracer releases were also computed. The mean plus-or-minus one standard516

deviation of those 16 estimates (at each depth) are shown with a dashed517

black line and a light grey shading. Similarly, diffusivities from pairs of518

tracer releases were also computed (shown in dark grey shading and solid519

line). Uncertainties associated with a single tracer release range from ± 500520

m2 s−1 near 500 m depth to ± 1000 m2 s−1 or more below a 1000 m. It521

appears that estimates between 500 and 1000m deep would be somewhat522

robust. However, our results suggest that detection of a peak of mixing in523

the water column would be very difficult from single tracer releases at a few524

selected depths.525
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5. Comparison of All Diagnostics526

5.1. Averaging Method527

In Sec. 3 we saw that many of the different perfect diagnostics (D′yy, K
iso
eff ,528

Kq and KP ) give similar results. Now we compare these results with the529

practical diagnostics discussed above. The central obstacle in this comparison530

is the question of how to average meridionally the perfect diagnostics, which531

are functions of y and z, to compare with the practical diagnostics, which are532

just functions of z. The tracers and particles for the practical experiments533

were released at the center of the domain and spread laterally along isopycnals534

for up to 300 days before encountering the boundaries. This results in a single535

value of diffusivity for each release depth, or equivalently, release isopycnal.2536

But as the particles / tracers experience spread away from the center of the537

channel, they experience weaker mixing towards the sides of the domain.538

Our procedure is to average the perfect diagnostics in isopycnal bands539

of thickness ∆T over a meridional extent ∆y, centered on the middle of the540

channel. Formally this average can be expressed as541

〈K〉(T0) =
1

A

∫ Ly+∆y/2

Ly−∆y/2

∫ T (z)=T0+∆T/2

T (z)=T0−∆T/2

Kdydz (23)

where T0 is the target isopycnal and A is the cross-sectional area over which542

the integral is performed.3 ∆T effectively sets the vertical resolution of the543

averaged quantity, while ∆y controls the width over which it samples. Larger544

∆y are associated with smaller 〈K〉, since the diffusivities tend to fall off away545

from the center of the channel. This effect is illustrated in Fig. 10, which546

shows 〈D′yy〉 for different values of ∆y. The figure also shows the difference547

between isopycnal averaging and simple horizontal averaging (i.e. averaging548

at constant z), which is a more straightforward way to produce depth profiles549

2It would be possible in principle to calculate the practical diagnostics also as functions
of y. But, in the spirit of simulating field experiments, we do not explore this possibility
as it involves an even greater number of releases.

3Nakamura (2008) suggests that the proper way to average a spatially variable diffu-
sivity is through a harmonic mean. We tested this, however, and found it to produce
spurious results. This is because the harmonic mean is very sensitive to the presence of
small values. Since our diffusivities are calculated numerically and contain some degree of
noise at the grid scale, isolated small values can greatly influence the harmonic mean. For
this reason, we prefer the simple arithmetic mean.
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Figure 10: A comparison of meridional averages of D′yy computed on surfaces of constant
height (left panel) and isopycnal surfaces, with various averaging widths ∆y. The average
at constant height includes the whole domain, while the isopycnal average excludes the
surface diabatic layer.

but is physically unsound. Instead, we map our profiles of 〈K〉(T ) to depth550

coordinates using the temperature profile T (z) at the tracer and particle551

release latitude in the center of the domain.4552

To fairly compare our diagnostics in the interior, we must exclude the553

surface diabatic layer from our average. This is because PV is not diffused554

down gradient in the surface layer due to the presence of strong forcing,555

which causes KP to acquire negative values there (see Fig. 5). For this rea-556

son, we limit our isoypcnally averaged diffusivities to the interior, which we557

define as the region below the isopycnal representing the 95% contour of the558

surface buoyancy cumulative distribution function. The effect of excluding559

the surface layer can be seen in Fig. 10; the horizontal average, which in-560

cludes the surface layer, shows a secondary peak near the surface, while the561

interior-only isopycnal average does not.562

The choice of ∆y clearly affects the magnitude of our averaged perfect563

diagnostics. We have concluded that the optimum choice is ∆y = 1500 m,564

i.e. an average over the most of the domain, excluding the area closest to the565

