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Abstract

Producing projections of future crop yields requires aaréfiought about the
appropriate use of atmosphere-ocean global climate médeGCM) simula-
tions. Here we describe and demonstrate multiple methadsdbbrating’ cli-
mate projections using an ensemble of AOGCM simulationsperect sibling’
framework. Crucially, this type of analysis assesses thi@yabf each calibra-
tion methodology to produce reliable estimates of futummate, which is not
possible just using historical observations. This typepgraach could be more
widely adopted for assessing calibration methodologiesrap modelling. The
calibration methods assessed include the commonly uséd’‘@hange factor)
and ‘nudging’ (bias correction) approaches. We focus oly daaximum tem-
perature in summer over Europe for this idealised case shudythe methods
can be generalised to other variables and other regionscdlifieation methods,
which are relatively easy to implement given appropriateepbations, produce
more robust projections of future daily maximum tempemguand heat stress
than using raw model output. The choice over which calibrathethod to use
will likely depend on the situation, but change factor agottes tend to perform
best in our examples. Finally, we demonstrate that the taiogy due to the
choice of calibration methodology is a significant conttdsuto the total uncer-
tainty in future climate projections for impact studies. ¥démnclude that utilising
a variety of calibration methods on output from a wide rand@GCMs is
essential to produce climate data that will ensure robustralable crop yield
projections.
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1. Introduction

There is a growing need to produce crop yield projectiongternext few
decades to enabldfective adaptation to climate variability and change. It is
known from case studies of the recent past that crop yielelseen to reduce
in particularly hot seasons (e.g., Battisti and Naylor, 20@nd producing es-
timates of the number and extent of such seasons in the fotayeaid crop
breeding or motivate a change in the crops grown in a paatidatation.

Climate information for assessments of future crop yiedthgls to come from
atmosphere-ocean global climate models (AOGCMSs). Theskelmattempt to
represent the full Earth system, and simulate the futuré astsumed scenar-
ios for anthropogenic emissions, producing projectionfutire climate (e.g.,
Meehl et al., 2007). However, there are a number of issueddreas in using
output from AOGCMs to drive crop models. Firstly, the sizetlod AOGCM
grid cell is normally far larger than required for crop magjeheaning that some
form of spatial downscaling is required (e.g., Baron et 2005). Secondly,
the reliability and realism of the daily output from AOGCMseeds to be as-
sessed. The next set of simulations for the Coupled Moderdomparison
Project (CMIP5), which will be examined by the Intergoveental Panel on
Climate Change (IPCC), will make more daily output avakadl higher spatial
resolution than previous assessments, allowing a more r@rapsive assess-
ment. Thirdly, no AOGCM is a perfect representation of theetclimate and
so some ‘calibration’ of the raw climate model output woufpear to be ap-
propriate, where calibration refers to any attempt to makeAOGCM output
more realistic. A wide variety of approaches have been adbjat produce cal-
ibrated data for crop yield projections (see Section 2). tgagenerators are
one such tool; they are often designed specifically with eraqalelling appli-
cations in mind (e.g. Hansen and Ines, 2005; Semenov et(dlQ; 2nes et al.,
2011). Although we will not consider weather generatorsdatly in this study,
the findings have implications for their design.

As an example of these issues, Fig. 1 shows the mean dailymiaxtemper-
ature Tmay) during summer (June-July-August) for the period 19709186m
the E-OBS v5.0 0.50bservations (top left; Haylock et al., 2008) and a range
of AOGCMs over Europe. The AOGCMs haveffdrent spatial resolutions,
but all have larger grid cells than the observational datalavle. It is imme-
diately obvious that many features visible in the obseovetiare not seen in
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the AOGCMs, e.g. the cooler temperatures over the Alps. thaidilly, the
AOGCMs show a wide range of temperatures for the same latatifiering by
more than 6C in some places, and all exhibit a bias from observationshvhi
varies spatially. A crucial point to appreciate is that evfeall the AOGCMs
produce the same future temperatdnange as a response to radiative forcings
such as greenhouse gases, dbsolute value of the temperatures will be very
different. As most crops are known to be sensitive to absolutsltbids in tem-
perature (e.g., Vara Prasad et al., 2000; Schlenker andriRpB609), these bi-
ases are problematic, and require correcting. Additigntde various AOGCMs
produce diferent estimates for the future rate and magnitude of warnaing-
creasing anthropogenic forcing.

As more daily data from both AOGCMs and observations (e.gedar et al.,
2006; Xie et al., 2007; Haylock et al., 2008) becomes avki|adn important
issue is how best to combine output from the wide range of AGIG@ith ob-
servational data to produce robust future climate datavaelefor crop impact
assessment. The motivation for this paper is to addres&elgigjuestion in an
idealised ‘perfect sibling’ framework, where a referengawgation of current
climate is treated as pseudo-observations, and indepesidaniations with dif-
ferent climate models are used to try and predict the futlimeate of the refer-
ence simulation. A related approach was adopted by LobdIBamke (2010) to
test the ability of statistical crop models to reproducedbtput from a process-
based crop model. Importantly, this type of analysis all@akbration meth-
ods to be assessed into the future, something which is nstipesolely using
historical observations and present-day model simulatidrhis aspect is par-
ticularly relevant as Ho et al. (2012) demonstrated thattiwce of calibration
strategy can produceftigrences in future climate which are as large as that be-
tween future emissions scenarios, and are therefore at@detarge source of
uncertainty.

