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ABSTRACT

The decadal predictability of three-dimensional Atlantic Ocean anomalies is

examined in a coupled global climate model (HadCM3) using a Linear Inverse

Modelling (LIM) approach. It is found that the evolution of temperature and

salinity in the Atlantic, and the strength of the meridional overturning circulation

(MOC), can be effectively described by a linear dynamical system forced by

white noise. The forecasts produced using this linear model are more skillful

than other reference forecasts for several decades. Furthermore, significant non-

normal amplification is found under several different norms. The regions from

which this growth occurs are found to be fairly shallow and located in the far

North Atlantic. Initially, anomalies in the Nordic Seas impact the MOC, and the

anomalies then grow to fill the entire Atlantic basin, especially at depth, over one

to three decades. It is found that the structure of the optimal initial condition

for amplification is sensitive to the norm employed, but the initial growth seems

to be dominated by MOC-related basin scale changes, irrespective of the choice

of norm. The consistent identification of the far North Atlantic as the most

sensitive region for small perturbations suggests that additional observations in

this region would be optimal for constraining decadal climate predictions.

∗Corresponding author address: Ed Hawkins, Department of Meteorology, University of Reading, Read-
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1. Introduction

Climate variability on decadal timescales is strongly influenced by the oceans. The At-

lantic Ocean is particularly important because of its central role in the overturning circula-

tion. Furthermore, there is evidence from models that variations in the Atlantic overturn-

ing circulation, and associated impacts on climate, are potentially predictable on decadal

timescales (e.g. Griffies and Bryan 1997; Collins and Sinha 2003; Pohlmann et al. 2004;

Sutton and Hodson 2005; Collins et al. 2006). This evidence suggests that predictions for

the climate of the next few decades should be properly initialised using information about

the present ocean state, rather than relying solely on the simulated response to changing

radiative forcing (Solomon et al. 2007).

There has recently been significant progress in the development of properly initialised

decadal prediction systems (Smith et al. 2007; Keenlyside et al. 2008; Meehl et al. 2008).

Nevertheless, such systems are still at an early stage of development, and there are many

challenges ahead. One important need is to improve understanding of the processes that

govern error growth. As in numerical weather prediction, understanding the growth of

perturbations is essential in order to design ensembles for sampling uncertainty efficiently

(e.g. Molteni et al. 1996), and also to improve observing systems in a targeted, cost-effective

way. This latter point is especially important for the oceans because of the high cost of

sub-surface observations.

The purpose of our study is to investigate the growth, on decadal timescales, of pertur-

bations in the Atlantic Ocean. More specifically, we aim to estimate optimal perturbations,

these being the perturbations that grow most rapidly, in a linear sense, as quantified by an

appropriate metric, over a defined time interval (e.g. Farrell 1988). These perturbations have

been examined in simple models using a variety of techniques (e.g. Lohmann and Schneider

1999; Zanna and Tziperman 2005; Sevellec et al. 2008). The methodology we employ is

the Linear Inverse Modelling (LIM) approach of Penland and Sardeshmukh (1995), which

we apply to output from a coupled General Circulation Model (GCM). The LIM approach

is attractive in that it provides a way to estimate optimal ‘non-normal’ perturbations with

vastly less computational expense than alternative methods (e.g. empirical singular vectors,

Kleeman et al. 2003). LIM has been exploited to study decadal variability and predictability

in the Pacific using observations (e.g. Newman 2007; Alexander et al. 2008), and amplifica-

tion of the Atlantic thermohaline circulation (THC) in simple box models (e.g. Tziperman

and Ioannou 2002). Recently, Tziperman et al. (2008) used LIM to examine decadal pre-

dictability in the Atlantic Ocean in a coupled GCM (GFDL CM2.1) and found significant

rapid, non-normal amplification from anomalies near the surface in the Labrador Sea, which

grew into anomalies in a larger region of the North Atlantic. In their model, this growth

limits the predictability of the ocean temperature and salinity fields, as well as the THC, to

about 8 years.

However, it is important to determine if this predictability limit is found in other GCMs

(and in the real ocean), and there is evidence that different GCMs behave in diverse ways.
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Griffies and Bryan (1997) analysed a previous version of the GFDL model and found that the

predictability of the deep ocean lasted 10-20 years. Collins and Sinha (2003) found that the

THC in HadCM3 was potentially predictable for up to 50 years. This analysis was extended

to a multi-model study by Collins et al. (2006) who found that several GCMs had significant

predictability for 20 years. There was also evidence that predictability varies depending on

the exact initial conditions, e.g. whether the overturning is relatively weak or strong.

In this paper we adopt the LIM approach to explore Atlantic Ocean predictability in

HadCM3. This analysis, although similar to Tziperman et al. (2008), was developed in-

dependently and has a different emphasis. The forecast skill, and the robustness of the

identified optimal perturbations to the LIM methodology, under several different norms, are

explored in detail. The suggested physical mechanisms for amplification identified by the

linear model are shown to occur in the full GCM. These robustness checks are vital for the

successful application of these results to operational decadal climate predictions, and to the

design of future ocean monitoring systems.

This paper is structured as follows. In Section 2 we briefly describe the HadCM3 model

and the data used. Section 3 summarises the use of LIM, and the justification for this

approach, with more details in Appendices A and B. Section 4 demonstrates the ability of

the constructed linear model to produce skillful forecasts for several decades. The estimation

of the non-normal amplification and optimal initial conditions is presented in Section 5, and

we conclude and discuss the implications for predictability in Section 6.

