
Generated using version 3.0 of the official AMS LATEX template

A Simple, Coherent Framework for Partitioning Uncertainty in

Climate Predictions

Stan Yip ∗ , Christopher A. T. Ferro and David B. Stephenson

National Centre for Atmospheric Science, Exeter Climate Systems, University of Exeter, United Kingdom

Ed Hawkins

National Centre for Atmospheric Science, Department of Meteorology, University of Reading, United Kingdom.

∗Corresponding author address: Stan Yip, Harrison Building, University of Exeter, Exeter, Devon, EX4

4QF, UK.

E-mail: c.y.yip@exeter.ac.uk

1



ABSTRACT

A simple and coherent framework for partitioning uncertainty in multi-model climate en-

sembles is presented. The analysis of variance (ANOVA) is used to decompose a measure of

total variation additively into scenario uncertainty, model uncertainty and internal variabil-

ity. This approach requires fewer assumptions than existing methods and can be easily used

to quantify uncertainty related to model-scenario interaction - the contribution to model un-

certainty arising from the variation across scenarios of model deviations from the ensemble

mean. Uncertainty in global mean surface air temperature is quantified as a function of lead

time for a subset of the Coupled Model Intercomparison Project phase 3 ensemble and results

largely agree with those published by other authors: scenario uncertainty dominates beyond

2050 and internal variability remains approximately constant over the 21st century. Both el-

ements of model uncertainty, due to scenario-independent and scenario-dependent deviations

from the ensemble mean, are found to increase with time. Estimates of model deviations

that arise as by-products of the framework reveal significant differences between models that

could lead to a deeper understanding of the sources of uncertainty in multi-model ensembles.

For example, three models are shown diverging pattern over the 21st century, while another

model exhibits an unusually large variation among its scenario-dependent deviations.

1. Introduction

Uncertainty in climate change prediction arises from three different sources. These are

model uncertainty, scenario uncertainty and internal variability. Model uncertainty arises

due to an incomplete understanding of the physical processes and the limitations of imple-
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mentation of the understanding. Scenario uncertainty arises due to incomplete information

about future emissions. Internal variability is the natural unforced fluctuation of the cli-

mate system. Internal variability is aleatoric and cannot be reduced by improvement of our

scientific knowledge. However, Smith et al. (2007) demonstrated that a proper initialisation

of climate predictions with observations can reduce the uncertainty for the next decade. An

obvious and exploratory way to evaluate the total of these uncertainties is to calculate the

spread of a multi-model ensemble. However, further statistical analysis is needed to quantify

the contributions of particular sources of uncertainty, and to describe how a particular model

reacts to a particular emissions scenario.

Various methods to decompose the total uncertainty into its sources have been suggested

in climate science. Cox and Stephenson (2007) propose a conceptual framework for this

purpose and illustrate its use with a single energy-balance model. Hawkins and Sutton

(2009, hereafter HS09) and Hawkins and Sutton (2010) fit polynomial trend models over

time and calculate various sources of uncertainty. These studies offer simple interpretations

of uncertainty but the drawback is that the total uncertainty cannot be easily interpreted.

We use ANOVA to decompose sources of uncertainty (for a complete review, see Von Storch

and Zwiers (2001), Chapter 9). ANOVA is a model-based approach that partitions the total

variance into components due to different sources of variation, allowing a fuller interpreta-

tion. The seminal work of Madden (1976) suggests an ANOVA approach to test for the

likelihood of potentially predictable long-range variability. Formal ANOVA models are used

in Zwiers (1987) and Zwiers (1996) for analysing seasonal observations and an ensemble

of climate simulations respectively, and discussed from a statistical point of view. Several

previous papers use ANOVA extensively for evaluating model uncertainty from ensembles.
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Räisänen (2001) uses ANOVA to divide the surface air temperature (SAT), precipitation

and sea level pressure change into a common signal and variances associated with internal

variability and model differences under the same forcing scenario. Hingray et al. (2007) use

ANOVA to estimate the uncertainty in temperature and precipitation for a collection of

atmosphere-ocean general circulation models (AOGCMs).