Some commonly used methods for producing climate data fgr nrodels
are briefly discussed in Section 2. The calibration methagiek to be com-
pared in this study are defined in Section 3, and they inclodeesof the com-
monly used methods in making crop projections, such as #l&a’dnethod. The
climate model datasets used, from two structuralijedent AOGCMs, are de-
scribed in Section 4. The calibration validation resulis stnown in Section 5
and we discuss their implications for crop impact assessmedection 6.



2. Existing methods for producing weather data for crop models

A full review of methods for transforming climate model outfor use with
crop models is beyond the scope of this study. However, webr@fly discuss
six general approaches for producing weather data for crogeis to evaluate
future yield under long-term climatic changes:

1. Use the raw daily output from the AOGCMs: this approach thasad-
vantage of being simple, but mayfger from the inherent biases of the
AOGCMs (e.g., Fig. 1). However, for some crop models, it isgble to
use the parameter calibration procedure to successfullgador both the
yield gap and climate model bias at the same time (e.g. Q@boalét al.,
2005b).

2. Coupled crop-climate models: this approach integratesamodel inside
a climate model, ensuring that the interactions and feddblaetween cli-
mate and crops are represented (Osborne et al., 2007, 2009 approach
will also suter from the impact of any climate model biases.

3. Dynamical downscaling: this methodology uses a regiolvalate model
(RCM) to downscale the output from a coarser resolution AM=hd
produce data to drive the crop model (e.g. Challinor et 8D,72. Although
this approach may help reduce regional biases, it will notiahte them
because the boundary conditions on which the RCM relieshgibhiased,
and some further calibration may be necessary (e.g. Arhell,2003).

4. Use a weather generator: this description encompassédearange of
methodologies. In general terms, this approach fits a staisnodel to
(daily) observations, and uses a change in mean climatal{ysusing
monthly means) from one or more AOGCMs with the statisticatiel to
generate daily data in the future (e.g. Mearns et al., 198retal., 2008;
Thornton et al., 2011; Ines et al., 2011; Osborne et al., RO0lAs has the
advantage of being able to produce a large number of possibisations
of future climate, but assumes that the statistical modelpraduce the
correct ranges of variability. The statistical models usedeather gen-
erators are continually being developed, for example tnoparticular
attention to reproducing the observed spatial and tempbiaiacteristics
of rainfall (e.g. Hansen et al., 2006; Baigorria and Jone&02.

5. The ‘delta’ method: although there is no clear single dtafim for this
approach, we will define it as adding a (usually monthly) mefaenge in
climate, derived from AOGCMSs, onto the daily observatidmsmselves,
without the need for a weather generator (e.g., Arnell e28I03; Wilby
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et al., 2004; Diaz-Nieto and Wilby, 2005). This method hasdtvantage
of using the correct distribution of daily data, but onlyoals a single
realisation of future climate and assumes that a representzeriod of

observations is available. Additionally, a simple additshift will not

work for precipitation; a multiplicative shift is usuallglapted.

6. Simple bias correction (or ‘nudging’): this approach sdde diference
between AOGCM and observations in a reference period to uhed
AOGCM data to correct the mean bias (e.g., Huntingford e2805; Ines
and Hansen, 2006). However, this method uses the AOGCMudisbns
of daily climate, aspects of which may also need correcing, the tem-
poral correlation or skewness.

For each approach there are a number of choices to be mads prakess,
e.g. which AOGCMs to use? Should the variability soxdskewness be changed
as well as the mean? How should the AOGCM data be spatiallyndcaved?
There appears to be a need for a systematic comparison ofcfdimese difer-
ent approaches in producing reliable daily climate valiigtfior future periods.
This is possible only in a ‘perfect sibling’ framework, weealata from a set of
simulations are calibrated and verified against an indeperaimate simulation
which is treated as pseudo-observations (or ‘truth’), &lis the framework we
adopt.

We utilise daily output from a range of AOGCMs to analyse sdlifkerent
calibration approaches. Although we do not consider anytiveegenerators di-
rectly we can draw conclusions on the relevant aspects oivaayher generator
which are important. Additionally, the methods we consiciauld also be used
on output from RCMs to try and reduce remaining biases.