2. Model description and data used

In the subsequent analysis we have used data from an extended (1600 years) pre-industrial

control run of the Hadley Centre climate model, HadCM3. The model details are given in

Gordon et al. (2000) and references therein, and here we give a brief summary. HadCM3 is a

global coupled ocean-atmosphere model with an atmospheric resolution of 2.5◦× 3.75◦ and

19 vertical levels. The ocean component has a resolution of 1.25◦ × 1.25◦ with 20 vertical

levels. The model does not require flux adjustment to maintain a stable climate. The mean

state of the ocean model matches observed values to within 1 K and 1 psu in most regions

(Gordon et al. 2000; Pardaens et al. 2003). We do not analyse the first 500 years of data to

minimise the influence of spin-up effects in the ocean.

a. EOF basis

Three-dimensional (3D) bivariate correlation EOFs of the annual mean data for temper-

ature and salinity, in the Atlantic, for 1100 years, were estimated by Hawkins and Sutton

(2007) (hereafter HS07), who describe the details of their construction. In summary, the

domain used is 20◦S – 90◦N and 100◦W – 20◦E, using twelve depth levels from the surface

to 1800m. The state vector contains both salinity and temperature anomalies, which are

normalised to have unit variance at each grid point, and are also weighted by their con-
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tribution to local density. We also ensure that each volume of water is treated equally by

weighting by the volume of each grid box. HS07 showed that the two leading modes have

significant multi-decadal and centennial variability and are well correlated with an index of

the meridional overturning circulation (MOC) on decadal time scales. These two modes also

show good potential predictability which is explored further here.

In this study we represent the state of the Atlantic Ocean using the leading 30 EOFs,

which have been scaled so that the standard deviation of each principal component (PC)

is proportional to the square root of the fraction of variance of the full three-dimensional

fields explained. The eigenspectrum is shown in Fig. 1 as the solid black line. The dark grey

line represents the cumulative variance explained and shows that these 30 EOFs together

account for 71% of the total variance of this large (105150 × 1100 elements) system. The

leading four PCs are shown in Fig. 2.

b. Overturning index

The strength of the meridional overturning circulation (MOC) in this model has been

found to vary on a wide range of timescales1, including an inter-decadal mode (∼25 years,

Dong and Sutton 2005), a multi-decadal mode (∼70 years, Vellinga and Wu 2004) and a

centennial mode (∼150 years, HS07). In this paper we will examine whether small stochastic

perturbations can amplify and excite MOC variability.

The overturning index used in this study is defined as the anomaly from the time mean

meridional streamfunction averaged over the latitude band 27.5◦N – 32.5◦N, at a depth of

1000m. This is the same as used by HS07, but here it has been decadally smoothed. The

mean overturning strength for this smoothed index is 16.5 Sv with a standard deviation of

0.59 Sv, and is hereafter denoted as MOIGCM. The light grey line in Fig. 1 shows that the

leading 30 PCs account for 81% of the variance of this index, at zero lag.

3. Linear inverse modelling

We now briefly describe the linear inverse modelling (LIM) approach, following Penland

and Sardeshmukh (1995) (hereafter PS95). The more technical details are given in Appendix

A.

a. The linear model

The evolution of variables, y, in a GCM can be represented as,

dy

dt
= F (y), (1)

where F is a complex non-linear operator. We assume here that the dynamics are effectively

linear, i.e. that the non-linear dynamics have a much shorter timescale than the linear

1The power spectrum of the MOC variability is shown later in Fig. 14.
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dynamics (Penland 1996). The temporal evolution of the GCM can then be approximated

as a stochastically forced linear dynamical system,

dx

dt
= Bx + ξ, (2)

where x is a state vector, ξ is a forcing term, and B is a matrix defining the temporal

evolution of the state vector. We discuss later how well this linear model performs for the

ocean state in HadCM3.

If B
T
B 6= BB

T then the system is described as non-normal, which results in eigenvectors

of B that are non-orthogonal. This is the case in most systems based on fluid dynamical

equations such as that being considered here (e.g. Farrell 1988).

To reduce the dimensionality of the system we consider just the evolution in the subspace

of the leading modes of variability in the data (in this case, the EOFs2). The matrix B which

best models the PCs of the GCM data can be estimated through the data covariance matrices

as described in Appendix A. Properties of the noise, ξ, can be similarly estimated.

The eigenvectors of B are sometimes known as the Empirical Normal Modes (ENMs,

PS95), and their properties for our dataset are discussed further in Appendix A. These

modes are not usually promising for examining growth as they tend to be overdamped,

oscillating modes. For our dataset, one exponentially decaying mode shows a small transient

amplification when initialized in certain phases, but larger growth is possible through the

interference (or sum) of different modes (see Section 5).

The linear model described makes several assumptions about the linear nature of the

system and the properties of the stochastic forcing. Previous authors have described several

tests to justify these assumptions, and the application of these tests to our dataset is discussed

in Appendix B. We restrict our analysis to the leading 30 EOFs as these tests are not well

passed when more EOFs are considered.

b. Making forecasts

The matrix B can be used to make forecasts of x for any lead time, τ ,

x̂(t + τ ) = Pτx(t) (3)

where x̂ denotes the predicted value of x, and our general linear propagator,

Pτ = exp(τB). (4)

For comparison, we also model the evolution of each PC (i.e. each element of x) as an

autoregressive (AR1) process, which uses a diagonal matrix for Pτ . Results using both the

full and diagonal propagators are shown later.

2Note that although Farrell and Ioannou (2001) argue that EOFs may not be the optimal choice for

investigating non-normal growth, we find that they describe the system adequately for our purposes.
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As well as forecasting the PC state vector, x, it is also possible to forecast any index

of variability. Here we focus on the overturning strength and define a vector, m, which

optimally combines the PCs to create a reconstructed overturning index,

MOIrecon(t) = mTx(t), (5)

by minimising the variance of the residuals between MOIGCM and MOIrecon (e.g. Tziperman

et al. 2008). The reconstructed MOI index can then be forecast in a similar way to Eq. (3),

M̂OIrecon(t + τ) = mTx̂(t + τ) = mT
Pτx(t), (6)

and compared with the actual MOIrecon (and MOIGCM) to give an estimate of the skill of

the forecast.