The remainder of this paper is organised as follows. Section 2 describes the available

data and compares the methods of HS09 and ANOVA. We illustrate the results in Section 3

and present our discussion and conclusions in Section 4.

2. Data and methodologies

a. CMIP3 data

Following HS09, we illustrate the methodology by applying it to global, decadal mean

SAT multi-model ensemble predictions for years 2001-2099 from the Coupled Model Inter-

comparison Project (CMIP3) archive. The multi-model ensemble data is extracted from

original monthly scale data to decadal scale using 10 years moving averaging (Table 1). The

predictions are from Nm = 7 global climate models (GCMs) under Ns = 3 different future

emissions scenarios (SRES A1B, A2 and B1) with Nr = 2 initial condition ensemble mem-

bers for each model and scenario. This gives a total of Nm × Ns × Nr = 42 predictions for

2001-2099. These future scenarios are summarised in Solomon et al. (2007, chapter 10). The

reason of using fewer GCMs than other studies such as Boer (2009) and Hawkins and Sutton

(2009) is because only 7 GCMs have simulated all three scenarios with at least 2 ensemble
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runs. Figure 1 shows time-series of all the simulation runs of all the models, scenarios and

replicates. The total uncertainty increases with time since the simulation runs diverge with

time.

b. Methodologies used in Previous Studies

The methodology in HS09 considers only one realisation per model per scenario (Nr = 1).

Each prediction of SAT is fitted using a fourth-order polynomial model over years 1950 to

2099. The raw predictions (X) for each model (m), scenario (s) and year (t) are written as,

X(m, s, t) = z(m, s, t) + µref(m, s) + ǫ(m, s, t), (1)

where a reference temperature for each model-scenario combination is denoted by µref, the

polynomial fit of the projected change in global mean temperature is represented by z and

the regression error (internal variability) is ǫ. The reference temperature used is the 1971-

2000 mean for each model and scenario. The internal variability estimator is the multi-model

mean of variance of the regression error ǫ(m, s, t),

VHS =
1

NmNsT

Nm
∑

m=1

Ns
∑

s=1

T
∑

t=1

(ǫ(m, s, t))2 . (2)

The internal variability is considered to have constant variance in time. The model uncer-

tainty estimator is the multi-scenario mean of inter-model variance of z(m, s, t),

MHS(t) =
1

NmNs

Nm
∑

m=1

Ns
∑

s=1

[z(m, s, t) − z(·, s, t)]2 , (3)

where z(·, s, t) =
∑

m z(m, s, t)/Nm. The scenario uncertainty estimator is the variance of

multi-model means of z(m, s, t)

SHS(t) =
1

Ns

Ns
∑

s=1

[z(·, s, t) − z(·, ·, t)]2 , (4)

4



where z(·, ·, t) =
∑

m,s z(m, s, t)/(NmNs). The sum of these sources of uncertainty is then

defined to be the total uncertainty,

THS(t) = VHS + MHS(t) + SHS(t). (5)

Cox and Stephenson (2007) define the fractional uncertainty (noise-to-signal ratio) at time

t to be

F (t) =
1.65

√

THS(t)

z(·, ·, t)
. (6)

HS09 also consider the fraction of variance defined as,

VHS/THS(t) (7)

MHS(t)/THS(t) (8)

SHS(t)/THS(t), (9)

where these refer to the fraction of variance of internal variability, model uncertainty and

scenario uncertainty respectively.

c. Analysis of Variance Method

We adopt a model-based approach rather than descriptive or algorithmic approach since

the use of a statistical model facilitates a coherent interpretation of uncertainty. We fit an