walls. This choice produced the best agreement between perfect and practical566

4On isopycnals which outcrop, the actual width of the averaging window may be con-
siderably less than ∆y. Furthermore, due to the sloping geometry of the isopycnals, the
values of 〈K〉 near the surface are biased toward the northern side of the channel.
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diagnostics. It is also physically consistent with the fact that the particles567

and tracers from the practical experiments spread out approximately over568

this center portion of the channel (see Fig. 8).569

5.2. Vertical Profile in the Interior570

The values of 〈D′yy〉, 〈Kiso
eff〉, 〈KP 〉 and 〈Kb〉 with ∆y = 1500 m are all571

plotted in Fig. 11. (Kq was not plotted because it is quite sparse and noisy572

in the deep ocean. But Figs. 4 and 5 show that it is very similar to Kp.) Also573

plotted are K1y from the Lagrangian experiment and KI from the tracer ex-574

periment. There is fairly good agreement between the diagnostics, excluding575

Kb. In particular, 〈D′yy〉, 〈Keff〉, and K1y show very similar magnitudes and576

vertical structure, with a distinct peak near 1000 m depth of approx. 4000577

m2 s−1. 〈KP 〉 is qualitatively similar, with a sharp peak near the same578

depth, but its magnitude at the peak (5000 m2 s−1) is greater. Then it579

drops off steeply below this peak. (KP is poorly resolved below 1000 m be-580

cause it is computed in isopycnal space; the deep is very weakly stratified,581

and thus there are few layers defined there.) The profile of KI shows a similar582

qualitative structure, but a slightly reduced magnitude above 1000 m com-583

pared with the other diagnostics. In general, there is more spread between584

diagnostics in the deep ocean. The overall impression from this comparison585

is that, despite the wide range of diagnostic methods and the ambiguities586

associated with the averaging process, all these diagnostics are capturing the587

same physical process of along-isopycnal mixing in the interior. All, that is,588

except Kb.589

As discussed clearly in SM09, the diffusivities of buoyancy and potential590

vorticity cannot be the same when β is significant, and when there is ver-591

tical variation in the diffusivity profile. Nevertheless, the assumption that592

these two quantities are equal continues to be made in eddy parameterization593

schemes (for example Eden, 2010). Our results essentially confirm the conclu-594

sions of SM09, who used a doubly-periodic QG model, in a primitive-equation595

model with realistic meridional variations in stratification and residual cir-596

culation. In particular, our Fig. 11 agrees well with their Fig. 12. While the597

tracer, particle, and PV diffusivities all have a mid-depth peak, Kb does not;598

instead it varies only weakly in the vertical. Its magnitude is less than half599

that of KP at the peak.600

Since the perfect diagnostics were averaged only in the interior, they601

do not show a secondary peak near the surface. This secondary peak is602

clearly visible in K1y, the particle diffusivity. The average depth of the603
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Figure 11: A comparison of all the different diffusivity diagnostics presented in the paper.
For the perfect diagnostics, the meridional average was computed using (23) with a width
of ∆y = 1500 m, and only in the interior (outside the surface diabatic layer). The average
depth of the surface layer (280 m) is indicated by the gray shaded area.

surface diabatic layer is also shown in Fig. 11. The secondary peak in K1y604

clearly occurs within this surface layer. Since the surface is dynamically quite605

different from the interior, we now focus on the surface specifically.606

5.3. Comparison at the Surface607

Near the surface, eddies transition from isopycnal mixing to horizontal608

mixing across the surface buoyancy gradient (Treguier et al., 1997). This609

transition is visible in Fig. 2, which shows that the mixing angle becoming610

flatter near the surface and no longer aligns with the isopycnals. In Fig. 12,611

we plot D′yy, K
H
eff and Kb all at 50 m depth, near the base of the mixed612

layer. Also plotted is a single point representing K1y. At the surface, we do613

indeed find better agreement between Kb and the other diagnostics. This614
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is because the near-surface eddy buoyancy flux is truly down-gradient, as615

opposed to the interior where it is purely skew. Nevertheless, discrepancies616

remain, particularly near Y = 1500 km. We speculate that this is due to617

the differences in forcing and small-scale diffusivity among the three tracers.618