4. Forecasts and predictability

Having demonstrated that our system is behaving appropriately (Appendix B) we can

proceed to use the linear modelling approach described above with more confidence. We

first consider the skill of the forecasts produced with Eqs. (3) and (6).

a. Forecasting the leading PCs

Fig. 2 shows the four leading PCs (grey lines) and forecasts for lead times of up to 50

years (black lines) using our linear model. The forecasts seem to show considerable skill,

even with multi-decadal lead times. We now quantitatively assess this skill by comparing

the linear model forecast errors to reference forecasts such as climatology (Pτ = 0) and

persistence (Pτ = 1). We also compare with the theoretical error due to the presence of the

unpredictable white noise forcing in Eq. (2) - this is termed a ‘perfect’ linear model. Penland

(1989) showed that the prediction error covariance matrix, assuming the system was purely

linear, would be

σ(τ) = C(0) − PτC(0)PT

τ (7)

where C(0) is the covariance matrix of x, defined in Eqn. A4. As we are fitting a linear model

to a system which is probably slightly non-linear the actual errors using the propagator will

be different, and normally larger. So, the differences between the actual and theoretical

errors is a measure of the non-linearity of the system and is a test of our linear assumptions.

Fig. 3 shows the rms errors in the forecasts for the total vector x (top left panel) and

the leading five PCs for a perfect linear model (Eq. (7), dashed black line), the full linear

model (solid black line), the restricted diagonal model (solid grey line, which is equivalent

to a damped persistence (AR1) forecast) and a pure persistence forecast (dashed grey line),

relative to a climatological forecast. The full linear model comfortably beats climatology and

the diagonal model for up to 100 years in all examples shown. The full linear model is also

close to the theoretical limit, demonstrating that our system is behaving roughly linearly.

The largest non-linearity appears in the leading three PCs.
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The rms errors shown in Fig. 3 are potentially optimistic because the errors and propa-

gator are estimated using the same data. In Fig. 4 we test how important this is by showing

the rms errors from just the last 100 years calculated using the full propagator (dashed black

line) and a propagator calculated using just the first 1000 years, i.e. independent data (solid

grey line). The solid black lines are repeated from Fig. 3. Although the rms errors tend

to increase when using independent data, they are not dramatically worse, particularly for

the first few decades. All further results are shown using the full propagator. The large

differences between the solid and dashed black lines demonstrate that the rms errors can be

state dependent.

b. Forecasting the overturning

We now consider forecasts of the overturning indices, which rely on the higher PCs not

considered in detail above, although it should be noted that not all of the MOI variability

is captured by the linear model (see Appendix B).

1) The reconstructed MOI

The reconstructed MOI index, defined in Eq. (5), has a correlation of 0.90 with MOIGCM.3

The time series of both indices are shown in Fig. 5, which also shows forecasts of the MOI

for lead times of up to 50 years (black lines) for our full linear model. Again, the forecasts

show some predictive ability, especially for the low-frequency variability, even at long lead

times.

In a similar way to Eq. (7), Tziperman et al. (2008) showed that the theoretical error

covariance for MOIrecon, assuming a perfectly linear system, is,

σMOI(τ) = 〈MOIrecon(t)
2〉 − mT

PτC(0)PT

τ m. (8)

The bottom left panel of Fig. 3 shows the rms errors for the forecast of MOIrecon for the full

linear model (solid black line), the perfect linear system (dashed black line), the diagonal

model (solid grey line) and the persistence forecast (dashed grey line). It can be seen that

the full linear model is again close to the theoretical limit and outperforms all the reference

forecasts for several decades.

2) The GCM overturning strength

As the MOI cannot be perfectly reconstructed from our PC basis, the skill of the linear

model in forecasting MOIrecon is not necessarily what we would like to know for practical

purposes. A more relevant forecast is for MOIGCM, and the bottom right panel of Fig. 3

3The linear model should not be expected to predict the variability over timescales of a few years, which

is dominated by the Ekman response to atmospheric variability. This correlation increases to 0.94 if the MOI

index has a 30-year filter applied, rather than the 10-year filter used throughout this study. The correlation

is 0.70 using just the leading two PCs.
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quantifies the skill of the linear model in predicting this decadally filtered index. It is found

that for lead times less then about 4 years, damped persistence and pure persistence forecasts

for MOIGCM (solid grey and dashed grey lines respectively) perform best. At longer lead

times the linear propagator model (solid black line) is superior, and performs better than

a climatological forecast for more than 100 years. The lead time at which the linear model

forecast reaches the level of 50% of the climatological variance is ∼10 years. This compares

well to three ensemble ‘perfect model’ integrations of this GCM shown by the black points

and thin black lines (Collins and Sinha 2003)4. At zero lag, using 30 (2) PCs it is possible

to estimate MOIGCM with an rms error of 0.26 (0.42) Sv.

c. Predicting SST anomalies

The skill of the linear inverse model in predicting annual mean Atlantic SST anomalies is

now demonstrated. Fig. 6 shows anomaly correlation maps for the LIM forecast, a damped

persistence forecast, and the difference in the fraction of variance explained between the two,

for 1 and 10-year lead times. The LIM shows considerable skill, even at a lead time of 10

years, over most of the Atlantic, and outperforms damped persistence in most of the basin

at both lead times. The greatest increase in skill, over damped persistence, at short lead

times, is in the tropical South Atlantic and in the north east Atlantic. At longer lead times,

the North Atlantic Current (NAC) region shows the largest increase in skill. These results

might encourage use of the LIM methodology with historical observations in the Atlantic

to improve forecasts for several years to decades ahead (e.g. Newman 2007 for the Pacific

Ocean), without the computational expense of running ensembles of GCM integrations.

5. Optimal perturbations

Making the forecasts as described above is important to demonstrate that the linear model

has skill, but the main focus of this study is to examine the growth of anomalies. As already

mentioned, none of the individual modes (ENMs) give substantial transient amplification.