3. Calibration methods

The simplest way to use AOGCM output to drive crop models isge the
raw output directly. However, there are biases between D€@M and reality
(Fig. 1) which should be corrected. In addition, the spacdle of AOGCM
output is far larger than usual crop model spatial scalese Me consider four
methods for calibrating daily AOGCM output to produce magalistic projec-
tions, as summarised by Ho et al. (2012). These methodabgiee the advan-
tage that they are independent of the shape of the diswibaficlimate data, and
also downscale the projections to the spatial scale of thidgadole observations.
Although no downscaling occurs in this study because of preeféct sibling’
approach, this downscaling would be achieved when corisgl@bservations
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by simply using the same AOGCM data for multiple observeatimns within
the AOGCM grid cell.

We will only consider daily maximum temperatur€.fy) in summer over
Europe for this case study. To perform a calibration we neqdaily tempera-
ture timeseries from an AOGCM and observations for a pdeidocation for
the same reference period, which we denot@ ky(t) andOrer(t) respectively.
We also need output from the AOGCM for some future period efsame length
as the reference perio@izaw(t). The question remains about how to best com-
bine these three sources of information into the most roprggéections of the
unknown future observation©fyr) to use as input for crop models. We con-
sider two general approaches (Fig. 2), namely bias coomretnd change factor,
with and without including corrections for the variabilias well as the mean
climate. Ho et al. (2012) demonstrate that these variousappes can give dif-
ferences in future calibrated climates which are as largéifeerences between
emission scenarios.

3.1. Bias Correction

The bias correction (BC) methodology (Fig. 2a) correctspimected raw
daily AOGCM output using the éierences in the mean and variability between
observations and the AOGCM in a particular reference pdkiahtingford et al.,
2005; Ines and Hansen, 2006). In the simplest case, whekatlability in ob-
servations and AOGCM is assumed to be the same, the dailyisiaianply
shifted by the mean bias in the reference period,

Tsu(t) = Traw(t) + (@ - E:), (1)

where the time mean is denoted by the bar above a symbol. Howea more
general case when the variability is corrected also (Ho .et28l12; also see
Appendix A),

— O .
Toc(t) = Oper + —2 (TRAW(t) = TREF) , 2
O T,REF

and o1 rer @and oo rer represent the standard deviation of the daily AOGCM
output and observations in the reference period respéctive

3.2. Change Factor

The change factor (CF) methodology (Fig. 2b) instead eslitheobserved
daily variability and changes the mean and daily variancsimsilated by the
AOGCM (e.g. Arnell et al., 2003; Gosling et al., 2009). In Himplest case this
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is the ‘delta method’, where the daily variability is asswitie have the same
magnitude in the future and reference periods, and theaedaaily data is,

ToeL(t) = Orer(t) + (m - E:) . 3)

However, the more general form, considering changes imne€, is (Ho et al.,
2012; also see Appendix A),

- o -
Ter(t) = Traw + —— (OREF(t) - TREF), 4)
O T,REF
andorraw represents the standard deviation of the daily raw modeglutdor
the future period.

3.3. Choice of methods and caveats

The future evolution ofl o« derived from the various methods will be dif-
ferent. Later we will compare results f@FUT using the five diferent methods:
Traw: Tshy Tec, Toer andTee.

Both BC and CF methods transform the mean and daily variamagmbstarts
with the variability from observations and BC starts with OGCM variability.
There is no obvioua priori reason to prefer one of these two approaches over
the other. The DEL and SH methods do not correct or changeahability -
this may be advantageous if the AOGCM does not predict theecbchange in
variability. Also note that the time mean ©§ is the same a$pg,

TSH = TDEL = TRAW - TREF + OREF- (5)

However, it is vital to appreciate that considering the afaility may also be
important for climate impacts such as crops (e.g., SemendvParter, 1995;
Mearns et al., 1996, 1997; Porter and Semenov, 2005), bkdéed mortality
(Gosling et al., 2009) or rurb (e.g. Arnell et al., 2003). Crop damage oc-
curs when temperatures cross certain thresholds (e.q,Rfasad et al., 2000;
Schlenker and Roberts, 2009), and the frequency of suchetertyves depends
critically on the projected daily variability as well as theean. An AOGCM
projection with too high or too low daily variability will mduce diferent num-
bers of days over a set threshold, even if the mean is theatod the above
methodologies will produce fierent realisations of the variability, but note that
the expected varianc¥] for Tcr is the same a$gc,

0'2 0'2
V(Ter) = V(Tee) = == 5. (6)
T,REF
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In deriving the equations above it was assumed that thedrentie climate
variables are far smaller than the variability. This asstiompwill often hold for
regional daily data but necessitates using periods witkiguaificant trends. Here
we will use 30 years of data, choosing 1970-99 as the refeneacod and 2030-
59 as the future period. We also note that variables withangtseasonal cycle
may need to perform calibrations using individual monthkeathan seasons.

It was also assumed above that only the mean and variance dhily dis-
tributions required correcting for BC and CF methods. Hasveit is possible
that, for particular location, thehape of the daily distributions of observations
and model output is not the same (BC), or the shape changks foture (CF).
For example, they might have afidirent skewness. In all that follows here we
assume the distributions do have the same shape, but fedhections can be
made to produce adjusted calibrations if the distributiares significantly dif-
ferent (Ho, 2010). This could be particularly important tbe DEL and BC
methods as they utilise model output daily variability eatthan observed daily
variability. It may also be more important for precipitatjavhich is not consid-
ered here.

