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ABSTRACT5

Decadal climate predictions exhibit large biases, which are often subtracted and forgotten.6

However, understanding the causes of bias is essential to guide efforts to improve prediction7

systems, and may offer additional benefits. Here we investigate the origins of biases in decadal8

predictions, and whether analysis of these biases might provide useful information. We focus9

especially on the lead time dependent bias tendency. We initially develop a ’toy’ model of10

a prediction system and use it to show that there are several distinct contributions to bias11

tendency. Contributions from sampling of internal variability and a start-time dependent12

forcing bias can be estimated and removed to obtain a much improved estimate of the true13

bias tendency, which can provide information about errors in the underlying model and/or14

errors in the specification of forcings. We argue that it is the true bias tendency, not the15

total bias tendency, that should be used to adjust decadal forecasts.16

We apply the methods developed to decadal hindcasts of global mean temperature made17

using the HadCM3 climate model, and find that this model exhibits a small positive bias18

tendency in the ensemble mean. When considering different model versions we show that the19

true bias tendency is very highly correlated with both the Transient Climate Response (TCR)20

and non-greenhouse gas forcing trends, and can therefore be used to obtain observationally21

constrained estimates of these relevant physical quantities.22

1. Introduction23

Until recently, projections of future climate have been generated by running climate mod-24

els forced by estimates of future natural and anthropogenic (e.g. from greenhouse gases and25

aerosols) radiative forcing. The motivation for decadal climate predictions is to improve26

on these standard projections by using observations to initialise predictable modes of nat-27

ural variability, and by correcting errors in a model’s response to past radiative forcings.28

Producing climate predictions that are initialised using observations of the current climate29

state is now a major field of scientific research (e.g., Smith et al. 2007; Keenlyside et al.30

2008; Pohlmann et al. 2009; Smith et al. 2013). For example, initialised decadal climate31

prediction experiments are a major component of phase 5 of the Coupled Model Intercom-32

parison Project (CMIP5; Meehl et al. 2009; Taylor et al. 2012; Meehl et al. 2013). Decadal33

climate predictions could potentially be of great benefit to society, for example helping to34

inform decisions on adaptation to a changing climate. However, there are many challenges in35

producing forecasts that are useful for adaptation decisions (e.g. Meehl et al. 2009; Oreskes36

et al. 2010).37

One key challenge in producing robust predictions of future climate is to demonstrate an38

ability to make predictions in the past (’hindcasts’). Comparisons between hindcasts and39

past observations offer a wealth of information for assessing the strengths and weaknesses of40
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a prediction system, including information that can guide work to improve the system. Such41

an approach has proved invaluable in weather forecasting (e.g. Ferranti and Viterbo 2006).42

Comparisons may focus on specific case studies (e.g. Robson et al. 2012, Yeager et al. 2012),43

particular regions (e.g. Toniazzo and Woolnough 2013) or on the average behaviour of a44

system over a longer period (e.g. Smith et al. 2007, 2010; van Oldenborgh et al. 2012). A45

particularly important issue for decadal climate predictions is the existence of large biases,46

i.e. systematic differences between hindcasts and observations. Biases may vary with the47

lead time of hindcasts and are often larger than the anomalies that the system is aiming48

to predict. In this situation the current standard approach (e.g. Goddard et al. 2013) is49

to subtract the mean bias from all hindcasts before assessing other aspects of the system50

performance (e.g. RMSE). Such an approach is pragmatic but assumes a linear additivity51

between bias and forced response and ignores many important issues, such as: Why is the52

bias present? Does it provide any useful information? Could it be reduced?53

The aim of this paper is to investigate the first two of these questions in particular,54

initially in the context of an idealised “toy” model, and secondly using results from a real55

decadal prediction system. We focus especially on the growth of bias with lead time, which56

we demonstrate offers valuable information about a prediction system and the underlying57

climate model. We then show further that analysis of biases for different model versions58

can be used to obtain useful information about the real world, in particular new constraints59

on the Transient Climate Response (TCR), which measures the transient sensitivity of the60

climate system to increases in greenhouse gases.61

The structure of the paper is as follows. Section 2 discusses the design of decadal predic-62

tion experiments, and clarifies terminology. Section 3 introduces our toy model of a decadal63

prediction system, explains how the bias can be decomposed into distinct contributions,64

and examines sampling issues. The methodology we develop is then applied to predictions65

of global mean surface air temperature from an operational decadal prediction system in66

Sections 4 and 5. Conclusions and discussion of implications are in Section 6.67

2. Experimental design and terminology68

There are several types of decadal climate prediction experiment discussed in the litera-69

ture. One important issue is the specification of external radiative forcings in the hindcasts.70

The two main choices are:71

• ’Projection’-type - Anthropogenic forcings are assumed to be known, but ’projected’72

natural forcings are used (e.g. see Smith et al. 2007). In this case any volcanic aerosol73

present at the forecast start time is allowed to decay, but no ‘future’ volcanic aerosol74

is used. In addition, the solar cycle is repeated from the previous cycle. This approach75
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attempts to mimic the realistic situation in which there is little knowledge of future76

natural forcing.77

• ’CMIP5’-type - All forcings are assumed to be known. This is the design adopted by78

the CMIP5 protocol (Taylor et al. 2012).79

In addition, hindcasts may be initialised using observations at the forecast start time80

(’Assim’ - because assimilation is used to generate the initial states), or be initialised directly81

from a model state without the use of observations (’NoAssim’).82

The simplest case is arguably the ‘NoAssim CMIP5’ type, corresponding to traditional83

so-called “transient” climate model simulations. However, the ensemble sizes for these sim-84

ulations tend to be small (fewer than 5), which - as we will show - limits the robustness of85

the bias analysis. In this study we focus on the ’NoAssim projection’ type of hindcasts, as86

performed by the UK Met Office (see Smith et al. 2007, hereafter S07). The Met Office used87

this approach to produce a very large ensemble of hindcasts with different versions of the88

same GCM (Smith et al. 2010), which proves to be a very useful resource for our analysis.89

However, in examining these hindcasts we must take into account the difference between the90

natural forcings used to force the model and those that occurred in the real world.91