To obtain larger growth the damped, oscillating ENMs need to interfere constructively. This

is only possible in a non-normal system as the ENMs are non-orthogonal.

a. Calculating transient amplification and optimal initial conditions

Using the definition of the norm of a vector, v,

||v||2
N
≡ vT

Nv, (9)

4Note though that the MOC index used by Collins and Sinha (2003) is different - they used annual means

of the overturning at 45◦N and 670m depth, and subtracted off the Ekman part of the overturning, which is

likely to enhance skill.
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where N is a ‘norm kernel’, we can define the amplification of our system at a lead time, τ ,

as,

A(τ) =
x(τ)TNx(τ)

xT
0
Lx0

=
xT

0
P

T

τ NPτx0

xT
0
Lx0

, (10)

where L and N are the initial and final norm kernels respectively. We then look for initial

conditions, x0, which maximise this amplification. This is achieved (Farrell 1988; Tziperman

and Ioannou 2002) by solving the generalised eigenvalue equation,

P
T

τ NPτx0 = λLx0, (11)

for λ and x0, at different lead times, τ . The largest eigenvalue, λmax, is an estimate of the

largest transient amplification possible for that lead time. The optimal initial conditions are

normalised so that xT

0
Lx0 = 1, and the spatial patterns corresponding to x0 indicate the

regions most sensitive to small perturbations, where observations would potentially be the

most useful to constrain predictions.

b. Choice of norm kernel

The choice of norm kernels, L and N, must be considered carefully as it affects both the

estimated optimal initial conditions and the growth of anomalies (Tziperman et al. 2008).

Usually the two norm kernels are chosen to be the same, although there is no restriction for

this to be the case. Table 1 summarises the different norms used in this study (described

below), and the sensitivity to this choice is discussed later.

1) The quadratic, SST and total variance norms

The simplest norm uses the identity matrix for the initial and final norm kernels (L =

N = I). This quadratic norm (sometimes called an energy norm) finds maximal growth in

the space defined by the leading PCs. We attempt to interpret this growth by considering

what any amplification means in the original data space.

It is possible to construct a norm kernel for any subset of the data,

N = (W · E)T(W · E), (12)

where E is a matrix (of size n × p) which consists of each of the p retained EOF patterns,

restricted to the n ocean gridpoints in the field of interest, e.g., just the surface temperature

data (p = 30 and n = 4768 for our dataset) to construct an SST norm (NSST) which we

consider later, and W is a matrix of weights. For the SST norm, W consists of a latitude

dependent area weighting. More generally, if E represents the entire 3D EOF fields for

temperature and salinity (p = 30, n = 105150 for our dataset) then N is a norm which

maximises changes in total variance. Note especially that this is not the identity matrix

unless the various weightings (W) used in the original EOF calculation (i.e. for volume,

contribution to local density and local standard deviation - see HS07) are all applied to E
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to make it orthogonal. Thus, the quadratic norm can be interpreted as a variance norm

which takes account of all these weightings. We will also consider a different variance norm

(denoted by NV) which includes only the weightings for differing volumes of each grid box

and for local standard deviation (although this norm still includes some covariance between

temperature and salinity)5. To ensure comparable sizes of anomalies, NSST and NV are

normalised to have unit determinant. When using both these norms we use the same initial

and final norm kernel (L = N).

2) The MOC norm

Previous authors, starting with Tziperman and Ioannou (2002), have considered the

transient amplification of the overturning strength by defining an MOC norm,

NMOC = mmT + εNε, (13)

where ε is a ‘small’ number and Nε is a suitable non-singular norm, and use NMOC as both

the initial and final norm kernels. The extra small term (or ‘regularization’) is required as

mmT is singular (see Tziperman and Ioannou 2002 and Tziperman et al. 2008 for more

details).

This approach constrains the optimal initial MOI condition to be small (O[ε]), resulting

in a large (O[ε−1]) amplification for τ > 0,

AMOC(τ) =
xT

0
P

T

τ NMOCPτx0

xT
0
NMOCx0

≈
xT

0
P

T

τ mmTPτx0

xT
0
εNεx0

, (14)

which has the interesting feature that the initial and final norm kernels are dominated by

different terms. Thus the optimal initial conditions depend strongly on the perturbing norm

kernel, Nε, with the additional restriction that the initial MOI anomaly be virtually zero. If

we instead choose different initial and final norms (L = NV, and N = NMOC), then we can

eliminate the regularization (ε = 0) and find small variance anomalies which grow into large

MOI anomalies, and this is the approach we adopt. This also means that the optimal initial

MOI condition need not be small, i.e. it can be O[1].

c. Amplification under the variance norm

We first focus in detail on the maximum amplification under the variance norm. The

optimal initial conditions for growth can be found by solving Eq. (11) for the leading eigen-

vector (x0) and maximum amplification (λmax) for different norms and lead times. Fig. 7

shows the maximum amplification curves (λmax as a function of τ) under the variance norm,

retaining different numbers of EOFs. The maximum transient amplification increases as the

5Note that in Tziperman et al. (2008) the quadratic and variance norms are identical as they do not

include a weighting due to a contribution to local density in their EOF estimation. We will focus on the

variance norm in particular to more directly compare to Tziperman et al. (2008), but the results for the

quadratic norm are very similar.
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number of EOFs increases, and so the amplification found should therefore be considered

as a lower bound on the possible non-normal amplification. But, Fig. 7 also demonstrates

that the overall shape of the maximum amplification curve is remarkably consistent with the

number of EOFs used. The weights in the leading eigenvectors, and hence the optimal initial

conditions, are also fairly consistent as the number of EOFs is increased (not shown). We

can therefore be reasonably confident that the optimal initial conditions and amplification

process are robust.

It is found that the maximum transient amplification, using 30 EOFs, occurs at 36 years

and involves an amplification factor of ≈ 10. The thin black curve in Fig. 7 shows the

evolution of this largest growing mode. The level of maximum amplification is slightly larger

than that found for the GFDL CM2.1 model by Tziperman et al. (2008), although the time

to reach maximum amplification is far longer in HadCM3 (36 years compared to ∼8 years).