ANOVA model on the projected temperature anomalies x(m, s, r, t) for model m, scenario s

and replicate r at time t from the 1971-2000 mean. First, we consider the following ANOVA

model for global decadal SAT x(m, s, r, t) for each time point t,

x(m, s, r, t) = µ(t) + α(m, t) + β(s, t) + γ(m, s, t) + ǫ(m, s, r, t), (10)
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where µ(t) is the overall effect representing the grand ensemble mean of all simulations at time

t = 1, 2, . . . , 99; α(m, t) is scenario-independent deviation of model m = 1, 2, . . . , 7 from the

overall ensemble mean µ(t); β(s, t) is scenario deviation of emission scenario s = 1, 2, 3; the

parameters α(m, t) and β(s, t) are collectively called main effects; γ(m, s, t) is the interaction

term effect between model m and scenario s at time t which describes scenario-dependent

deviation. The error term ǫ(m, s, r, t) is independent and identically distributed.

The notion of interaction is an important concept in ANOVA. Mathematically, interaction

is said to occur if the separate effects do not combine additively (de González and Cox, 2007).

For climate projections, it arises from how models react differently to emission scenarios

which we call scenario-dependent model uncertainty, as opposed to scenario-independent

model uncertainty. To demonstrate that there is a potential interaction term, we show the

mean response at different lead times to different emission scenarios for each model in Figure

2. The lines are not parallel, indicating that there is an apparent interaction between some

models and scenarios especially for long lead times. For example, in the year 2061-2099, the

effect of changing emission scenario is different for the CCCMA model than for the MIUB

ECHO model, as the lines joining the models cross.

The method of least squares is used for the parameter estimation. Applying constraints

∑Nm

m=1 α̂(m, t) = 0,
∑Ns

s=1 β̂(s, t) = 0,
∑Nm

m=1 γ̂(m, s, t) = 0, for s = 1, . . . , Ns and
∑Ns

s=1 γ̂(m, s, t) =
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0, for m = 1, . . . , Nm, the parameter estimators µ̂(t), α̂(m, t), β̂(s, t) and γ̂(m, s, t) are

µ̂(t) = x(·, ·, ·, t). (11)

α̂(m, t) = x(m, ·, ·, t) − x(·, ·, ·, t). (12)

β̂(s, t) = x(·, s, ·, t) − x(·, ·, ·, t). (13)

γ̂(m, s, t) = x(m, s, ·, t) + x(·, ·, ·, t) − x(m, ·, ·, t) − x(·, s, ·, t), (14)

where x(·, ·, ·, t) is the overall mean at time t; x(m, s, ·, t) is the mean over all the members

at time t for model m and scenario s; x(·, s, ·, t) and x(m, ·, ·, t) are means over the models,

and replicates and the mean over the scenarios, and replicates at time t respectively.

We define all four sources of uncertainty in terms of the notion of variance. The ANOVA

approach does not assume constant internal variability over time and is also not restricted

to specify any type of trend for models. The internal variability V (t) is the variance of each

member around the model-scenario mean,

V (t) =
1

NmNsNr

Nm
∑

m=1

Ns
∑

s=1

Nr
∑

r=1

[x(m, s, r, t) − x(m, s, ·, t)]2 . (15)

The scenario-independent model uncertainty M(t) is the variance of model means around

the ensemble mean,

M(t) =
1

Nm

Nm
∑

m=1

[x(m, ·, ·, t) − x(·, ·, ·, t)]2 = V arm [α̂(m, t)] . (16)

The scenario uncertainty S(t) is the variance of scenario means around the ensemble mean,

S(t) =
1

Ns

Ns
∑

s=1

[x(·, s, ·, t) − x(·, ·, ·, t)]2 = V ars

[

β̂(s, t)
]

. (17)

The model-scenario interaction uncertainty I(t) is the variance of model-scenario mean
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around the sum of estimated main effects µ(t), α(m, t) and β(s, t),

I(t) =
1

NmNs

Nm
∑

m=1

Ns
∑

s=1

{x(m, s, ·, t) − [x(·, ·, ·, t) + (x(m, ·, ·, t)

−x(·, ·, ·, t)) + (x(·, s, ·, t) − x(·, ·, ·, t))]}2

=
1

NmNs

Nm
∑

m=1

Ns
∑

s=1

[x(m, s, ·, t) + x(·, ·, ·, t) − x(m, ·, ·, t) − x(·, s, ·, t)]2

= V arm,s [γ̂(m, s, t)] . (18)