The tracer used to calculate Keff was modeled with an explicit small-scale619

horizontal diffusion, while the others were not. Furthermore, the buoyancy620

is subject to an air-sea flux, which can strongly modulate the diffusivity. We621

have not attempted to quantify this effect here, but an in-depth treatment622

of the problem can be found in Shuckburgh et al. (2011).623

5.4. Relation between Isopyncal Diffusivity and Gent-McWilliams Coefficient624

In preceding sections, we showed good agreement between all diagnostics625

of isopycnal mixing except for Kb, a.k.a. the skew diffusivity of buoyancy,626

a.k.a. the Gent-McWilliams coefficient. This would appear to be discourag-627

ing for the purposes of eddy parameterization, since most coarse-resolution628

models use some form of the Gent and McWilliams (1990) closure, rather629

than one based on potential vorticity, to represent the eddy-induced advec-630

tion. The dissimilarity between D′yy, i.e. the true isopycnal mixing rate, and631

Kb, means that field experiments which aim to measure isopycnal mixing632

will not yield a value that can be used as a Gent-McWilliams coefficient.633

However, the situation is not hopeless. Quasigeostrophic theory makes a634

prediction for the relationship between these two quantities.635
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Simply using the definitions (14), (15), and (18), we can derive the fol-636

lowing relationship between Kq and Kb:637

∂

∂z
(Kbsb) = Kq

(
∂sb
∂z
− β

f

)
(24)

(SM09). Note that this quantity has units m s−1 and is equivalent to the638

[negative] QG-TEM eddy-induced velocity (see Appendix A). Only if β is639

negligible and ∂Kq/∂z = 0 does Kq = Kb. This relationship is satisfied by640

identically for Kb and Kq. However, noting the similarity between Kq and641

D′yy, we can ask whether it is also satisfied if we replace Kq with D′yy on642

the RHS. Such a comparison is made in Fig. 13. This figure also illustrates643

the error produced by assuming Kb = D′yy (i.e. neglecting the importance644

of the vertical structure) and by neglecting β. We can see that using D′yy645

in place of Kq in (24) satisfies the equality very well. The β term plays a646

relatively minor role. In contrast, taking D′yy inside the z-derivative causes a647

much larger disagreement. This indicates that the vertical structure of D′yy648

is not negligible. Given the strong similarity between the vertical structure649

of D′yy found here and that reported by Abernathey et al. (2010) for a highly650

realistic model of the Southern Ocean, it is likely that this issue is relevant651

for the real ACC.652

We hope that this brief discussion will be noticed by those who wish to653
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translate experimental measurements of isopyncal mixing (for instance, from654

the DIMES experiment) into values of the Gent-McWilliams coefficient for655

ocean models. Given experimental knowledge of D′yy once could proceed by656

integrating (24) to obtain Kb, subject to an appropriate boundary condition.657

We do not pursue this further here, but it is an intriguing topic for future658

investigation.659

6. Conclusions660

Our paper has not derived any fundamentally new methods; rather, we661

have unified many different diagnostics of lateral mixing and applied them662

to the same simulation, permitting a side-by-side comparison. We have con-663

sidered both “perfect” diagnostics, which can realistically only be applied to664

a numerical model, as well as “practical” diagnostics, which can potentially665

be applied in field experiments. The results of this comparison are mostly666

summarized by Fig. 11, which shows appropriately averaged vertical profiles667

of lateral mixing rates as characterized by different diagnostics.668

The encouraging conclusion is that these different methods for gauging669

along-isopycnal diffusivity produce good agreement. Despite differences in670

forcing, background state, initial conditions, and grid-scale diffusivity, we671

found mixing rates for passive tracers, QGPV, and Ertel PV with similar672

magnitude and spatial structure. This spatial structure includes higher mix-673

ing rates in the center of the domain, where the eddies are stronger, and,674

more intriguingly, a distinct mid-depth maximum in the vertical.675

We have not gone into great detail on the explanation for this structure,676

focusing instead on the details of the diagnostic methods themselves; how-677

ever, the structure is well understood. Most theories for turbulent diffusivity678