4. Climate model data

4.1. The QUMP ensemble

To test various calibration methodologies in producingnelie projections
relevant to crop modelling, we mainly utilise data from a QBNQuantifying
Uncertainty in Model Predictions) ensemble of AOGCM sintiglas (Murphy
et al., 2004; Collins et al., 2006; Collins et al., 2011).

The QUMP ensemble used here consists of #fiédint versions of the HadCM3
AOGCM (Gordon et al., 2000). Each member of the ensembferdionly in
the chosen values of particular uncertain atmospheriampeters which govern
physical processes which are not fully resolved in the mazlgl certain cloud
parameters. This approach produces what is termed a ‘pedyhysics’ ensem-
ble (see Collins et al., 2006 for more details). Each QUMRertide member
has an identical model structure with an atmospheric résolof 25°x3.75.

In this analysis, we use daillj,ax from each ensemble member from 1970-
2059. Historical radiative forcings were used before ye&¥d®@ and the SRES
A1B emissions scenario was followed after year 2000. Theeeble is ideal
for this type of study as all the members produce a reasorddiblate for the
present day (globally) but haveftirent variability characteristics and regional
biases. Also, all the data is on the same spatial grid anditfereht members
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have a wide range of climate sensitivities and produ@emint future climates
(Collins et al., 2006; Collins et al., 2011).

4.2. |IPSL CM4 data

Ultimately, the methods described here will be applied ®historical ob-
servations to produce calibrated projections of futuremmate. However, as cli-
mate models have biases it is important to perform this catitn methodology
assessment with AOGCMs which are affetient as possible, to examine how
well the methodologies deal with large biases. Although@wMP ensemble
members have slightly fierent climates, they are all produced by an AOGCM
with the same structure, which may limit thefdrences between the members
(e.g. Masson and Knutti, 2011).

To overcome this we also utilise daily,,, from a simulation with the IPSL
CM4 AOGCM (Matrti et al., 2010) for the same time period and €sitns sce-
nario as used for QUMP. In addition, we also use the outpuh feodiferent
emissions scenario (SRES A2) in Section 6.2. IPSL CM4 hasra sieilar
atmospheric resolution to HadCM3 but is structurally verffedtent and has a
different mean climate (Fig. 1). In addition, the temporal aratiapvariabil-
ity characteristics are flerent to the QUMP ensemble - in particular, the daily
variance is much smaller for most locations over Europe ¢hotvn). There-
fore performing a QUMP—IPSL comparison is more akin to conmgawith real
observations than comparisons within the QUMP ensembteesalo

5. Evaluation of calibration methods

To demonstrate the use of the calibration methodologiesjseehe perfect
sibling framework, i.e. use reference period data from o@EGEM simula-
tion as pseudo-observations, and attempt to predict theefuvolution of that
simulation using other independent simulations. This @ssds often a useful
first step in examining methodologies for improving projecs, and could be
more widely adopted as a validation test for impact analyses, Raisanen and
Palmer, 2001; de Ela et al., 2002; Lobell and Burke, 2010).

5.1. Cross-validation using QUMP

5.1.1. Future changesin mean summer daily Tmax

We first select the daily summer (JJA),.x data from 1970-1999 from a
particular QUMP member (#4) to act as pseudo-observatitvaf( or reference
simulation), and compare with the same data from two otheM@Unembers
(#8, #13). QUMP8 and QUMP4 proguce a rather similar meanTJJ&in the



period chosen, but QUMP13 is cooler (left column of Fig. 3ne$e particular
ensemble members are selected to demonstrate fieoatit situations where the
AOGCM agrees well, or not, with the reference simulationl thtee of these
QUMP ensemble members disagree on the mean dailyl JdAfor the future
period 2030-2059, denoted as the ‘raw’ or uncalibrated ¢f&eond column of
Fig. 3).

As an assessment of the skill of the methodologies, we caketthe RMSE
difference between the spatial patternsTgfy, from the reference simulation
(QUMP4) and the other two QUMP members, where the mean isiledéd
over the region displayed in Fig. 3. These RMSHatences between the fields,
denoted byE (measured irK) are shown for each time period and calibration
methodology.

The DEL & SH, BC and CF calibrated projectionsf.y, using QUMP4 as
the reference simulation are also shown in Fig. 3. Note thatdata for 2030-
2059 from QUMP4 isot used in the calibration, and is solely used for verifi-
cation. Also, the DEL and SH methods give the same answer bsteation
(Egn. 5).