We now focus on the mechanisms of amplification of this maximal growth.

The evolution of temperature and salinity anomalies from the initial (x0) to final (Pτx0)

states, projected into physical space and integrated from the surface to 1800m depth, is shown

in Fig. 8. The initial state has fairly localised, and shallow (Fig. 9) anomalies concentrated

in the North Atlantic and Nordic Seas, which grow into anomalies affecting most of the

Atlantic basin, with a strong north-east/south-west dipole structure. The inference is that

a small anomaly with the structure of the initial state will grow into the final state over 36

years. It is of interest that the anomalies tend to grow in volume rather than amplitude

and are substantially density compensating, and therefore involve changes in the spiciness

of the water masses. The evolution of these anomalies shows propagation from the North

Atlantic southward along the western boundary into the tropical Atlantic, probably due to

a combination of wave and advective processes, followed by spreading into the interior.

Fig. 9 shows how these anomalies are distributed with depth, integrated over two latitude

bands. The dashed lines represent the initial state and the solid lines are the final state. It

can be seen that the initial anomalies are concentrated in the top 500m, especially in the sub-

polar gyre. The final state is dominated by deeper anomalies (below 500m) in the tropical

Atlantic. The locations highlighted in the initial state indicate where ‘observations’ would

be most valuable for constraining predictions. The shallow nature of the initial anomalies is

encouraging, as these may be more easily observable than anomalies at deeper levels. Also

note that although the sign of the anomalies is arbitrary in this linear model, the GCM

behaves similarly for both signs of anomalies (see Fig. 12 later).

Tziperman et al. (2008) also found that the optimal initial conditions were located in the

far North Atlantic in the GFDL CM2.1 model. In their maps of dynamic topography there

are also hints of a similar western boundary propagation. It is encouraging to see similar

processes at work in two different models.

The evolution of the MOC during this amplification is also of interest. The solid black

line in Fig. 10 shows that the negative MOIrecon anomaly amplifies for the first ten years,

and then recovers. Thorpe et al. (2001) showed that the MOC strength in HadCM3 is

strongly correlated with the meridional density gradient in the North Atlantic, and the
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evolution of anomalous meridional density gradients in Fig. 8 shows the same effect with

anomalous low density in the far North Atlantic occurring when the MOC is anomalously

weak. De Coëtlogon et al. (2006) also found correlations between Gulf Stream position

and transport changes and the MOC in several GCMs, and similar relationships between

Gulf Stream transport and gradients in potential energy anomalies have been identified in

observations (Curry and McCartney 2001).

Figs. 8 and 10 indicate that there may be two stages to the amplification. A faster

(∼10 year) growth due to changes in the high latitudes - the optimal perturbation is a low

density anomaly (dominated by low salinity) in the surface layers of the Nordic Seas, which

inhibits convection. The mean density of water flowing through Denmark Strait is also

lowered (not shown), and these factors are known to lead decreases in the strength of the

MOC in HadCM3 (Hawkins and Sutton 2008). There is also propagation along the western

boundary and a corresponding change in the MOC. After a few years, the convection can

restart and the MOC recovers. During the second stage (years ∼10 onwards), there is slower

growth spreading the warm and salty anomalies to greater depths and into the ocean interior,

especially in the tropics.

d. Comparing different norms

One of the uses for optimal initial conditions is to perturb ocean analyses to help design

efficient decadal climate forecast ensembles (e.g. Smith et al. 2007; Meehl et al. 2008).

Therefore we now examine the sensitivity of our results to the choice of norm for a fixed

optimisation lead time of 10 years. Fig. 11 shows the optimal initial conditions for each

norm. The patterns are very similar, with large values found in the far North Atlantic,

especially in the Labrador Seas and Nordic Seas - i.e. the regions of deep ocean convection.

The pattern for the SST norm is slightly different with more weight in the tropical North

Atlantic, especially in salinity. However, after 10 years growth, the amplified patterns are

fairly similar (not shown).

Fig. 10 considers the development of MOI anomalies for the different norms for the fixed

optimisation time of 10 years. The evolution is similar for the variance and MOC norms, and

also the quadratic norm (not shown), with growth to the largest MOC extremum6 occurring

at ∼ 8 − 12 years, followed by a decay. The SST norm shows a similar evolution but with

the largest MOC anomaly at around 20 years.

Table 1 gives the lead time of largest possible amplification for each norm. Using the

SST norm there is larger non-normal amplification - a factor of ∼32 at a lead time of 5 years.

The MOC norm shows a far smaller maximal amplification of just ∼1.35 from 1 to 10 years.

These results suggest that, (i) the optimal initial condition is dependent on the norm

chosen, (ii) the growth of anomalies over the first decade appears dominated by an MOC

perturbation under all norms, and (iii) the timescale to maximum amplification, and the

pattern at maximum amplification are sensitive to the norm chosen.

6Note again that the sign of the anomaly is arbitrary.
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e. Does this amplification actually occur?

The calculation of these optimal initial conditions is a mathematical construct, and so

it is important to examine whether the amplification described actually occurs. One way to

test this would be to impose the optimal initial conditions as anomalies in the full GCM and

run an ensemble of integrations. Firstly, this is a computationally expensive test of the kind

we are trying to avoid, and secondly, these patterns are ‘average’ amplifying perturbations,

which are not optimised for any particular initial condition. A simpler, and perhaps more

relevant test, is to use the natural internal variability generated by the GCM.

Although it is extremely unlikely that, at any one particular time, the anomalies in the

GCM control integration will exactly match the optimal initial condition estimated above,

we can study the projection of the GCM anomalies, for all 1100 years, onto the optimal

initial and final states (see PS95).