begin with the mixing-length concept of Prandtl (1925) (see, among many,679

Green, 1970; Stone, 1972; Held and Larichev, 1996; Stammer, 1998; Smith680

et al., 2002; Thompson and Young, 2007, for applications to geostrophic681

turbulence). The recent literature contains a growing understanding of the682

factors responsible for determining the isopycnal mixing rate in the South-683

ern Ocean, and in particular the mid-depth peak. Beginning with Green684

(1970), linear quasigeostrophic analysis has shown that the QGPV diffusiv-685

ity must include a mid-depth maximum in unstable eastward flows (see also686

Killworth, 1997). The work by Abernathey et al. (2010) showed that such a687

mid-depth maxima did exist in a very realistic, eddy-permitting model of the688

Southern Ocean and attributed its presence to a “critical layer,” at which689

29



the eddy phase speed equaled the mean flow speed. Further work by Ferrari690

and Nikurashin (2010), Klocker et al. (2012a), and Klocker et al. (2012b) has691

confirmed this vertical structure and moved towards a complete theoretical692

closure for the mixing rates. In the theory of Ferrari and Nikurashin (2010),693

the competing effects of eddy kinetic energy, eddy size, eddy phase propa-694

gation, and zonal mean flow all contribute to the diffusivity. The mid-depth695

peak was interpreted as a result of strong suppression of mixing by the mean696

flow at shallower depths.697

Our results here, which show that isopycnal mixing rates are consistent698

across a wide range of diagnostic methods, support the notion that the dif-699

fusivity is a fundamental kinematic property of the flow. We hope these700

results, obtained in a very simplified model, will encourage the community701

to press on in the effort to measure isopycnal mixing observationally, relate702

these measurements to theoretical models (such as Ferrari and Nikurashin,703

2010), and apply this understanding to improving coarse-resolution models.704

Indeed efforts are underway to translate the theoretical concepts outlined705

above into a full-blown eddy closure scheme for ocean models (J. Marshall,706

2013, personal communication).707

At the same time, our study indicates some potential pitfalls that might708

be encountered in attempting to relate observations of isopycnal mixing to709

diagnostics from numerical models and to theoretical predictions. First of710

all, there are significant uncertainties associated with practical mixing di-711

agnostics. The errors associated with limited Lagrangian observations are712

discussed by Klocker et al. (2012b). Here we have also addressed the er-713

rors associated with limited isoypcnal tracer release experiments (Sec. 4.2).714

Futhermore, there is the problem that both these practical diagnostics in-715

volve a spreading-out over large horizontal areas, experiencing different local716

mixing rates along the way. This spreading means that the measured diffu-717

sivities are biased lower than the peak diffusivity at the ACC core (Sec. 5.1).718

This smoothing effect means that practical diagnostics are unlikely to be719

able to detect, for instance, the fine-scale mixing barriers associated with the720

multiple jets of the ACC (Thompson, 2010).721

A final, crucial point is that the diffusivities measured by practical diag-722

nostics can be used directly to estimate the eddy flux of potential vorticity723

(either the lateral flux of QGPV or the along-isopycnal flux of Ertel PV). But724

they can not be employed in a diffusive closure to recover the meridional eddy725

buoyancy flux below the surface layer. This is because of the well-known fact726

that the buoyancy flux is skew and is therefore not directly related to the727
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isopycnal diffusivity. In other words, the isopycnal diffusivity is not the same728

as the Gent-McWilliams transfer coefficient. Instead of being equal, the two729

quantities satisfy (24). While much work remains to be done, we hope our730

study will help to bridge the gap between observations of lateral mixing and731

the problem of eddy parameterization.732
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Appendix A. Quasigeostrophic Potential Vorticity736

Here we briefly review quasigeostrophic transformed Eulerian mean (TEM)737

theory to highlight the role of the QGPV flux. The original theory is due to738

Andrews and McIntyre (1976); more in-depth reviews are found in Edmon739

et al. (1981); Andrews et al. (1987); Wardle and Marshall (2000) and Vallis740

(2006, Sec. 7.3).741

The TEM theory defines a residual velocity742

vres = v + v∗ (A.1)

where v is the standard Eulerian mean velocity and743

v∗ = − ∂

∂z

(
v′b′

bz

)
(A.2)

is the eddy-induced velocity. This choice is made to consolidate the effects of744

mean advection and eddy transport in the buoyancy equation into a single745

advective term, balanced only by diabatic processes. With this definition,746

the steady state, zonally averaged, zonal momentum equation becomes747

−fvres = − 1

ρ0

∂p

∂x
+ v′q′ + F x (A.3)

where p is the pressure, F is the external forcing (wind stress, for example),748

and749

v′q′ = f0
∂

∂z

(
v′b′

bz

)
+

∂

∂y
(u′v′) (A.4)
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is the eddy flux of quasigeostrophic potential vorticity. The second term (the750