The reason that we focus on ’NoAssim’-type experiments is that understanding the biases92

in these experiments is a pre-requisite for understanding the biases in ’Assim’-type experi-93

ments. We demonstrate that the bias derived from ’NoAssim’ experiments provides useful94

information, and we will be investigating applications to ’Assim’-type experiments in future95

work.96

3. Estimating bias in a toy model of a decadal predic-97

tion system98

We first build a toy model of a decadal prediction system to examine some of the issues99

involved with estimating the bias of a real prediction system.100

a. Bias of hindcasts101

Pseudo-observations, O(t), are generated by assuming an externally forced linear trend102

in time, with added red noise,103

O(t) = Õ + αt + ǫ(t), (1)

where t is time, Õ is the ‘observed’ climatology, α is the slope of the linear trend, and the104

red noise is denoted by ǫ(t).105
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We first assume that the ensemble mean of our pseudo-hindcasts (N) for the same quan-106

tity can be generally represented, for start time T and lead time τ , by107

N(T, τ) = Ñ + (T + τ)γ (2)

where Ñ is the model climatology and γ is the modelled linear response to the external forc-108

ing. If α 6= γ then the climate model would produce a different trend from the observations109

and therefore be biased. This could either be because the model is in error, or because there110

is an error in the specification of the forcing (see later). This equation for N assumes that111

we have an infinite ensemble of hindcasts, as there is no noise in the ensemble mean. This112

assumption will be relaxed later. Note that these pseudo-hindcasts are only attempting to113

predict the forced response, and not the internal variability component.114

The bias (B) of a prediction system is simply the mean error as a function of prediction115

lead time,116

B(τ) =
1

L

L∑

T=1

[N(T, τ) − O(T + τ)] (3)

where L is the number of hindcast start dates and we assume that there is a decadal hindcast117

(τ = 1 to 10 years) started every year between, and including, T = 1 and T = L. Note118

that in an operational system N and O would often represent anomalies from a particular119

reference period. However, our analysis focusses on ‘bias tendency’ (defined below) which is120

independent of the choice of reference period.121

b. Correcting the bias for observed variability122

The estimated bias defined in Eqn. 3 has two contributing factors, namely the true bias123

(if α 6= γ or Ñ 6= Õ) and a bias from an insufficient sampling of the internal variability in124

the observations. Ideally, we would like to correct for this second variability contribution to125

obtain the true bias.126

Following Robson (2010), in the case of an infinite ensemble in a stationary climate127

(α = γ = 0), the bias from Eqn. 3 would be,128

Bstationary(τ) =
1

L

L∑

T=1

[
Ñ − Õ − ǫ(t)

]
, (4)

= Ñ − Õ − 1

L

L+τ∑

t=τ

ǫ(t), (5)

= Ñ − Õ + Bobsvar(τ), (6)

where t represents time and Bobsvar(τ) is the mean of the observational anomalies used for129

validation for a particular lead time τ . An important point is that different observations are130
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used for different lead times. Thus Bobsvar(τ) is an estimate of the bias due to the insufficient131

sampling of the observed variability and will tend to zero as L increases leaving the true132

bias, Ñ − Õ.133

For the more realistic case when the climate is not stationary, and there is a trend in the134

observations (α 6= 0) then we can estimate:135

Bobsvar(τ) = − 1

L

L+τ∑

t=τ

detrended[O(t)], (7)

and this is the definition we adopt. In the toy model examples shown here we use a linear136

detrending. When considering the real observations we performed sensitivity tests to explore137

linear and quadratic detrending and the results were very similar (not shown), so assume a138

linear detrending in all that follows.139

A schematic demonstrating Bobsvar for different lead times is shown in Fig. 1 with pseudo-140

observations in black, which include a linear trend and red noise, and some predictions (for141

a non-infinite ensemble) shown in red in each panel. The grey regions indicate the area to142

be integrated to give the value of Bobsvar, which varies with the lead time chosen, and need143

not be zero, as shown in Fig. 1d.144

c. Bias tendency145

In this analysis we generally consider the ‘bias tendency’ (B′) rather than the bias itself,146

i.e. we use the bias relative to the bias for the mean of the first year,147

B′(τ) = B(τ) − B(τ = 1). (8)

This choice is made because we want to consider the growth of bias with lead time, which148

is natural for a prediction system. We do not use τ = 0 to avoid arbitrary assumptions149

about defining climatological periods. Hence, this bias tendency has the desirable property150

of being independent of the choice of climatology.151

Similarly to the bias, the observed variability correction is also made into a tendency,152

B′

obsvar(τ) = Bobsvar(τ) − Bobsvar(τ = 1), (9)

as shown in Fig. 1e, and an estimate of the underlying true bias tendency (B′

true) is then,153

B′

true(τ) = B′(τ) − B′

obsvar(τ). (10)

The nature of the bias growth may give valuable information about the physical processes154

which cause prediction error, potentially allowing particular parameterisations to be targeted155

for improvement, for example.156
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d. Estimating the bias tendency in the toy hindcasts157

To test the bias tendency estimates described above, we first consider whether we can158

estimate the true bias tendency of the toy model using various numbers of hindcast start159

dates. Here, we generally assume that α = 0.016K/year and that the red noise in Eqn. 1 (ǫ)160

has an AR(1) parameter, β = 0.5, and total variance, σ2
ǫ

= 0.01K. These values are chosen to161

roughly simulate observed annual global mean surface air temperature (SAT) observations162

since 1850 (Brohan et al. 2006), although the conclusions are insensitive to the exact choices.163

We pick γ = 0.020K/year, i.e. the toy hindcasts are positively biased by 25%, and retain the164

infinite ensemble assumption for now.165

An example of such a hindcast system is shown in Fig. 2a for decadal hindcasts started166

every year for L = 20 years, where the black line represents the observations, the solid blue167

line is the true forced trend (α), the dashed blue line is a linear fit to the observations used168

in the estimation of B′

obsvar, and the red lines represent the pseudo-hindcasts (N) which are169

identical because of the infinite ensemble assumption.170

In Fig. 2b, we show estimates of the bias tendency for the situation in Fig. 2a. The solid171

blue line uses the definition of uncorrected bias tendency (Eqn. 8), and the dashed blue line172

corrects for the observed variability using Eqn. 10. Note that the dashed blue line does not173

match the true bias (grey shading) because the estimated trend from the observations is174

not correct, i.e. the estimate of B′

obsvar is not exact. If the true forced trend is used in the175

estimation of B′

obsvar then the true bias tendency is recovered (black line).176

We next simulate 1000 realisations of the pseudo-observations and hindcast sets. Bias177

tendency estimates for 10 examples of these realisations are shown in Fig. 2c. With these178