This simple estimate of the relevance of the optimal initial condition is shown in Fig. 12

which plots, in the space of the leading PCs, the projection of the state vector, x(t), onto

the optimal initial condition, x0(τ), against the projection of x(t + τ) onto the maximally

amplified state, Pτx0(τ), for all t, for a fixed optimisation time of τ = 10 years, for each

norm. If this linear non-normal amplification is occurring in the GCM then all the points

should lie near the dashed lines (a slope of unity). The relation will not be perfect due to

the integrated effect of noise throughout the evolution of the anomaly, but it is reassuring

that the best-fit slopes are positive, with good correlations. This demonstrates that this

type of amplification does indeed occur in the GCM and that our linear model is capturing

this. Although there are small differences from a slope of unity, departures from linearity

are modest.

Although the structure of the growth appears to occur in the same way as the linear

model suggests, the observed level of amplification in the GCM typically reaches ∼50% of

the maximum linear estimate (not shown). This is not surprising as we expect the non-

linearities in the GCM to impact our linear estimates.

These results give us confidence that our estimated optimal initial conditions are realistic

and giving rise to amplification in the GCM in the way described by our simple linear model.

6. Conclusions and implications

We have analysed the decadal variability and predictability of 3D Atlantic Ocean anoma-

lies in a GCM (HadCM3) using a linear inverse modelling approach. The main findings can

be summarised as follows:

• the evolution of temperature and salinity in the Atlantic Ocean as captured by the

leading 30 three-dimensional EOFs can be effectively described by a linear dynamical

system, forced by white noise.

• forecasts, using the linear model, of Atlantic SSTs, the strength of the overturning,
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and of the leading PCs are more skillful than damped persistence and climatological

forecasts for several decades.

• significant non-normal amplification by a factor of ∼10 can occur in the linear model

framework under the variance norm over 36 years. Similar processes of amplification

are also found in the natural variability of the full GCM.

• the regions from which growth occurs under the variance, quadratic, and MOC norms

are found in the top 500m of the far North Atlantic. Anomalies in this region amplify

to fill most of the Atlantic basin, especially at depth, over 1-3 decades. The mechanism

of amplification appears to initially involve anomalies in the Nordic Seas, followed by

southward propagation of anomalies along the western boundary affecting the MOC,

and subsequent spreading into the interior.

• the structure of the optimal initial conditions is sensitive to the choice of norm, whereas

the initial growth appears similar and dominated by MOC-related basin scale changes

for all norms considered.

Tziperman et al. (2008) used a similar methodology to that described here, using a

quadratic norm, on the GFDL CM2.1 model and found a transient amplification of compa-

rable amplitude which occurred over the first 10 years - similar to the first stage of growth

found here for HadCM3. They concluded that the predictability in this model decays rapidly

over 10 years, and this is also seen in the errors in their forecasts, which grow more rapidly

than for HadCM3. In HadCM3 the transient growth is slower, indicating greater predictabil-

ity in this model. This is also demonstrated by the significant skill found in the forecasts,

even at long lead times, and also by previous studies (e.g. Collins and Sinha 2003).

There are two main reasons for performing this kind of analysis. Firstly, the initial per-

turbations indicate where observations would be most valuable to help constrain decadal

climate predictions. The similar location (far North Atlantic) for the optimal initial con-

ditions found in both HadCM3 and GFDL CM2.1 is encouraging, and suggests additional

ocean observations in these regions could be valuable, though the spatial density of ocean

observations that would be required is still an open question. Secondly, any future opera-

tional decadal climate prediction system will rely on ensemble forecasts from analysed initial

conditions, and will require optimal perturbations, such as these, to efficiently explore the

uncertainty in the initial state, and hence provide more accurate forecast uncertainties.

It should be noted that, although we have attempted to justify the various assumptions

about the linearity of the system, it needs to be rigorously demonstrated that the identified

regions are indeed the most sensitive to perturbations using integrations of the full GCM

(e.g. Kleeman et al. 2003). A further paper will explore this issue in more detail. Further

work will also investigate the application of these methods to different GCMs.
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APPENDIX A

Methodology details

Constructing a linear propagator

Here we give more details (also see Penland and Sardeshmukh 1995) of the estimation

of B, starting from Eq. (2). If we assume (for now) that the forcing term (ξ) is zero then

Eq. (2) is a purely linear system, and we can introduce a linear propagator, G, so that,

x(t + δ) = G(δ)x(t) (A1)

where x is our PC state vector and δ is the lead time. This assumption of linearity is not

going to be strictly true, and so we assume that the non-linear terms can be considered as

a forcing term (ξ) in Eq. (2). This forcing is generally taken to be Gaussian white noise

(in time). These assumptions of linearity and Gaussianity are tested for our system in

Appendix B. The optimal linear propagator G(δ) can be found from the covariance matrices

of x (PS95),

G(δ) =
C(δ)

C(0)
(A2)

where

C(δ) = 〈x(t + δ)xT(t)〉, (A3)

C(0) = 〈x(t)xT(t)〉, (A4)

where 〈·〉 denotes an average over all t. C(0) is a diagonal matrix with elements proportional

to the fraction of the variance explained by each EOF. In this notation,

B =
ln[G(δ)]

δ
, (A5)

and should be independent of the lead time (δ) used to estimate it. The general linear

propagator is then (c.f. Eqn. 4),

Pτ = exp
(τ

δ
ln[G(δ)]

)
= exp(τB). (A6)

Although, in principle, we are free to choose any lead time, δ, to calculate B there are

physical constraints which limit this choice. To ensure that the modes of variability are

physically realistic decaying modes it is necessary that the eigenvalues of G(δ) have positive

real part and magnitude less than unity. It is found for our 3D EOF system that using a

lead time of δ = 1 year will satisfy this constraint, but that longer lead times do not. All

the results presented here therefore use the propagator derived for δ = 1 year.
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Empirical Normal Modes

The eigenvectors of B are sometimes known as the Empirical Normal Modes (ENMs,

PS95) and the corresponding eigenvalues, βj, are generally complex,

βj = σj + iωj. (A7)

Table 2 summarises the properties of the ENMs and shows that two modes in our system are

exponentially decaying modes (ωj = 0) and the rest are oscillatory, complex-conjugate pairs

with decay times −1/σj, and periods 2π/ωj. The shortest period for one of these oscillatory

modes is 4.4 years (ENM 3/4). Erroneous results for G can be obtained if the lag (δ) is

chosen to be larger than half the shortest period, and large uncertainties can occur near

this half period (PS95). This is the so-called ‘Nyquist problem’, and is the reason why the

propagator matrix could not be reliably estimated for δ > 1 year in our 30 EOF system.