Reynolds stress) is often negligible in the large-scale oceanographic case and751

will be discarded from here on. The pressure gradient in (A.3) vanishes in752

a channel with no topography, and outside of the Ekman layers, so does the753

forcing F x. In the interior, therefore,754

vres = v∗ = −f−1v′q′ . (A.5)

Therefore if the QGPV flux is known, the residual velocity can be inferred.755

Appendix B. Thickness-Weighted Isopycnal Averaging and the Plan-756

etary Ertel PV Flux757

Analysis of flows in thickness-weighted isopycnal coordinates offers many758

advantages in the ocean and atmosphere (Andrews et al., 1987; de Szoeke and759

Bennett, 1993; Nurser and Lee, 2004b,a; Schneider, 2005; Koh and Plumb,760

2004; Vallis, 2006; Jansen and Ferrari, 2012, 2013; Young, 2012; Mazloff et al.,761

2013). Here we briefly repeat some definitions from Jansen and Ferrari (2013)762

in order to derive the Ertel PV diffusivity.763

In what follows, the vertical coordinate will be taken to be b, the buoy-764

ancy, and z(x, y, z, b) is a dependent variable. All zonal averages are to be765

taken at constant b. Neglecting Reynolds-stress terms, the zonal- and time-766

averaged zonal momentum budget in b coordinates can be written as767

−H(bs − b)fv = −H(bs − b)∂xM +H(bs − b)Fx (B.1)

where M = p/ρ0 − zb (the Montgomery potential) and Fx is the forcing in768

the zonal direction. H(bs− b) is a Heaviside function which is zero whenever769

the buoyancy surface outcrops, (i.e. when b exceeds the surface buoyancy770

bs).771

The importance of PV fluxes can be seen by writing the Coriolis term on
the LHS as

H(bs − b)fv =ρbvP
∗

(B.2)

=ρb(v
∗P
∗

+ v̂P̂
∗
) . (B.3)

To arrive at this expression, we have defined the planetary Ertel PV P =772

f/σ (neglecting relative vorticity, appropriate for low Rossby number), the773

isopycnal thickness σ = ∂z/∂b, the generalized thickness ρb = H(bs − b)σ,774

32



and the generalized thickness weighted zonal average ( )
∗

= ρb( )/ρb. (See775

Koh and Plumb (2004) or Jansen and Ferrari (2013) for more detail.) In the776

second line, the PV flux term vP
∗

is split into mean and eddy components;777

the anomalies are defined by (̂ ) = ( )− ( )
∗
.778

In the interior of our channel model, both terms on the RHS of (B.3)779

vanish. This permits us to write780

v∗ = − v̂P̂
∗

P
∗ , (B.4)

The quantity v∗, the thickness-weighted mean meridional velocity, is analo-781

gous to the residual velocity vres in QG, and this equation is analogous to782

(A.5).783

Appendix C. Tracer Release Experiments784

As discussed in Hill et al. (2012), mimicking tracer release experiments in785

an ocean model can be problematic. One wants the initial tracer distribution786

to be as compact as possible (to be close to an isopycnal) but not too small787

compared to the grid scale. Also, the initial distribution has to be small788

enough, relative to the domain, to leave ample time before the tracer is789

transported into the surface mixed layer or north/south boundaries.790

As a compromise (following Hill et al., 2012), the tracer field is initialized791

with a 3D Gaussian shape with 50 m vertical and 5 km horizontal half-width.792

The tracer has a maximum value of one. We carried out 16 releases at 11793

depths (shown by the open circles in Fig. 9). Each set of 16 releases consists of794

eight releases, 125 km apart along the central axis of the channel followed by795

a second set of eight 300 days later. The 3D tracer distributions are sampled796

every 10 days for 300 days. In order to calculate the isopycnal diffusivity, all797

vertical profiles are first plotted around a relative vertical coordinate centered798

on the target temperature of the release and then integrated vertically and799

zonally to produce a meridional profile. A Gaussian curve is fitted to the800

reconstructed meridional profile (from a single tracer or averaged from an801

ensemble of profiles, see examples in Fig. 8, bottom panels). The best-fit802

half-width σy(t) relates to the effective diffusivity through:803

KI =
1

2

dσ2
y

dt
. (C.1)
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Figure C.14: Time evolution of σ2 for each individual tracer release experiment (dashed
lines) and for the 16-member ensemble (thick solid line) at 1200 m depth. Linear growth
with time signifies a constant diffusivity.