20 start dates there is a wide range of estimated bias tendencies. For different numbers of179

hindcast start dates (L), Fig. 3 demonstrates that correcting the bias tendency using B′

obsvar180

(dashed line) reduces the error in the estimates of bias tendency at a lead time of 10 years181

compared to using the uncorrected bias tendency (solid line). Both estimators of the bias182

tendency are themselves unbiased, i.e. the mean over all realisations equals the true bias183

tendency (not shown). The spread in bias tendency estimates decreases with the number184

of start dates as more observations allow more accurate estimates. The observed variability185

correction also becomes smaller with more start dates. When analysing the operational186

NoAssim hindcasts in Section 4 we generally use 40 start dates, so the spread is around half187

as large as suggested in Fig. 2c.188

For the particular set of toy model parameters chosen here, we see that the expected error189

in the bias tendency estimate becomes smaller than the bias itself (grey line in Fig. 3), i.e.190

the sign of the true bias tendency could be detected, for around L = 15 − 20 hindcast start191

dates. For fewer hindcasts, the uncertainty in the bias estimates does not allow a detection,192

with the implication for ensemble design that more start dates are required. If the bias is193
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uncorrected then more start dates are required to detect the bias.194

e. Forcing bias and consistent verification times195

So far we have assumed that the radiative forcing that is causing a warming or cooling196

trend has been correctly specified and so any bias tendency is due to errors in the model197

response to this forcing. However, there are two types of forcing bias which could make198

this assumption invalid, namely start-time independent and start-time dependent bias. The199

’CMIP5’ design discussed in Section 2 results in start-time independent forcing biases because200

all hindcasts see the same forcing at the same date. However, for the ’Projection’ design201

this is not the case: hindcasts started from different dates may see different forcings. For202

example, a hindcast started in 1989 would not include any volcanic aerosol from the Mount203

Pinatubo eruption in 1991, whereas a hindcast started in 1992 would. Thus there is a start-204

time dependent forcing bias. S07 noted that this type of forcing bias makes a significant205

contribution to the bias of a set of hindcasts. They attempted to remove it, somewhat206

arbitrarily, by excluding years just after volcanic eruptions from the estimation of the bias.207

Fortunately, a further correction is available to account for this start-time dependent bias.208

In deriving, B from Eqn. 3 we chose to use all possible combinations of start dates and209

verification times. However, an alternative is to use a ‘consistent’ set of verification times,210

which only includes years where all lead times, τ , can be simultaneously assessed, i.e. the211

same observation can be used to assess the bias at all lead times. In the schematic of Fig. 1212

these times are shown by the range of the blue bars, i.e. years 11-21 in this example, as year213

11 is the earliest time that a 10 year lead time forecast can be verified (along with forecasts214

for lead times of 1-9 years), and year 21 is the last time that a 1 year lead time can be215

verified (along with forecasts for lead times of 2-10 years).216

Using these consistent verification times, assuming there is no start time dependent217

forcing bias and an infinite ensemble, and generalizing from Eqn. 3, the bias becomes,218

Bconsis(τ) =
1

L − τmax + 1

L+1∑

t=1+τmax

[N(T, τ) − O(t)] , (11)

=
1

L − τmax + 1

L+1∑

t=1+τmax

[N(t) − O(t)] , (12)

= A, (13)

where τmax is the largest lead time to be considered. Crucially, for this particular choice219

of verification times, all the terms on the right hand side of Eqn. 12 are independent of220

lead time, because N(t) is the same for all lead times and B′

obsvar is zero for this choice of221

verification times (Fig. 1). In this instance, Bconsis(τ) is a constant (A) with lead time, and222
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therefore, the bias tendency using consistent verification times is,223

B′

consis(τ) = Bconsis(τ) − Bconsis(1), (14)

= 0. (15)

Hence, in the absence of a start-time dependent forcing bias, B′

consis is exactly zero (assuming224

an infinite ensemble).225

To test the impact of a start-time dependent forcing bias in our toy model, we generalise226

Eqn. 1 by adding a volcanic eruption into the pseudo-observations, within the consistent227

validation time period, of the form,228

V (ξ) = 0.2 exp(−ξ) (16)

where V is the temperature response to a volcanic eruption, which reduces over time (ξ,229

measured in years) with an exponential decay timescale of 1 year, from a peak impact of230

0.2K. We also assume that the hindcasts also include this impact, but only after the eruption231

has occurred.232

Repeating our toy hindcasts (Fig. 4), still assuming an infinite ensemble, demonstrates233

that the measured bias tendency (blue) is over-estimated when compared to the true bias234

tendency (dark grey), because the bias tendency due to the volcanic eruption is non-zero235

(light grey). B′

consis is shown by the red line in Fig. 4b, which matches the forcing bias236

tendency (light grey) as expected.237

Note especially that to estimate B′

consis from the data there is no need to assume any238

functional form for the forcing bias. Therefore, we can correct for the start-time dependent239

forcing bias by estimating the bias tendency using all verification times, and subtracting240

off the bias tendency estimated using consistent verification times (B′

consis). Generalising241

Eqn. 10,242

B′

true(τ) = B′(τ) − B′

obsvar(τ) − B′

consis(τ). (17)

The green lines in Fig. 4b are an example of such an estimate using the bias tendency243

corrected only by the consistent verification times (solid) and using Eqn. 17 (dashed). Below244

we will demonstrate that it is necessary to remove the forcing bias in this way to obtain a245

robust estimate of the true bias tendency, which is the key quantity of interest.246

We note here that there are still two contributions to the true bias tendency. The first247

is errors in the underlying climate model; for example, if the sensitivity of the model to248

greenhouse gas forcing is higher or lower than that of the real world, the hindcasts will249

warm too rapidly or too slowly, giving a positive or negative bias tendency. The second250

is (start-time independent) errors in the forcing applied to the model; for example, if the251

negative radiative forcing due to anthropogenic aerosols is lower or higher in the model than252

in the real world, this will also give a positive or negative bias tendency. Correcting the253
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bias tendency using the period of consistent verification times does not deal with the issue254

of forcing errors that may occur outside of the period of consistent verification times, and255

this is discussed further when considering the real observations.256

Finally, it should be noted that estimating the bias tendency using all verification times257

and subtracting off the bias tendency using consistent verification times is not the same as258

estimating the bias tendency using ‘non-consistent’ verification times (not shown).259

f. How many ensemble members are needed?260

As discussed above, we have so far assumed that the toy hindcasts have infinite ensemble261

members. We now relax this assumption to understand how many ensemble members would262

be required to ensure a robust bias tendency estimate.263

For a finite ensemble, our toy model for the predictions is generalized from Eqn. 2 to,264