In all the cases shown the RMS errér, between the calibrated projections
and the reference simulation has decreased significamthy the uncalibrated
case. In fact, more than 95% of all 240 possible combinatdnsing diferent
QUMP members as the reference simulation and uncalibratgzlbproduce
more accurate projections when calibrated for all the nagh{&ig. 4). Overall,
DEL & SH are slightly more accurate for this particular domavith E = 0.89+
0.25K. CF and BC hav& = 1.01 + 0.35K andE = 1.18 + 0.50K respectively.
For raw projectionsk = 3.26 + 1.60K.

Fig. 4 also indicates that models with a smaller bias whenpaoed to the
reference simulation (as indicated Byer) show a smaller bias when calibrated
using all the methodologies, although there is some scattés implies that the
development of better models will lead to an improvementaiibcated projec-
tions, but for models with a small bias, calibration can comaally make the
projections worse.

5.1.2. Future changesin the number of hot days

The above analysis is repeated for the number of summer dageding
30°C (Fig. 5). This particular choice of threshold is motivated Schlenker
and Roberts (2009), who found that maize yields dropped eaykf exposed
to temperatures above around®30 Again, the calibrated projections perform
significantly better than the raw projections (Fig. 5; coneptheE values, now

in units of number of days).
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As found for the mean oOf 5, Nearly all (93%) of all possible QUMP com-
binations produce more accurate projections using theredion methods than
RAW (not shown). For this metric, DEL and CF methods perforastpwith
E = 34+ 13 and 35 + 1.3 days respectively. BC and SH have errors of
E =4.1+15andE = 5.7 + 2.6 days respectively.

Overall, these results with the QUMP ensemble suggest thefuthe DEL
and CF methods is best. The use of SH would not be recommeaildealigh it
vastly outperforms RAW. However, this particular analyss been restricted to
a single AOGCM which could bias the results.

5.2. Cross-validation using IPSL data

Similar analyses can be performed using the IPSL data, witofes from a
very different AOGCM, and is a lot cooler than the QUMP members ovenjigur
(Fig. 3). However, example cross-calibrations of the IP&tadlemonstrate that
it can still be calibrated reasonably well to the QUMP4 refere simulation
(bottom rows of Figs. 3 and 5).

When considering the IPSL data itself as the reference sitoul, and using
all 16 QUMP members, all of SH, DEL and CF methods produce eor ef
E = 1.0+ 0.3K, and BC an error oE = 1.9 + 0.6K. For the number of days
over 30C, CF produces the lowest error Bf= 3.8 + 1.4 days, with the other
methods producing = 4.3+1.4 (DEL), 81+ 1.2 (BC), and 91+ 2.2 (SH) days
respectively.

This test, although restricted to a single other AOGCM, sstgjthat CF and
DEL methods are again the most reliable, with SH and BC metipedforming
less well. Again, all the methods are superior to RAW. Thesarples are
simple demonstrations that calibrating AOGCM (or RCM) auttpould produce
more robust projections of climate variables of interesirtgo modellers.

5.3. Cross-validation for an individual location

Next we consider calibrated projections for an exampletlonan more de-
tail. Specifically, we select a grid point in south-west 5N, 0°E) where
a large fraction of French maize is grown (Monfreda et al0&O0Similar results
are found for other locations (not shown).

Using each QUMP member in turn as the reference simulatrahcalibrat-
ing the independent QUMP simulations, produces a rangesoitsefor mean
summerT o for this particular grid point (Fig. 6). The various caliboa meth-
ods (colours) produce a smaller mean absolute error thag tesiv output (grey).
When considering the number of hot days (Fig. 7), again thieration methods

produce smaller mean absolute errors than RAW (not shown).
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The bottom rows of Figs. 6, 7 show the results using all QUMPnivers,
calibrated using the IPSL CM4 AOGCM data as the referencailsition. In
this example, the calibration methods get close to theeatsr simulation even
though the IPSL CM4 model is far cooler than the QUMP membees this
region. However, the SH method produces too many hot dagbapty because
it does not correct the flerences in variability. A wider cross-AOGCM analysis
would be required to examine this finding further.

5.4. Probabilistic measures of change

Note that projections of crop yields are necessarily proiséib. It is impor-
tant for predictions to be ‘reliable’ - meaning that the peged probabilities are
correct (e.g. Raisanen and Palmer, 2001).

For example, assuming Gaussian distributions, the sterdiaviation of the
QUMP results represents the 68% confidence intervals, amlithwould be
expected that the ‘truth’ would fall withindt uncertainties for around 11 of the
16 QUMP sets, and this is seen (Fig. 6). Further probaldilisiéasures, such
as the normalised errors (Table 1), demonstrate that tlitra@abn methods are
producing fairly reliable statistics of the expected chaimgmean summerax.

The same probabilistic analysis can be performed on the aupnflsummer
days exceeding 3C (Fig. 7). The performance of the calibration methods would
not perhaps be expected to be quite as good, as the numbessadvzr a thresh-
old is far more variable than the mean. In this case, the CF & Biethods do
not produce enough hot days on average and are overconfiddhe (). In other
words, the calibration produces results that are too sinlabably because the
shape of the distribution of daily temperatures may also needemnng (Ho,
2010). BC and SH methods are the most reliable. This higtditite need to
rigorously assess the assumptions underlying the cabirapproach in a vari-
ety of ways.