Fig. C.14 illustrates the time evolution of σy(t) for a few single tracers (dashed804

lines) and for the 16-member ensemble mean (thick solid) for releases at 1200805

m depth. The initial behavior of sigma is rather erratic for individual tracers,806

but often approach a linear tendency after 150 days. The ensemble mean807

value is very nearly linear from the tracer release onward. Note that this is808

not true at all depths—in some cases the ensemble mean value only settles809

down into a linear trend after a 100 days. For consistency, all isopycnal810

diffusivities shown here are obtained by a best linear fit of σ2(t) between811

1500 and 300 days.812

Although σy(t) from individual tracers exhibits rather similar trends after813

∼150 days, the differences in slopes are sufficient to result in large uncertain-814

ties on KI , as much as ±1500 m2 s−1 at 1200 m.815

References816

Abernathey, R., Marshall, J., Ferreira, D., 2011. The dependence of southern817

ocean meridional overturning on wind stress. J. Phys. Oceanogr. 41 (12),818

2261–2278.819

Abernathey, R., Marshall, J., Shuckburgh, E., Mazloff, M., 2010. Enhance-820

ment of mesoscale eddy stirring at steering levels in the southern ocean. J.821

Phys. Oceanogr., 170–185.822

34



Andrews, D., Holton, J., Leovy, C., 1987. Middle Atmosphere Dynamics.823

Academic Press.824

Andrews, D., McIntyre, M., 1976. Planetary waves in horizontal and vertical825

shear: The generalized elliasen-palm relation and the mean zonal acceler-826

ation. J. Atmos. Sci. 33, 2031–2058.827

Bachman, S., Fox-Kemper, B., 2013. Eddy parameterization challenge suite828

i: Eady spindown. Ocean Modelling 64, 12–18.829

Bryden, H. L., Longworth, H. R., Cunningham, S. A., 2005. Slowing of the830

atlantic meridional overturning circulation at 25 ◦ n. Nature 438, 655–657.831

Cerovecki, I., Marshall, J., 2008. Eddy modulation of air–sea interaction and832

convection. J. Phys. Oceanogr. 38, 65–93.833

Cunningham, S. A., Kanzow, T., Rayner, D., Baringer, M. O., Johns, W. E.,834

Marotzke, J., Longworth, H. R., Grant, E. M., Hirschi, J. J., Beal, L. M.,835

Meinen, C. S., Bryden, H. L., 2007. Temporal variability of the atlantic836

meridional overturning circulation at 26.5 ◦n. Science 317 (5840), 935–938.837

Davis, R., 1985. Drifter observations of coastal surface currents during838

CODE: The statistical and dynamical views. J. Geophys. Res. 90, 4756–839

4772.840

Davis, R., 1991. Observing the general circulation with floats. Deep Sea Res.841

38A, S531–S571.842

Davis, R., 1994. Ocean Processes in Climate Dynamics: Global and Mediter-843

ranean Examples. Springer, Ch. Lagrangian and Eulerian measurements844

of ocean transport processes, pp. 29–60.845

de Szoeke, R. A., Bennett, A. F., 1993. Microstructure fluxes across density846

surfaces. J. Phys. Oceanogr. 23 (10), 2254–2264.847

Eden, C., 2010. Parameterising meso-scale eddy momentum fluxes based on848

potential vorticity mixing and a gauge term. Ocean Modelling 32, 58–71.849

Edmon, H. J., Hoskins, B. J., McIntyre, M., 1981. Eliassen-palm cross sec-850

tions for the troposphere. J. Atmos. Sci. 37, 2600–2616.851

35



Ferrari, R., Griffies, S. M., Nurser, A. J., Vallis, G. K., 2010. A boundary-852

value problem for the parameterized mesoscale eddy transport. Ocean853

Modelling.854

Ferrari, R., Nikurashin, M., 2010. Suppression of eddy diffusivity across jets855