N(T, τ) = (T + τ)γ + ζ(T, τ) (18)

where ζ is red noise with the same AR1 parameter as the pseudo-observations (β = 0.5)265

and a noise component which depends on M , the number of ensemble members, i.e. σ(ζ) =266

σǫ/
√

M . Note that this definition is equivalent to taking the mean of M different ensemble267

members, each with variance σ2
ǫ
.268

Fig. 5 explores the spread in estimates of the true bias tendency using various values for269

M , making (or not) the different corrections discussed above. This spread is derived from270

100,000 different realisations of the toy model. The colours represent using 20 start dates271

(grey) and 40 start dates (blue). Firstly, the most reliable and accurate estimate of the true272

bias is when all the corrections described above are applied (Fig. 5a). For the other cases,273

the bias estimate itself becomes more biased, or more uncertain (Fig. 5b,c,d).274

In addition, as the number of ensemble members is increased the uncertainty in the bias275

estimates initially decrease, but then stabilise. For M & 8, the expected error in the bias276

remains roughly constant. This analysis suggests that as long as M & 8, then the ensemble is277

effectively infinite for global mean temperature. In addition, to detect the sign of a true bias278

tendency it is far better to increase the number of start years, than to increase the number279

of ensemble members. This is also found to be the case when the variance of the noise is280

doubled to represent a regional mean, rather than a global mean (not shown).281

We note that the mean of the toy model realisations in the fully corrected case does not282

quite match the expected value (black). This is probably due to an interaction between the283

Bconsis and Bobsvar correction terms as Bconsis will also have a variability component, but this284

estimate is still the least biased.285
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4. Estimating the true bias in an operational decadal286

prediction system287

S07 describe the performance of a set of hindcasts made using the HadCM3 global climate288

model (Gordon et al. 2000). Here we analyse a later set of ensembles, termed NoAssimPPE,289

which utilises the same HadCM3 GCM, but with 9 different ‘perturbed physics’ versions290

(Smith et al. 2010). These different PPE versions were chosen to sample a wide range291

of climate sensitivities and ENSO amplitudes (e.g. Murphy et al. 2004; Smith et al. 2010;292

Collins et al. 2011).293

The hindcasts were initialised from model states consistent with the applied radiative294

forcings using start dates once per year from 1961-2001, with one 10 year prediction per model295

version. As in the original S07 hindcasts, the NoAssimPPE hindcasts used the ’Projection’296

approach to specifying external forcings (Section 2).297

a. Start-time dependent forcing bias298

First, we demonstrate the presence of a start-time dependent forcing bias in the NoAs-299

simPPE hindcasts (41 start dates, 9 ensemble members, 1961-2001). Because the hindcasts300

use only information available at the start of the forecast, ‘future’ volcanic eruptions were not301

considered. This produces hindcasts that are biased warm when compared to observations.302

Also, the previous solar cycle is repeated, which is another potential source of bias.303

Fig. 6 shows estimates of the natural forcings (volcanic and solar) used in the transient304

20th century integrations (left) and in the prediction system (middle). The estimates for the305

prediction systems assume an exponential decay rate of the volcanic aerosol present at the306

forecast start time of 1 year and an 11 year solar cycle length. The resulting forcing bias is307

shown in the right column.308

When integrated over all start dates an estimate of the start-time dependent forcing309

bias is produced (bottom right). The magnitude of the bias is dominated by the volcanic310

component and peaks at around 0.45Wm−2 at a lead time of 3 years, subsequently dropping311

to around 0.30Wm−2 at a lead time of 10 years.312

b. Bias tendency estimates in NoAssimPPE313

We now explore the expected error in the bias estimates using the results from analysis of314

the toy model. Fig. 7 shows the expected growth with lead time of the error in the estimated315

bias for NoAssimPPE (grey) where the solid (dashed) grey line indicates the expected error316

using 1 (9) ensemble members. The black line shows the corresponding error for the original317

NoAssim (S07) hindcasts (effectively 20 start dates and 16 ensemble members). The greater318

number of ensemble members in the original NoAssim results in a smaller expected error at319
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short lead times (1-3 years), compared with the single member PPE system. However, the320

larger number of start dates in NoAssimPPE suggests a far smaller error at long lead times321

(5-10 years), even using a single ensemble member. The uncertainty estimates for 5-year322

means (horizontal grey bars) are used below in Section 5.323

We next apply the bias estimate methodology developed using the toy model to annual324

means of global mean surface air temperature from the NoAssimPPE hindcasts (Fig. 8).325

We compare the hindcasts to four observational datasets (HadCRUT4 - Morice et al. 2012,326

GISTEMP - Hansen et al. 2010, NCEP - Kalnay et al. 1996, ERA-40 - Uppala et al. 2005), but327

all give consistent results. Note that the observations used are for 1961-2010, except ERA-40328

which uses 1961-2001. Unless otherwise stated we use HadCRUT4 in all that follows. For329

the NoAssimPPE system, the raw bias tendency estimate (Fig. 8a) suggests that HadCM3330

has a warm bias, which is apparently primarily due to a start-time dependent forcing bias331

(Fig. 8b) rather than an insufficient sampling of the observational variability (Fig. 8c). The332

best estimate for the true bias tendency (Fig. 8d) shows a very slight warm bias of around333

0.02K/decade, which is marginally statistically significant. The interpretation of this true334

bias tendency is discussed in Section 5.335

In addition, we note that the bias is positive over both land and sea (Fig. 8e,f). Both336

the spatial pattern and physical processes responsible for the bias growth will be explored337

in future work.338

The global mean SAT bias tendency associated with the time dependent forcing error339

makes the largest contribution to the SAT total bias tendency (Fig. 8). Smith et al. (2007)340

also recognised the importance of accounting for the bias caused by volcanic eruptions. They341

estimated that the raw bias for NoAssim was around 0.14K/decade (consistent with Fig. 8),342

but they removed the forcing bias by excluding some years following volcanic eruptions. We343

believe that our result is more robust as we are accounting for the forcing bias more explicitly344

and objectively.345

The lead time evolution of the ensemble mean global averaged shortwave radiation (SW)346

bias tendency over the ocean at the top of atmosphere (TOA) (i.e. the forcing error) using347

the consistent verification times is illustrated in Fig. 9a, and shows a rapid increase in348

downward solar radiation in the first 3-4 years to about 0.30 − 0.35Wm−2 and it maintains349

this magnitude afterwards. This estimated forcing error and its lead time evolution are350

consistent with the implied surface heat flux bias tendency from vertically integrated ocean351

heat content (OHC) bias tendency (the implied flux bias tendency is not sensitive to the352

depth chosen for the integration since OHC bias tendency is mostly confined in the top 500353

metres) as shown in Fig. 9b and it is also consistent with the directly estimated forcing354

error associated with volcanic eruptions (Fig. 9c, smoothed from Fig. 6). A caveat with355

using the 1961-2001 start dates for validation is that the Agung volcano in 1963 is before the356
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consistent verification times. We have performed a sensitivity test by excluding the hindcasts357

from 1961, 1962, 1963, and 1964, but this does not significantly affect the results.358