5.5. Application to a heat stress parameterisation

We now consider how well the calibration methodologies quanf in pre-
dicting the heat stress index from a crop model parametenisawe choose an
example of French maize in the GLAM crop model (see Osborm. €2012).
In this parameterisation the heat stress index for a péaticiay is,

1 if Tmax < Tcrit
daily heat stress index { 1— 322 if Tper> Trax > Teri (7)
0 If Trmax > Tzero
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Table 1: Probabilistic measures of the reliability of ceditedT .« projections for a grid point

in south-west France (48, 0°E), using the QUMP ensemble. The normalised errors (the erro
divided by the uncertainty) for a Gaussian distributionidddhave a mean close to zero and
standard deviation (spread) of close to unity. A spreadtgréhan 1 indicates over-confidence.

Method MeanT nax Number of days over 3C | Heat stress index
Mean error Spread Mean error Spread | Mean error Spread

DEL -0.03 1.16 -0.93 1.76 0.68 3.04

SH -0.03 1.16 0.00 1.09 0.33 1.31

CF 0.05 1.07 -1.21 1.87 -0.24 1.39

BC -0.05 1.18 -0.24 1.00 0.17 1.11

All quantities are normalised and unitless.

For the illustrative examples here we average this daily steass index, which
is the reduction factor for harvest index, during July whiea maize crop is
expected to flower (USDA, 2012), usiAg = 37°C andT,, = 45°C. Note
that 1 is no &ect on yield in this scheme, opposite to a similar scheme used
Teixeira et al. (2012).

Fig. 8 illustrates the uncertainties in the heat stressximeduced when
using the raw and calibrated QUMP ensembles. Estimategafrtp yield rele-
vant heat stress from the calibrated temperatures havealgreround half the
uncertainty when compared to the raw ensemble, and thestgasenot signifi-
cant (not shown). However, the DEL approach appears to edaronfident in
its projections (Table 1).

5.6. Projected changesin daily variability

It has been shown above that considering changes in dailgbititly, as
well as the mean, are important. But, are the projected éuthanges in vari-
ability robust? Fig. 9 illustrates the mean projected cleamgsummer daily
Tmaxvariability for the QUMP ensemble. For many central Eurapageas there
is a projected increase in daily variability of several patc Other areas show
little or no change and a few areas show a decrease in daigbuéy. How-
ever, not all the ensemble members agree. The diagonalihgicklicates areas
where 12 or more members agree on the sign of the change;dbe-lcatched
areas indicate agreement of 15 or 16 members.

This uncertainty in future changes in daily variability neakit necessary to
examine the robustness of any projel%ted change producée®QGCMs, and



to have a good physical understanding for why the projedt@thge may occur.
A wider cross-AOGCM study shows similar results to the QUMBeamble, but
demonstrates that the physical reasons disagree amoeg8D®BCMs (Fischer
and Schar, 2009).

6. Discussion and summary

We now discuss these findings, and their relevance for thigres$ crop
yield projections using the daily output from AOGCMs.

6.1. Intercomparison of calibration methods

It is seen that using raw daily AOGCM data is to be avoided,caldbration
methods which use the observed daily variability tend tdgoer better than
those which use model variability. These results therefaveur the change
factor (‘delta’) methods over the bias correction (‘nudg)rmethods. This is
probably because thabhapes of the T,,a distributions and temporal correlations
of Thax differ more across climate models than they change with timeiimgées
climate model (not shown). The analysis here has not coresidehanges or
differences in the shape of the daily distributions, and this affagt the results,
especially for the BC methods, which rely on the shape of tB&&M output
distribution rather than the observations. However, itinalso be noted that the
DEL & CF results tend to be overconfident in their projectiohthe number of
hot days and the impact of high temperature stress on hangest, and thus not
‘reliable’, which is not a desirable feature (Raisaned Balmer, 2001).

The AOGCM simulations being performed for the 5th Coupledigldnter-
comparison Project (CMIP5) will include more daily outpuidaallow a more
comprehensive across-AOGCM test of these calibration odetlogies.

6.2. Sources of uncertainty

There is a ‘cascade’ of uncertainty in producing crop yielgjgctions. This
cascade ranges from uncertainty in future emissions ohfi@ese gases, through
a range of AOGCM responses to specified emissions, combiitedhe natu-
ral, internal variability of the climate. In addition, asrdenstrated here, there is
uncertainty in the choice of calibration method in prodgoitimate data for the
impact model, and finally, there is uncertainty in the impaodel itself.

For policy relevant advice it is vital that studies on the auts of climate
change consider all the important uncertainties. If narehs a significant risk
of underestimating the total uncertainty in impacts preadis. A key issue is
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then quantifying which type (or types) of uncertainty are thost important for
a particular impact projection.