The total uncertainty T (t), is simply the variance of the ensembles, ,

T (t) =
1

NsNmNr

Nm
∑

m=1

Ns
∑

s=1

Nr
∑

r=1

[x(m, s, r, t) − x(·, ·, ·, t)]2

=
1

NmNsNr

Nm
∑

m=1

Ns
∑

s=1

Nr
∑

r=1

[x(m, s, r, t) − x(m, s, ·, t)]2

+
1

Nm

Nm
∑

m=1

[x(m, ·, ·, t) − x(·, ·, ·, t)]2

+
1

Ns

Ns
∑

s=1

[x(·, s, ·, t) − x(·, ·, ·, t)]2

+
1

NsNm

Nm
∑

m=1

Ns
∑

s=1

[x(m, s, ·, t) + x(·, ·, ·, t) − x(m, ·, ·, t) − x(·, s, ·, t)]2

= V (t) + M(t) + S(t) + I(t). (19)

Since the multi-model ensembles used here are “ensembles of opportunity” (Tebaldi and

Knutti, 2007), we do not think of the available models and scenarios as a sample from a wider

population of possible models and scenarios. If a wider population could be envisaged from

which the ensemble members form a sample then our ANOVA model could be adapted to in-

clude so-called random effects that would enable inferences about the population (Eisenhart,

1947). The simulation runs under the same model-scenario is thought as the samples drawn

from a finite population. However, it is also appropriate to interpret internal variability as

independent realisations from a infinite population. Then our estimation formula V (t) will
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be underestimated by 50% when n = 2. In that case using random effects model to capture

such a setting(e.g. Gelman, 2005) is a possible solution but we retain simplicity by assuming

finite population.

d. Connection to the estimates in HS09

The model-scenario interaction can be interpreted as a component of the model uncer-

tainty defined in HS09. Consider the sum of the scenario-independent uncertainty M(t) and

the model-scenario interaction variance I(t),

M(t) + I(t)

=
1

Nm

Nm
∑

m=1

[x(m, ·, ·, t) − x(·, ·, ·, t)]2

+
1

NmNs

Nm
∑

m=1

Ns
∑

s=1

[x(m, s, ·, t) + x(·, ·, ·, t) − x(·, s, ·, t) − x(m, ·, ·, t)]2

=
1

NmNs

Nm
∑

m=1

Ns
∑

s=1

[x(m, ·, ·, t) − x(·, ·, ·, t) + x(m, s, ·, t) + x(·, ·, ·, t) − x(·, s, ·, t) − x(m, ·, ·, t)]2

=
1

NmNs

Nm
∑

m=1

Ns
∑

s=1

[x(m, s, ·, t) − x(·, s, ·, t)]2 . (20)

The sum of the terms M(t) and I(t) is analogous to how HS09 to define the model uncertainty

MHS(t) in (3). The scenario uncertainty S(t) and internal variability V (t) are also similar

to the definitions in (2) and (4).
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3. Results

We now use the ANOVA approach described above to quantify the uncertainty in global

mean, decadal mean SAT in a subset of the CMIP3 climate projections. Figure 3a shows how

the different variance components vary with lead time. The scenario uncertainty (S(t), thick

dashed line) dominates the total uncertainty after year 2050, which agrees with HS09. Over

the whole period, model uncertainty (M(t), thick solid line) is also greater than the internal

variability (V (t), thin solid line), which itself is rather constant over time (as assumed by

HS09). The model-scenario interaction variance (I(t), thin dashed line) increases from less

than 1×10−3 to 2.5×10−2K2, larger than the internal variability component, demonstrating

that interaction is an important component of uncertainty, see Figure 3b.