Noise EOFs

As the individual ENMs decay there must be an energy input from the stochastic forcing

(ξ) to ensure stationary statistics (a fluctuation-dissipation relation). This relation (Penland

and Matrosova 1994; PS95) is,

BC(0) + C(0)BT + Q = 0, (A8)

and defines the covariance matrix of the forcing, Q = 〈ξξT〉 dt. Although the forcing is

white noise in time, the eigenvectors of Q correspond to coherent, three-dimensional spatial

patterns of forcing, sometimes called ‘noise EOFs’. The most likely source for noise in the

ocean is the atmosphere and so it is hoped that these noise EOFs are dominated by surface

anomalies which resemble known surface flux patterns due to coherent atmospheric forcing

states. In our case the leading noise EOFs are dominated by anomalies in the top ∼350m,

with the spatial pattern of the first noise EOF (representing around 13% of the variance)

is similar to the observed ocean response to changes in the North Atlantic Oscillation (not

shown).
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APPENDIX B

Validation of the assumptions in the methodology

There are several tests which can be used to justify the assumptions made in constructing

the linear model, and to check that our system is indeed acting like a Gaussian white noise

forced version of Eq. (2). Section 4a analyses the skill of the forecasts produced, and here

we consider some further tests.

Are the linearity assumptions valid?

The evolution of the PCs will not be perfectly linear, but the skill of the forecasts shown

in Fig. 3 give us confidence in this assumption. Also, as previously discussed, for a linear

system, B should be independent of δ. Unfortunately we cannot check this as B can only be

reliably calculated for δ = 1 year, using 30 EOFs. If fewer EOFs are used then this test is

reasonably well passed (not shown).

Is the noise forcing consistent?

As the noise matrix, Q, is a covariance matrix it should be positive definite, i.e. the

eigenvalues should all be positive. It is found that, when using 30 EOFs, two of the eigen-

values are slightly negative (≈ −10−5). We also find that if only the leading 15 EOFs are

retained then all the eigenvalues are positive. This may indicate the presence of a small

amount of non-linearity found in the low-variance, higher EOFs, or that we do not have

enough data to reliably determine the higher EOFs. Previous studies (e.g PS95) have found

similar results and concluded that it does not influence their results significantly.

Are the statistics consistent?

Another approach to testing the linear model assumptions is to integrate a forward model,

constructed from Eq. (2), and generate artificial data with the same linear propagator as

that estimated from the GCM data (see Penland and Matrosova 1994 and PS95 for details).

This artificial data should have similar statistics to the real data. Newman (2007) compared

the power spectra of the components output by the forward model with the power spectra

derived directly from the GCM data and from observations and we perform a similar test

here.

We integrated our forward model for 55 000 years, with a time step of 1 month, and split

the output into 50 independent segments, so that each segment had the same length (1100

years) as the GCM data, to act as a Monte Carlo ensemble. The stochastic forcing used in

the forward model is generated using the noise matrix, Q, with the two negative eigenvalues

suppressed.
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The solid lines in Fig. 13 show the power spectra for the leading five PCs and these

should be compared to the dashed lines which indicate the ensemble mean from the forward

model, with 95% confidence limits shaded grey. It can be seen that the power spectra derived

directly from the data are within the estimated confidence levels for the leading five principal

components, indicating that the linear model can reproduce the frequency statistics of the

distribution well. The large uncertainty range in the power spectra indicates that even

the statistics of 1100 year segments can be very variable and each segment may not fully

represent all the frequencies of natural variability. Fig. 14 shows the same for the domain

means of SST, SSS, temperature and salinity at a depth of 1500m, and the MOI. It is not

surprising to see that the linear model is better at representing the variability of the deep

ocean than the surface layers. The lower panel of Fig. 14 indicates that not all of the MOI

variability is completely represented by the linear model. Also seen is the similarity of the

spectra for MOIGCM and MOIrecon for periods greater than about 20 years, except for the 25

year spectral peak which is missing in MOIrecon. These differences will limit the skill of the

linear model to predict the overturning indices.

Considering Gaussianity

If a Gaussian white noise forced linear model is a good representation of our system

then the statistics of x should be Gaussian, but it is found that (only) the leading two

PCs have significantly non-Gaussian skewness. This could be an indication of non-linear

processes which are not well represented by Gaussian white noise, or due to the low frequency

variability (Fig. 13) found in these two leading PCs which is not fully sampled in the 1100

years of analysed data. As a further check we examined the statistics of different segments of

the stochastically forced forward model described above and found significantly non-Gaussian

skewness for the leading two PCs in many segments. The statistics were only Gaussian if

the segment considered was long enough to capture enough cycles of the coherent oscillation.