The relative importance of each component of the bias is illustrated in Fig. 10, which359

confirms that the lead time dependent forcing bias dominates. For NoAssimPPE the sam-360

pling correction (orange) is very small for global mean temperature because the number of361

hindcast starts dates is large. Note, however, that this contribution is expected to be larger362

for other variables and smaller regions. These results illustrate clearly the importance of363

decomposing the bias into its different components before interpreting its meaning. Fur-364

thermore, if a bias correction were to be applied to a forecast (rather than a hindcast), we365

suggest it is the underlying true bias tendency that should be used, rather than the raw366

bias tendency derived from the hindcasts, in contrast to some current practices (e.g. Smith367

et al. 2013). We plan to explore the issues surrounding the application of bias corrections368

to forecasts in future work.369

5. Interpretation of the true bias tendency370

a. Role of ocean heat uptake in bias tendency371

The true bias tendency could arise either from start-time independent errors in the forc-372

ings applied to the model (e.g. errors in the specification of anthropogenic aerosols) or from373

errors in the transient sensitivity of the model to such forcings (or both). Errors in the tran-374

sient sensitivity could themselves arise from errors in the representation of atmospheric or375

surface feedbacks and/or from errors in the representation of ocean heat uptake (e.g. Raper376

et al. 2002, Gregory and Forster 2008, Boé et al. 2009). This last factor can be examined377

by considering the bias tendency for global mean ocean heat content (OHC; Figure 11).378

As for surface air temperature the total bias is dominated by the forcing bias. The true379

bias tendency for the surface or top 100m is again positive, and is near zero below a few380

hundred metres. If insufficient ocean heat uptake were the cause of the warming bias at the381

surface we would expect to see a cooling bias subsurface. The fact that we don’t see such a382

feature suggests that ocean heat uptake is not the reason for the warming bias in surface air383

temperature.384

Further insights into the true bias tendency may be obtained by considering the biases385

associated with individual model versions (as distinct from the ensemble mean considered386

previously). Figure 12 shows that, within the PPE ensemble, there is a high positive cor-387

relation between the true bias tendency for OHC and that for SAT. This correlation again388

implies that variations in ocean heat uptake are not the primary cause of variations in SAT389

bias in NoAssim PPE.390
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b. Relating climate sensitivity, forcing trends and bias tendency391

Next we consider the possible causes of the different true bias tendencies in the various392

PPE versions.393

The first possible explanation is that the true bias tendency is directly related to the394

climate sensitivity of the model version (Figure 13a). Values for the Transient Climate395

Response (TCR) were obtained for each model version through separate specific experiments396

carried out at the UK Met Office. The HadCM3 NoAssim PPE model versions have a TCR397

range of 1.6-2.7K with a mean of 2.1K, which may be compared with the likely range of 1.0-398

2.5K from IPCC AR5 (Stocker et al. 2013). Figure 13a shows a linear relationship between399

the true bias tendency for global mean SAT and TCR, in which the most sensitive models give400

the largest warming bias tendency, with a correlation coefficient of 0.89. This high correlation401

suggests that the true bias tendency may be providing very useful information about the402

sensitivity of the underlying model. The correlation between TCR and the uncorrected bias403

tendency is 0.75, so the corrections have also improved this relationship. In addition, since404

a perfect model should yield a true bias tendency of zero, we can use this relationship to405

estimate a likely range for TCR.406

A Monte-Carlo approach is used to fit regression lines to the data by perturbing the407

true bias tendency of each model version, taking into account the bias tendency uncertainty408

(0.016K, calculated from the toy model). The distribution of the intercepts of these lines with409

the y = 0 line (corresponding to zero true bias tendency) then provides an observationally410

constrained range for TCR. We find that the 5−95% range for TCR constrained in this way411

is 1.4-1.8K with a median of 1.6K using HadCRUT4 (Figure 13c). This range is considerably412

narrower than the corresponding likely range from IPCC AR5 of 1.0-2.5K, and observation-413

based ranges of 1.3-2.3K (Gregory and Forster 2008) and 0.9-2.0K (Otto et al. 2013). With414

doubled estimates for the uncertainty in the true bias tendency the range from this study415

becomes 0.9-1.9K. The standard version of HadCM3 has a TCR of 2.0K (Randall et al.416

2007).417

The constrained ranges of TCR for different observational data sets, are summarized in418

Table 1. Results indicate that the median and the ranges of the constrained TCR are only419

slightly sensitive to the data that is used to validate the hindcasts, with the other datasets420

producing values of TCR about 0.15K higher. The reduced spread of TCR is a robust421

feature and so the underlying SAT true bias tendency from the decadal climate hindcasts422

could be used to constrain the model TCR, complementing other approaches proposed in the423

literature (e.g. Allen et al. 2000, Stott and Forest 2007, Gregory and Forster 2008, Knutti424

and Tomassini 2008, Murphy 2010, Tett et al. 2013). It is also interesting to note that425

having a range of models with widely different TCR has proved very useful in this analysis,426

especially to constrain the upper end of our TCR ranges.427
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However, there is another possible explanation for the true bias tendency differences.428

When considering the role of TCR we have assumed that the forcing trends in each PPE429

version are the same. However, Harris et al. (2013) recently demonstrated that the different430

PPE versions of HadCM3 have different non-greenhouse gas (GHG) forcing, likely due to431

the different interaction of aerosols with low clouds. The relationship is such that versions432

of HadCM3 with a low TCR, and negative bias tendency, also have a cooling trend from433

non-GHG forcing from 1961-2010, and this could potentially contribute to the relationship434

between TCR and true bias tendency.435

Figure 13b relates the true bias tendency to the non-GHG forcing trends for the different436