Figure 4 presents a comparison of the fractions of uncertainty from the methodologies

of HS09 and ANOVA. With our ANOVA approach, the scenario uncertainty dominates all

the uncertainty after the year 2050. In the ANOVA method, the fraction of variance due

to internal variability decreases rapidly in the first few decades, which may be due to a

random fluctuation in the internal variability V (t) in the first decade. Meanwhile, scenario

uncertainty contributes slightly less in the ANOVA method for about the first 30 years. The

model uncertainty dominates in the first few decades and has similar values in HS09 and

the ANOVA approach. The model-scenario interaction variance increases from a small value

and is saturated at about 5% after two decades.

Figure 5 shows how the various fitted ANOVA parameters evolve over time. In panel 5a,

the separation between the model effects (α) is seen to increase with time and some of the

models, such as ECHAM5 and PCM, give a larger contribution to the model uncertainty
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than others. Systematic changes in mean deviations can be found in some models (like

PCM) that contribute more to the model uncertainty than others. Such a pattern may be

attributable to the fact that the PCM simulations in the historical period are not continuous

with that on the 21st century SRES simulations. In panel 5b, the emission scenario SRES

A2 overtakes SRES A1B in the year 2070 and they have a 0.5K separation in the year 2100.

This separation can be understood as the response to the socio-economic difference in the

emission scenario and also how model treat the forcings like aerosol differently. A plot of the

interaction term (panel 5c) is helpful for understanding the contribution of model-scenario

interaction which increases with lead time.

Figure 6 explores the interaction effect in more detail and shows that the interaction

effect varies widely. For example, the variation to the different scenarios is the greatest for

CCSM3, and the CCSM3 is relatively cool in SRES B1 and relatively warm in A2.

4. Discussion and conclusions

a. Methodology

We introduce a simple, coherent approach for the modelling of uncertainty in multi-model

ensembles. The sources of uncertainty are estimated from the ANOVA model and add up

to give total variance, which is a natural measure of global uncertainty. In contrast to

the uncertainty decomposition constructed in previous studies, this approach does not need

to specify a particular type of trend and noise distribution and does not assume constant

internal variability over time. The ANOVA approach is a powerful way to quantify sources
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of uncertainty and the results generated are often easy to interpret. It is easy to summarise

the structure of all ensemble members under different scenarios with simple exploratory

techniques. Another important feature is interaction. In this framework, model-scenario

interaction is defined as a form of non-constancy of variance across scenarios in different

models. The framework supports the decomposition of model uncertainty into a term that

measures the uncertainty due to variation between scenario-independent model deviations

and an interaction term that measures the uncertainty due to variation between scenario-

dependent model deviations. Ignoring the significant interaction term in the analysis would

lead to a dramatic impact on the interpretation of the data. The framework offers, along with

some exploratory data analysis techniques, a more detailed interpretation on uncertainty and

the contribution from a particular ensemble member.

b. Scientific Interpretation

Our results for uncertainty in the global decadal mean temperature change broadly agree

with previous studies but some details are different especially for short lead times. There

are some important findings:

• scenario uncertainty, conditional on the choice of scenarios, is of the greatest impor-

tance after year 2050.

• internal variability is constant over time but decreases rapidly as a fraction of the total.

• uncertainty from scenario-independent model deviations dominates uncertainty from

scenario-dependent model deviations over the whole study period.
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• the model-scenario interaction effect is an important contribution to uncertainty, es-

pecially at long lead times.

The first finding is fully in agreement with previous papers such as HS09 and Cox and

Stephenson (2007). The second finding is an assumption in HS09 and is now validated using

the ANOVA framework. The latter two findings are more closely tied to the presence of

a significant interaction term. There are several possible reasons for this finding of certain

models having large interaction terms. The most likely reason is that the same forcings are

treated differently across the range of models (e.g. Kiehl, 2007). However, even if two models

treat a forcing in exactly the same way, there could still be a contribution to the interaction

if the models respond differently to the forcing, in other words if the models have different

effective climate sensitivities.

c. Future Work

The ANOVA approach, because of its simplicity, is a good starting point to cope with

some other more complex problems on attributing uncertainty from multi-model ensembles.