Even so, the skewness of the real PC1 is outside the 95% confidence limits derived from the

forward model (not shown). Non-Gaussianity is possible if the noise is multiplicative rather

than additive (e.g. Sura and Sardeshmukh 2008), but this is a small caveat on our results.
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Fig. 1. Left hand axis scale: the eigenspectrum of the leading 30 EOFs (black line, cir-
cles). Right hand axis scale: cumulative variance explained (dark grey line, squares) and
cumulative variance of the MOI explained (light grey line, diamonds).
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Fig. 2. The leading four PCs (grey lines) and forecasts using the linear propagator, Pτ (black
lines), for lead times of up to 50 years, plotted at 50 year intervals. The linear propagator
seems to show significant skill, even at long lead times.
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Fig. 3. Root mean square (rms) errors, relative to a climatological forecast, for forecasts of
quantities as labelled. Solid black lines: using the linear propagator, Pτ . Dashed black lines:
‘perfect’ linear model (Eq. (7) for PCs, Eq. (8) for MOIrecon). Solid grey lines: a damped
persistence forecast. Dashed grey lines: a persistence forecast. A climatological forecast
(i.e. always predicting zero anomaly) is indicated by the thin horizontal line equal to 1.
The thin horizontal dashed line is the level at which the error variance reaches 50% of the
climatological variance, an approximate level of significant predictability (Griffies and Bryan
1997). In the bottom right panel the solid black line does not start at zero as MOIGCM is
not perfectly reconstructed from our PC basis. There is no perfect linear model for this
forecast. The small black points in this panel show results from Collins and Sinha (2003)
using ‘perfect model’ experiments.
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Fig. 4. Root mean square (rms) errors, relative to a climatological forecast, for forecasts of
quantities as labelled. Solid black lines: using the linear propagator, Pτ , for forecasts of all
1100 years, without cross-validation. Dashed black lines: using the linear propagator, Pτ , for
forecasts of just the last 100 years. Solid grey lines: using a linear propagator estimated using
just the first 1000 years, for forecasts of the independent last 100 years. A climatological
forecast (i.e. always predicting zero anomaly) is indicated by the thin horizontal line equal
to 1. The thin horizontal dashed line is the level at which the error variance reaches 50%
of the climatological variance, an approximate level of significant predictability (Griffies and
Bryan 1997).
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Fig. 5. Overturning strength: The ‘true’ MOI index (MOIGCM, dashed grey line) is shown
with the reconstructed MOI index (solid grey line). The correlation between these two
quantities is 0.90. Forecasts using the linear propagator, Pτ (black lines), are shown for lead
times of up to 50 years, plotted at 50 year intervals.
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Fig. 6. Forecast skill, shown by anomaly correlations of annual mean Atlantic SSTs from the
forecasts and from the GCM, at lead times of 1 year (left column) and 10 years (right column)
for the LIM (top row), and damped persistence (middle row) forecasts. The bottom row
shows the difference in percentage of variance explained between the two forecasts. The linear
inverse model beats damped persistence over most of the Atlantic, and shows significant skill
at a lead time of 10 years. The grey contours in the bottom left panel show the regions where
damped persistence beats the LIM by more than 15%.
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Fig. 7. The maximum amplification curves for the variance norm, retaining various numbers
of EOFs as labelled. The largest transient amplification, using 30 EOFs, is a factor of ∼10, at
a lead time of 36 years. The thin black line shows the evolution of this maximally amplifying
mode.
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Fig. 8. The evolution of the maximally amplifying eigenvector under the variance norm,
integrated from the surface to a depth of 1800m. Left column: temperature (in K). Middle
column: salinity (in psu), multiplied by five. Right column: density (in kgm−3), multiplied
by seven. Top row: initial state. Second row: evolved state after 10 years. Third row:
evolved state after 22 years. Bottom row: maximally amplified state after 36 years. The
colour scale is the same in every panel and is arbitrary. White regions represent small
anomalies of either sign.
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for temperature and salinity integrated over latitude bands as labelled. Dashed lines are
the optimal initial perturbation, and the solid lines are the final state (after 36 years). The
scales are arbitrary representations in the correct units.
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Fig. 10. The evolution of MOIrecon during non-normal amplification. Each curve shows the
temporal evolution of the maximally amplifying mode for the labelled norm, with maximum
amplification times as indicated.
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Fig. 11. The initial conditions for maximal amplification over 10 years for each norm,
integrated from the surface to a depth of 1800m. Left column: temperature (in K). Right
column: salinity (in psu), multiplied by five. The colour scale is the same in every panel and
is arbitrary. White regions represent small anomalies of either sign.
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Fig. 12. Scatter plots of the projection of the state vector, x(t), onto the optimal initial
condition, x0(τ), against the projection of x(t + τ) onto the maximally amplified state,
Pτx0(τ), for all t, and fixed τ = 10 years. The dashed line in each panel has a slope of unity.
(a) Using the variance norm. (b) Using the quadratic norm. (c) Using the SST norm. (d)
Using the MOC norm.
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Fig. 13. Power spectra for the leading five principal components. Solid lines: for 1100 years
of the GCM data, x. Dashed lines: ensemble mean of 50 separate segments of 1100 years
from a forward model with 95% confidence limits shaded grey.
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Fig. 14. Power spectra for SST, SSS, temperature and salinity at a depth of 1500m, and
the MOI. Solid lines: for 1100 years of the GCM data, x. Dashed lines: ensemble mean
of 50 separate segments of 1100 years from a forward model with 95% confidence limits
shaded grey. In the MOI panel the thick solid line represents MOIrecon and the thin solid
line represents MOIGCM.
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Table 1. Summary of norms used in the analysis.

Type of Initial norm Final norm Maximum amplification
norm kernel, L kernel, N time [years] factor

quadratic I I 35 5.0
variance NV NV 36 10.2

SST NSST NSST 5 32.0
MOC NV NMOC 10 1.4
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Table 2. Properties of the Empirical Normal Modes (ENMs) of the 30 EOF system.

Mode number Period (years) Decay time (years)
j 2π/ωj −1/σj

1 ∞ 16.3
2 ∞ 19.6

3/4 4.4 2.8
5/6 9.0 5.6
7/8 10.5 8.2
9/10 14.0 9.9
11/12 19.1 24.1
13/14 27.4 18.4
15/16 30.6 15.3
17/18 50.7 38.7
19/20 74.8 31.2
21/22 75.8 11.3
23/24 134.0 72.2
25/26 157.3 135.1
27/28 185.0 77.3
29/30 414.7 64.2
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