For short-term projections, the natural, internal vatigbof climate tends
to dominate the total uncertainty in temperature and pitatipn as the climate
does not evolve smoothly over time (e.g., Hawkins and Sut2609; 2011).
For example, decades which exhibit a cooling trend are eggaegularly over
Europe, even in a warming climate (Hawkins, 2011).

For lead times longer than about a decade, the uncertaimtyaldiferent
AOGCM responses to prescribed emissions becomes moretampoiowards
the end of the 21st century, uncertainty due tdedent emissions scenarios be-
comes dominant for temperature for most regions, but resramall for precip-
itation (Hawkins and Sutton, 2009; 2011). In addition, tleious calibration
methods provide quite fierent answers (also see Ho et al., 2012).

In Fig. 10 we attempt to quantify theftrent sources of uncertainty in pro-
ducing calibrated projections @t in the IPSL AOGCM. We show that the
uncertainty due to the choice of calibration is of compagabiportance to the
spread in calibrated model responses using the QUMP eneeantal larger than
the uncertainty due to the choice of emissions scenariatiff@period chosen,
2030-59). This demonstrates the crucial need to consiéarrbertainty in cali-
bration choice in crop impact assessments.

Finally, comparisons of the relative importance of impauisdel and cli-
mate model uncertainty have shown that climate uncertaemyoften dominate.
This is true of Amazon rainforest tree type fractions (Pawuét al., 2010) and
groundnut yield in Western India (Challinor et al., 20099r Bther impacts, the
AOGCM uncertainty is one of the most important contributbrg not dominant
(e.g. Wilby et al., 2009; Buisson et al., 2010).

In summary, uncertainty in the climate response to emissistikely to
be the dominant source of uncertainty in projections ofritwrop yield. This
necessitates the use of multi-AOGCMs, combined with nudtibration ap-
proaches, to drive a range of crop models.

6.3. Theimportance of observations and other complications

The calibration methods described here require daily @bsens of T .y,
or any other climate variable of interest, over a relatiielyg period & 30
years) to enable a more precise estimation of the calilratiethod parameters.
This could limit the regions to which these methods can bdieghdout note the
growing availability of daily observational datasets:.et4pdGHCND (global,
Caesar et al., 2006), E-OBS (Europe, Haylock et al., 2008)APHRODITE

(Asia, Xie et al., 2007).
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One potential complication with these calibration methadsvhen other
variables are considered. There is no reason why similantgaes cannot be
applied to other climate variables required for crop madgllsuch as mean tem-
perature or solar radiation. Further work is required td@gthe potential for
extending the methodologies to perform simultaneous iGlidn to ensure co-
variance statistics are maintained. In addition, calibgaprecipitation is more
complicated, due to its positive definite nature.

Other complications in using these calibration methodie®gould include:

(i) defining reference and future periods with relativelyadinrends relative to
the variability, and (ii) diferent shapes of distributions of the climate variable
in the observations when compared to the AOGCMs (Ho, 2016yvever, note
that Huth et al. (2001) comparedidirent downscaling methods with station data
across Europe and concluded that none reproduced all thaotbastics of the
observations successfully.

Crop yield observations are also important in narrowingautainty in future
yield projections. For example, the use of stronger obsienval constraints on
crop responses to elevated £ Challinor et al. (2009) resulted in a signifi-
cantly lower crop model uncertainty compared to Challirtale(2005a).

6.4. Key messages

This idealised study has examined calibration methodsadyme AOGCM
projections of climate variables relevant for crop moaejli The main findings
are as follows:

1. Assessing the ability of calibration methods to prodwegistic estimates
of future climate (or equivalently, crop yields) is essahtiThe perfect
model (or sibling) framework allows such an assessment andtde
adopted more widely (e.g. Lobell and Burke, 2010), enabéimganking
of the various techniques available.

2. Change factor (‘delta’ type) approaches tend to be mdyastathan bias
correction (‘nudging’) methods in the results presented hBoth method-
ologies tend to outperform using raw climate model outpwwever, this
conclusion needs to be explored in a wider analysis fiédint regions,
climate variables and AOGCM output.

3. The uncertainty due to the choice of calibration methogyplis a signifi-
cant contributor to total uncertainty in future crop yields

In summary, the need to produce reliable and robust prababiprojections
of future crop yield necessitates the use of a wide range g88Ms, combined
16



with a variety of calibration approaches, whilst considgrdifferent crop mod-
elling strategies (e.g., Palmer et al., 2005). This proegscrease the burden
of any yield assessment, and will likely also increase treettainty. This type of
analysis is presently being extended to consider the usstofical observations
for calibration and to examine the resulting uncertaintgriop yield projections.

Appendix A. Derivation of biascorrection and changefactor transfer func-
tions

We now briefly illustrate the derivation of Egns. 2, 4. Moréails are given
in Ho (2010).