Apart from global mean temperature, it is also interesting to investigate uncertainty for

different space-time scales and other meteorological fields like precipitation and stratospheric

ozone (Hawkins and Sutton, 2010 and Charlton-Perez et al., 2010). It is possible to extend

this approach into a more general class of models. These extensions are not currently common

in the climate science community but have been used extensively in areas such as biology,

epidemiology and financial modelling. For example, an obvious extension to climate science

is a multivariate ANOVA (MANOVA, see details in Press, 1972, chapter 8) by incorporating
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the relationship between different atmospheric fields. This is particularly useful because

atmospheric fields are often correlated. A separate analysis of fields like temperature and

precipitation may lead to a repeated use of data. For epidemiology applications, Zhang et al.

(2009) develop the techniques of smoothed analysis of variance (SANOVA) to smooth spatial

random effects by taking advantage of the spatial variation.
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Table 1. Climate model data used in this study are obtained from the CMIP3 archive for
years 2001-2099 for the A1B, B1 and A2 scenarios for GCMs with more than one ensemble
member.

Acronym Model
CCCMA Canadian Centre for Climate Modelling and Analysis Coupled General Circulation Model, version 3.1

MIROC3.2 Model for Interdisciplinary Research on Climate 3.2 (medium resolution)

MIUB ECHO ECHAM and the global Hamburg Ocean Primitive Equation Model

ECHAM5 ECHAM and the Max Planck Institute Ocean Model

CGCM Meteorological Research Institute Coupled General Circulation Model, version 2.3.2

CCSM3 National Center for Atmospheric Research Community Climate System Model, version 3

PCM National Center for Atmospheric Research Parallel Climate Model
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Panel (a), (b) and (c) are emission scenario B1, A1B and A2 respectively,

and models are represented by symbol C(CCCMA), M(MIROC3.2), E(MIUB

ECHO), H(ECHAM5), G(CGCM), S(CCSM3) and P(PCM). 27
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Fig. 1. Global, annual mean surface air temperature prediction from 7 different GCMs
under three different emission scenarios from 2001 to 2099. Two ensemble members are
shown here per model per emission scenario.
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Fig. 2. Interaction plots show the means of the SAT for the years 2001-2030; 2031-2060;
2061-2099; 2001-2099 against emission scenarios for all the models, and models are repre-
sented by symbol C(CCCMA), M(MIROC3.2), E(MIUB ECHO), H(ECHAM5), G(CGCM),
S(CCSM3) and P(PCM). An interaction between model and scenario is present where the
lines are not parallel.
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Fig. 3. Uncertainty in global decadal mean surface temperature projections is shown here by
variances. Panel (a) shows all four components of uncertainty, i.e. scenario-dependent model
uncertainty (thick solid line); scenario uncertainty (thick dashed line); internal variability
(thin solid line); model-scenario interaction uncertainty (thin dashed line). Panel (b) shows
the contribution of internal variability and the model-scenario interaction effect variance,
i.e. internal variability (thin solid line); model-scenario interaction uncertainty (thin dashed
line). The internal variability from an ANOVA model with absence of interaction (thick
solid line) is also superposed in the same diagram.
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Fig. 4. Comparison of the fraction of variance for global, decadal mean surface air temper-
ature using, (a) HS09 methodology and (b) the ANOVA-based approach.
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Fig. 5. Time-series plots of the fitted terms. Panel (a), (b) and (c) are the estimates α̂(m, t),
β̂(s, t) and γ̂(m, s, t) respectively, and models are represented by symbol C(CCCMA),
M(MIROC3.2), E(MIUB ECHO), H(ECHAM5), G(CGCM), S(CCSM3) and P(PCM).
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Fig. 6. Time-series plots of the fitted model-scenario interaction effects γ̂(m, s, t). Panel
(a), (b) and (c) are emission scenario B1, A1B and A2 respectively, and models are repre-
sented by symbol C(CCCMA), M(MIROC3.2), E(MIUB ECHO), H(ECHAM5), G(CGCM),
S(CCSM3) and P(PCM).
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