PPE model versions. The forcing data are taken from Harris et al. (2013), and linear trends437

have been fitted from 1961-2010, excluding years with, and shortly after, volcanic eruptions.438

This provides an estimate of the non-GHG forcing trends and the observed relationship can439

be used to produce an improved constraint on the non-GHG forcing trend, which is found440

to be negative, unlike in the majority of the model versions.441

There are therefore two possible causes for the relationship between perturbed parameter442

versions of HadCM3 and the true bias tendency, i.e. it is clear that the parameter perturba-443

tions affect both the TCR and the non-GHG forcing trends and that both factors influence444

the true bias tendency. Trying to separate the two effects is beyond the scope of this paper,445

but further work will use the spatial patterns, and other climate variables, to further under-446

stand the causes of the bias tendencies. However, we note that if both factors are playing a447

role then the constrained ranges for TCR and non-GHG forcing would broaden.448

An additional related caveat is that if there is a systematic error (i.e. common to all449

model versions) in the trends in the radiative forcing applied to the model then this would450

also affect the true bias tendency. For example, if the forcing trends were systematically451

too large then the true bias tendency would also be too large, and vice versa. The result452

of any such bias would be to displace all the data in Figures 13a,b vertically along the true453

bias tendency axis. Such a displacement would shift the constrained ranges but would not454

broaden the distributions. This caveat should be kept in mind when interpreting our results.455

One possible approach to addressing these various caveats would be a multi-model study456

where the forcings are likely to be different for each model, and this is planned further work.457

6. Conclusions and discussion458

We have explored the estimation of bias in a toy model of a decadal prediction system,459

and applied the techniques developed to analyse the bias of operational predictions of global460

mean temperature. We have focused on hindcasts initialised from model states, rather than461

from observations, and examined the bias tendency in particular. The main findings can be462
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summarised as follows:463

• The total bias tendency can be separated into several components, namely: a contri-464

bution from sampling uncertainty due to internal variability, a start-time dependent465

forcing bias tendency, and the true bias tendency.466

• We have shown how the contributions from sampling uncertainty and start-time de-467

pendent forcing bias can be estimated, and removed, to give a better (lower variance468

and less biased) estimate of the true bias tendency. We argue that it is the true bias469

tendency, not the total bias tendency, that should be used to adjust decadal forecasts.470

• The true bias tendency is attributable to: 1) errors in the sensitivity of the underlying471

model to forcing, and/or 2) start-time independent errors in the specification of forcing472

(e.g. errors in the specification of anthropogenic aerosols).473

• To improve estimates of bias tendencies, more hindcast start dates are more beneficial474

than more ensemble members.475

• The UK Met Office NoAssim PPE prediction system exhibits, in the ensemble mean, a476

small positive true bias tendency in hindcasts of global mean surface air temperature,477

and this is marginally statistically significant. We have demonstrated that this bias is478

not attributable to insufficient ocean heat uptake.479

• The different true bias tendencies in global mean surface air temperature in the various480

PPE versions can be used to constrain relevant physical properties of the models, such481

as the TCR and non-GHG forcing trends.482

There are a number of caveats to the findings above. In the toy model, we have assumed483

linear trends. However, we do not believe that this compromises the decomposition of the484

bias tendency into its different terms. Secondly, we assumed that the toy model has the485

same variability properties as the toy observations. This is unlikely to hold perfectly in486

an operational setting as there is a broad spread in simulated variability amongst different487

models (Hawkins and Sutton 2012) and even amongst the different PPE versions of HadCM3488

(Ho et al. 2013), but this would only change the number of start dates and ensemble members489

required to reliably estimate the bias. Most importantly, we have assumed the radiative490

forcings imposed in the decadal hindcasts are correct, as discussed in Section 5.491

In the decadal hindcast experiments for CMIP5, the standard start dates are every 5492

years (Meehl et al. 2009; Taylor et al. 2012). In this situation there is no way of estimating493

the consistent bias on annual timescales. Therefore, any lead time dependent errors in494

the forcing cannot be removed. However, in the ‘Tier 1’ CMIP5 predictions, the complete495
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volcanic and solar forcings are assumed known, so there should be little start-time dependent496

forcing bias. In other suggested experiments this is not the case. We suggest that the design497

of future decadal prediction experiments should consider start dates every year to allow for498

any start-time dependent forcing bias to be removed.499

We believe that the analysis of bias tendencies has considerable potential to provide500

further insights into climate models and the real climate system. We note that Masson501

and Knutti (2013) suggest that perturbed-physics ensembles and multi-model ensembles can502

behave differently and show opposite emergent constraints so it would be valuable to repeat503

this analysis using a wider range of operational prediction systems.504

Beyond the global means considered in this paper there is a great deal of information505

in the spatial patterns of bias growth for a range of variables, and we have begun work506

to analyse these patterns. Lastly, there is an obvious need to examine how the growth of507

biases in a system initialised from model states is related to the growth of biases in a system508

initialised from observational states. This work involves many challenges but is essential for509

the development of decadal predictions.510
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1 The 5-95% ranges and medians (in brackets) of the original TCR (K) and the630

bias constrained values using a Monte-Carlo approach of linear fits to TCR631

against different observations. 22632
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Table 1. The 5-95% ranges and medians (in brackets) of the original TCR (K) and the
bias constrained values using a Monte-Carlo approach of linear fits to TCR against different
observations.

TCR
Original 1.61-2.64 (2.17)

Constrained ranges
ERA40 1.65-1.99 (1.82)
NCEP 1.59-1.91 (1.75)
GISS 1.61-1.93 (1.77)

HadCRUT4 1.45-1.83 (1.64)
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List of Figures633

1 A schematic illustrating the definition of Bobsvar (Eqn. 7) and consistent verifi-634

cation times (Section 2e). (a-c) Black lines show pseudo-observations, the red635

lines show pseudo-predictions (with noise) for three lead times (τ) as labelled,636

and the grey regions indicate the area integrated in the definition of Bobsvar.637