Take two distributions with the same shape btiislent means\l;, M,) and
variances ¢, o3), for example, two normal distributions of random variable
It is clear that to map a point (X) on the two distributions,

X, - M1 Xo— M,

(A1)
01 g2

This is dfectively equating the normalisedfidirence between the poiXtand
the mean in each distribution. Re-arranging, this gives,

-
Xo = My + =2 (X1 — My), (A.2)
o1

which can be used to relate two distributioXs,andX,, assuming their shape is
the same. Note that these equations hold for non-normailiisbns also.

Bias correction

In the BC methods, we use Eqgn. A.2 to represent the relatipbsitween present
day simulations Trer, distribution 1) and present-day observatio®ggr, dis-
tribution 2), providing estimates dfl, , ando;,. We then assume that the same
relationship holds when relating future simulatiomgAy) to future observations

(OruT). Hence,

= =  OOREF
Orut = Orer +

(TRAW - E) ’ (A3)

OT,REF
equivalent to Eqgn. 2.
Change Factor
In the CF methods, we use Eqgn. A.2 to represent the relatipbskween present
day simulationsTrer, distribution 1) and future simulation$gay, distribution
2), providing estimates oM,, ando;,. We then assume that the same rela-
tionship holds when relating present observatiddg:f) to future observations

(Orut). Hence,
OT,RAW

S

Orut = Traw +

(Orer - Trer)- (A4)



equivalent to Eqn. 4.
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Figure 1: Mean summer (JJA)ax for the reference period 1970-1999 from observations (E-
OBS v5.00.8, Haylock et al., 2008) and a range of AOGCMs in the CMIP3 dagalas labelled.
For the AOGCMs, only grid cells with a land portion of larghah 40% are shown. The units
are°C.



(a) Bias correction (SH and BC) (b) Change factor (DEL and CF)
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Figure 2: Schematic of the two general types of calibrat{ah Bias correction uses raw model
output and corrects it using thefidirences4) between reference data from the model and obser-
vations. If no correction is used then this is the RAW meti{b)iChange factor uses present day
observations, corrected using théfeiiences between present and future model data. The cor-
rections considered here include changes in only the medma(8 DEL) or mean and variance
together (BC and CF).
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Figure 3: Demonstrating the calibration methodologies@isi range of AOGCM simulations
for mean summeF . QUMP4 is selected to act as ‘truth’ for verification agatist calibrated
projections using other QUMP members (#8, #13) and the IP&&.dThe RMS error for the
region shown is given as the value. Columns (from left to right) represefter, Traw: ToeL
& Tsh, Tec, andTck.
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Figure 4: The relationship between model bias and calitmability for mean JIA ax. Shown

is the RMS error E) for each calibration method (rows) for each of the 240 comations of
QUMP ensemble pairs (dots), as a function of the RMS efEag) in the reference period,
which is a measure of the model bias. The solid line showslesuars in calibrated and ref-
erence periods. The dashed line is the regression of the Qeidemble members; the slopes
of which are positive suggesting that the smaller the moded, ihe smaller the error in cali-
brated mean temperatures. 95% of the dots lie to the righteoéolid lines demonstrating that
calibration has improved the projection.
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Figure 5: Demonstrating the calibration methodology usimgnge of AOGCM simulations for
the number of summer days wilh,ax > 30°C. QUMP4 is selected to act as ‘truth’ for verification
against the calibrated projections using other QUMP mem@&, #13) and the IPSL data. The
RMS error for the region shown is given as tBeralue. Columns (from left to right) represent
Trer, Traw, Tsh, ToeL, Tec, andTcr.
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Figure 6: Demonstrating the calibration methodology foingle grid point. Rows 1-16: Dier-

ent projections of mean summe,ay, calibrated using selected QUMP member. Bottom row:
Different projections of mean summBfa,y, calibrated using data from IPSL CM4. Light grey
bars: Raw output of the independent QUMP simulations. €srobpresent projections using BC
(red) and CF (blue) methodologies. Green and Purple barsgept SH and DEL methodologies
respectively. All show meanlo. Dark grey and black dots represent ‘truth’ from referenue a
future periods respectively. The black dot therefore regmés the target for calibration.
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Figure 7: As Fig. 6 for the number of days over@0
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Figure 9: The mean fractional chang€Tifay daily variability for the 16 members of the QUMP
ensemble. Red areas denote an increase in variability,laacliecrease. The diagonal hatched
areas denote regions where 12 or more ensemble membersadirexsign of the change, and
the cross-hatched areas denote 15 or more members.
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SCENARIO UNCERTAINTY CALIBRATION UNCERTAINTY MODEL RESPONSE UNCERTAINTY

Number of hot days per summer
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Figure 10: Uncertainties in the number of summer days in WithTmax > 30°C. (left)
Difference between the raw output of the IPSL AOGCM from twftedént emissions scenarios
(SRES A1B and A2). (middle) Mierence between the mean BC and CF calibrated projections
using the QUMP ensemble to predict the IPSL AOGCM data. {yigk the standard deviation

in the BC calibrated QUMP ensemble, predicting the IPSL AQGCdata.
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