in the southern ocean. J. Phys. Oceanogr.856

Gent, P., McWilliams, J., 1990. Isopycnal mixing in ocean circulation models.857

J. Phys. Oceanogr. 20, 150–155.858

Gent, P., Willebrand, J., McDougal, T., McWilliams, J., 1995. Parameter-859

izing eddy-induced tracer transports in ocean circulation models. J. Phys.860

Oceanogr. 25, 463–475.861

Gille, S. T., Ledwell, J., Naveira Garabato, A., Speer, K., Balwada, D.,862

Brearley, A., Girton, J. B., Griesel, A., Ferrari, R., Klocker, A., LaCasce,863

J., Lazarevich, P., Mackay, N., Meredith, M. P., Messias, M.-J., Owens, B.,864

Sallée, J.-B., Sheen, K., Shuckburgh, E., Smeed, D. A., Laurent, L. C. S.,865

Toole, J. M., Watson, A. J., Wienders, N., , Zajaczkovski, U., 2012. The866

diapycnal and isopycnal mixing experiment: A first assessment. CLIVAR867

Exchanges 17 (1), 46–48.868

Green, J. S. A., 1970. Transfer properties of the large-scale eddies and the869

general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc. 96, 157–870

185.871

Griffies, S. M., 1998. The Gent-McWilliams skew flux. J. Phys. Oceanogr.872

28, 831–841.873

Haynes, P., Shuckburgh, E., 2000a. Effective diffusivity as a diagnostic of874

atmospheric transport. part i: stratosphere. J. Geophys. Res 105, 22777–875

22794.876

Haynes, P., Shuckburgh, E., 2000b. Effective diffusivity as a diagnostic of877

atmospheric transport. part ii: Troposphere and lower stratosphere. J.878

Geophys. Res 105, 795–810.879

Held, I. M., Larichev, V. D., 1996. A scaling theory for horizontally homoge-880

neous, baroclinically unstable flow on a beta plane. J. Atmos. Sci. 53 (7),881

946–953.882

36



Hill, C., Ferreira, D., Campin, J.-M., Marshall, J., Abernathey, R., Barrier,883

N., 2012. Controlling spurios diapycnal mixing in eddy-resolving height-884

coordinate ocean models: Insights from virtual deliberate tracer release885

experiments. Ocean Modelling 45-46, 14–26.886

Ito, T., Marshall, J., 2008. Control of lower-limb overturning circulation in887

the southern ocean by diapycnal mixing and mesoscale eddy transfer. J.888

Phys. Oceanogr. 38, 2832–2845.889

Jansen, M., Ferrari, R., 2012. Macroturbulent equilibration in a thermally890

forced primitive equation system. J. Atmos. Sci.891

Jansen, M., Ferrari, R., 2013. The vertical structure of the eddy diffusivity892

and the equilibrarion of the extra-tropical atmosphere. J. Atmos. Sci.893

Killworth, P. D., 1997. On the parameterization of eddy transfer: Part i:894

Theory. J. Marine Res. 55, 1171–1197.895

Klocker, A., Ferrari, R., LaCasce, J. H., 2012a. Estimating suppression of896

eddy mixing by mean flow. J. Phys. Oceanogr. 9, 1566–1576.897

Klocker, A., Ferrari, R., LaCasce, J. H., Merrifield, S. T., 2012b. Reconcil-898

ing float-based and tracer-based estimates of eddy diffusivities. J. Marine899

Res.Submitted.900

Koh, T., Plumb, R. A., 2004. Isentropic zonal average formalizm and the901

near-surface circulation. Q. G. R. Meteorol. Soc. 130, 1631–1653.902

Kuo, A., Plumb, R. A., Marshall, J., 2005. Transformed eulerian-mean the-903

ory. part ii: Potential vorticity homogenization and equilibrium of a wind-904

and buoyancy-driven zonal flow. J. Phys. Oceanogr. 45, 175–187.905

LaCasce, J. H., 2008. Statistics from lagrangian observations. Progress in906

Oceanography 77, 1–29.907

Ledwell, J. R., Bratkovich, A., 1995. A tracer study of mixing in the santa908

cruz basin. J. Geophys. Res. 100 (C10), 20,681.909

Ledwell, J. R., St. Laurent, L. C., Girton, J. B., 2011. Diapycnal mixing in910

the Antarctic Circumpolar Current. J. Phys. Oceanogr. 41 (241-246).911

37



Ledwell, J. R., Watson, A. J., Law, C. S., 1998. Mixing of a tracer in the912

pycnocline. J. Geophys. Res. 103 (C10), 21,499–21,592.913
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