The blue bars indicate the range of times which are considered ‘consistent’,638

i.e. where all lead times can be simultaneously assessed. (d) Bobsvar for all639

verification times (black) and consistent verification times (blue). (e) Same640

as (d) for B′

obsvar. 27641

2 (a) Example of a simple pseudo-prediction system, including observations642

(black), predictions (red), the true forced trend (solid blue) and estimated643

forced trend (dashed blue). (b) The bias tendency estimates for the predic-644

tions in (a), showing the true bias tendency (dark grey), the raw bias tendency645

estimate (solid blue), the bias tendency corrected using observed variability646

(Bobsvar) for the cases when the forced trend is known (black) and unknown647

(dashed blue). (c) 10 examples of the bias estimates in (b) with different648

realisations of the observations. 28649

3 The spread in 1000 realisations of the bias tendency estimates, an example of650

which is shown in Fig. 2, for the raw bias tendency (solid black) and corrected651

bias tendency (dashed black) at a lead time of 10 years. The magnitude of652

the true bias is shown in grey, indicating that, for this choice of toy model653

parameters, the bias could be detected with L ≈ 16 (20) hindcast start dates654

if the correction is made (or not). 29655
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4 (a) Example of a pseudo-prediction system with a lead time dependent bias,656

including observations (black), hindcasts (red), the true forced trend (solid657

blue) and estimated forced trend (dashed blue), including a mock volcanic658

eruption. (b) The bias tendency estimates for the predictions in (a), showing659

the true bias tendency (dark grey), true forcing bias tendency (light grey),660

the raw bias tendency estimates (blue), the bias tendency using consistent661

verification times (red) and the bias tendency estimates corrected using the662

consistent bias tendency (green). The dashed blue and green lines are cor-663

rected using B′

obsvar. 30664

5 Spread in bias tendency estimates at a lead time of 10 years, as a function665

of the number of ensemble members considered, for (a) fully corrected bias666

estimate, (b) no observed variability correction, (c) no lead time dependent667

forcing bias correction, and (d) the raw bias. 31668

6 An estimate of the start-time dependent forcing bias in the NoAssim predic-669

tion system (Smith et al. 2010). The left column shows the forcing estimates670

used in the transient integrations, the middle column shows the estimated671

forcing used in NoAssimPPE, and the right column shows the difference. The672

eruptions of Agung, El Chichon and Pinatubo are the main cause of the bias. 32673

7 Toy model estimates for the error in true bias tendency estimates for the hind-674

cast setup of two operational prediction systems, namely NoAssim1 (Smith675

et al. 2007) and NoAssim PPE (Smith et al. 2010). NoAssim1 uses 20 years of676

hindcasts, with an effective ensemble size of 16 members (black line). NoAs-677

sim PPE uses 40 years of hindcasts with 9 different perturbed physics versions678

of the model, each with a single member. These can be considered as inde-679

pendent single member ensembles (solid grey) or as a 9-member ensemble680

(dashed grey). The horizontal error bars indicate the errors for 5 year mean681

predictions for NoAssimPPE (single members). 33682

24



8 Bias tendency estimates (K) for global mean surface air temperature using683

NoAssim PPE. Different colours represent different observational datasets.684

(a) Raw bias. (b) Consistent verification times bias which is an estimate of685

the start-time dependent forcing bias. (c) Raw bias corrected by obsvar. (d)686

The true bias estimate, which is (c)-(b). The error ranges in (d) are derived687

from the toy model (Fig. 7) and are shown relative to the ERA-40 results. 34688

9 Time evolution of ensemble mean (a) true bias tendency (Wm−2) in shortwave689

radiation at the top of atmosphere (TOA) of HadCM3 NoAssim PPE hind-690

casts for the period 1961-2001 against ERA-40 data set, (b) implied surface691

heat flux bias tendency (Wm−2) from integrated ocean heat content (OHC)692

bias for top 1500 metres against the Met Office ocean analysis and (c) esti-693

mated global mean error (Wm−2) associated with volcanic forcing in hindcasts. 35694

10 The components of the total bias tendency for NoAssimPPE against Had-695

CRUT4 data. The total bias tendency (black) is dominated by the lead-time696

dependent forcing bias (green). The magnitude of the forcing bias is qualita-697

tively consistent with the magnitude of the forcing errors (Fig. 6). 36698

11 Time evolutions of ensemble mean bias tendencies (K) for ocean temperature699

at 5m and ocean heat content (top 100m and top 500m) of HadCM3 NoAs-700

sim PPE hindcasts for the period 1961-2010 against Met Office ocean analysis701

data. (a) using all verification times (1961-2010), (b), using consistent verifi-702

cation times (1971-2001), (c) true bias tendency with linear trend removed in703

the analysis before calculating bias tendency associated with observed vari-704

ability. (d) Time evolution of ensemble mean true bias tendency (K) as a705

function of depth for global ocean temperature for HadCM3 NoAssim PPE706

hindcasts for the period 1961-2010 against the Met Office ocean analysis. 37707
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12 Relationships between global mean SAT true bias tendencies (K) (against708

HadCRUT4 data) and global mean OHC (top 1000m) bias tendencies (against709

the Met Office ocean analysis) for 9 PPE model versions. (a) average for lead710

years 1-5, and (b) average for lead years 6-10. 38711

13 Relationships between the lead years 6-10 averaged global mean SAT true712

bias tendencies (K) against HadCRUT4 data for each version of PPE hind-713

casts for (a) TCR and (b) non-GHG aerosol forcing trend, using 9 PPE model714

versions. The error bars for bias tendency are based on the toy model (Fig. 7).715

Grey lines are example linear fits to TCR and to the non-GHG aerosol forc-716

ing trend using a Monte-Carlo approach, and the red lines are the best fit.717

The constrained ranges of TCR and the non-GHG aerosol forcing trend are718

shown as black bars assuming a true bias tendency error of 0.016K (solid)719

and 0.032K (dashed). Other ranges for TCR (Stocker et al. 2013,Gregory and720

Forster 2008 - denoted GF08) ranges are also given. (c,d) estimated proba-721

bility distribution functions (PDFs) of unconstrained (blue) and constrained722

(full black and dotted black) TCR and non-GHG aerosol forcing trends. The723

dashed black lines indicate the PDF for doubled uncertainties in the true bias724

tendency. 39725
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Fig. 1. A schematic illustrating the definition of Bobsvar (Eqn. 7) and consistent verification
times (Section 2e). (a-c) Black lines show pseudo-observations, the red lines show pseudo-
predictions (with noise) for three lead times (τ) as labelled, and the grey regions indicate
the area integrated in the definition of Bobsvar. The blue bars indicate the range of times
which are considered ‘consistent’, i.e. where all lead times can be simultaneously assessed.
(d) Bobsvar for all verification times (black) and consistent verification times (blue). (e) Same
as (d) for B′

obsvar.
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Fig. 2. (a) Example of a simple pseudo-prediction system, including observations (black),
predictions (red), the true forced trend (solid blue) and estimated forced trend (dashed blue).
(b) The bias tendency estimates for the predictions in (a), showing the true bias tendency
(dark grey), the raw bias tendency estimate (solid blue), the bias tendency corrected using
observed variability (Bobsvar) for the cases when the forced trend is known (black) and un-
known (dashed blue). (c) 10 examples of the bias estimates in (b) with different realisations
of the observations.
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Fig. 3. The spread in 1000 realisations of the bias tendency estimates, an example of which
is shown in Fig. 2, for the raw bias tendency (solid black) and corrected bias tendency
(dashed black) at a lead time of 10 years. The magnitude of the true bias is shown in grey,
indicating that, for this choice of toy model parameters, the bias could be detected with
L ≈ 16 (20) hindcast start dates if the correction is made (or not).
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Fig. 4. (a) Example of a pseudo-prediction system with a lead time dependent bias, including
observations (black), hindcasts (red), the true forced trend (solid blue) and estimated forced
trend (dashed blue), including a mock volcanic eruption. (b) The bias tendency estimates for
the predictions in (a), showing the true bias tendency (dark grey), true forcing bias tendency
(light grey), the raw bias tendency estimates (blue), the bias tendency using consistent
verification times (red) and the bias tendency estimates corrected using the consistent bias
tendency (green). The dashed blue and green lines are corrected using B′

obsvar.
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Fig. 5. Spread in bias tendency estimates at a lead time of 10 years, as a function of
the number of ensemble members considered, for (a) fully corrected bias estimate, (b) no
observed variability correction, (c) no lead time dependent forcing bias correction, and (d)
the raw bias.
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Fig. 6. An estimate of the start-time dependent forcing bias in the NoAssim prediction
system (Smith et al. 2010). The left column shows the forcing estimates used in the transient
integrations, the middle column shows the estimated forcing used in NoAssimPPE, and the
right column shows the difference. The eruptions of Agung, El Chichon and Pinatubo are
the main cause of the bias.
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Fig. 7. Toy model estimates for the error in true bias tendency estimates for the hindcast
setup of two operational prediction systems, namely NoAssim1 (Smith et al. 2007) and
NoAssim PPE (Smith et al. 2010). NoAssim1 uses 20 years of hindcasts, with an effective
ensemble size of 16 members (black line). NoAssim PPE uses 40 years of hindcasts with 9
different perturbed physics versions of the model, each with a single member. These can be
considered as independent single member ensembles (solid grey) or as a 9-member ensemble
(dashed grey). The horizontal error bars indicate the errors for 5 year mean predictions for
NoAssimPPE (single members).
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Fig. 8. Bias tendency estimates (K) for global mean surface air temperature using NoAssim
PPE. Different colours represent different observational datasets. (a) Raw bias. (b) Con-
sistent verification times bias which is an estimate of the start-time dependent forcing bias.
(c) Raw bias corrected by obsvar. (d) The true bias estimate, which is (c)-(b). The error
ranges in (d) are derived from the toy model (Fig. 7) and are shown relative to the ERA-40
results.
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 (a) TOA SW bias, consistent times (sea)
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Fig. 9. Time evolution of ensemble mean (a) true bias tendency (Wm−2) in shortwave
radiation at the top of atmosphere (TOA) of HadCM3 NoAssim PPE hindcasts for the period
1961-2001 against ERA-40 data set, (b) implied surface heat flux bias tendency (Wm−2) from
integrated ocean heat content (OHC) bias for top 1500 metres against the Met Office ocean
analysis and (c) estimated global mean error (Wm−2) associated with volcanic forcing in
hindcasts.
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Fig. 10. The components of the total bias tendency for NoAssimPPE against HadCRUT4
data. The total bias tendency (black) is dominated by the lead-time dependent forcing bias
(green). The magnitude of the forcing bias is qualitatively consistent with the magnitude of
the forcing errors (Fig. 6).
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 (a) OHC bias, all times 
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Fig. 11. Time evolutions of ensemble mean bias tendencies (K) for ocean temperature at
5m and ocean heat content (top 100m and top 500m) of HadCM3 NoAssim PPE hindcasts
for the period 1961-2010 against Met Office ocean analysis data. (a) using all verification
times (1961-2010), (b), using consistent verification times (1971-2001), (c) true bias tendency
with linear trend removed in the analysis before calculating bias tendency associated with
observed variability. (d) Time evolution of ensemble mean true bias tendency (K) as a
function of depth for global ocean temperature for HadCM3 NoAssim PPE hindcasts for the
period 1961-2010 against the Met Office ocean analysis.
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Fig. 12. Relationships between global mean SAT true bias tendencies (K) (against Had-
CRUT4 data) and global mean OHC (top 1000m) bias tendencies (against the Met Office
ocean analysis) for 9 PPE model versions. (a) average for lead years 1-5, and (b) average
for lead years 6-10.

38



This study (5−95% range)
AR5 (likely)

GF08 (5−95%)

T
ru

e 
bi

as
 te

nd
en

cy
  [

K
]

Transient Climate Response

(a)

1 1.5 2 2.5 3

−0.1

−0.05

0

0.05

0.1

Transient Climate Response  [K]

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n

(c)

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

This study (5−95%)

non−GHG forcing trend (1961−2010)

(b)

−0.015 −0.01 −0.005 0 0.005 0.01

−0.1

−0.05

0

0.05

0.1

non−GHG forcing trend [Wm−2yr−1]

(d)

−0.015 −0.01 −0.005 0 0.005 0.01
0

0.2

0.4

0.6

0.8

1

Fig. 13. Relationships between the lead years 6-10 averaged global mean SAT true bias
tendencies (K) against HadCRUT4 data for each version of PPE hindcasts for (a) TCR and
(b) non-GHG aerosol forcing trend, using 9 PPE model versions. The error bars for bias
tendency are based on the toy model (Fig. 7). Grey lines are example linear fits to TCR
and to the non-GHG aerosol forcing trend using a Monte-Carlo approach, and the red lines
are the best fit. The constrained ranges of TCR and the non-GHG aerosol forcing trend
are shown as black bars assuming a true bias tendency error of 0.016K (solid) and 0.032K
(dashed). Other ranges for TCR (Stocker et al. 2013,Gregory and Forster 2008 - denoted
GF08) ranges are also given. (c,d) estimated probability distribution functions (PDFs) of
unconstrained (blue) and constrained (full black and dotted black) TCR and non-GHG
aerosol forcing trends. The dashed black lines indicate the PDF for doubled uncertainties in
the true bias tendency.
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