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Revision: 21/02/18, Eq. (9) corrected.

1 Data assimilation

Forecasts from models provide useful information to help predict the future state of a system. Inevitably
though predictions will diverge from reality as time progresses. This is an inescapable property of dynamical
systems. Data assimilation (DA) is a formal approach used to help correct forecasts by introducing informa-
tion observed from the environment. Many DA methods are based on the 'Kalman Filter' (KF) equations[1].
The KF equations describe how information from forecasts and from observations should be combined in an
optimal way which extracts maximum information from each source of information. The KF equations are
usually solved in a cyclic fashion: a forecast starts from initial conditions at time t0 and is run to time t1.
This forecast accumulates errors over this period which are reduced by assimilating observations at t1. In
the language of DA, the assimilated forecast/observation product is called the 'analysis state'. The analysis
state at t1 is then used as the initial conditions for another forecast to time t2 which is then combined with
the next batch of observations at that time1.

The KF equations rely heavily on quantitative information about the respective uncertainties of the
forecast and observational data which in�uence how the data are combined (for instance more accurate data
are considered with greater importance than less accurate data). The KF equations describe not only the
analysis state, but also its uncertainty (for instance the KF equation re�ect the fact that analysis uncertainty

1The ��lter� terminology is adopted from signal processing. It refers to the timing of the observations, which are made at the
same time as the forecast is valid (or before). The equations perform a '�lter' operation in the sense that they reduce uncertainty
in a signal (in e�ect '�ltering-away' errors). Kalman [1] is the author of the paper who introduced the equations that are still
at the heart of DA today.

1

http://www.met.reading.ac.uk/~darc/training/lorenz_ensrkf
http://www.met.reading.ac.uk/~darc/training/lorenz_ensrkf/lorenz_ensrkf.pdf


will be less than the forecast uncertainty due to the information provided by the observations). They also
describe how this uncertainty evolves along with the forecast to the time of the next batch of observations.

The KF equations provide a means of quantifying all of this information in an explicit way, but the use of
the KF can become prohibitively expensive for systems requiring a large number of pieces of information to
describe. Suppose a system requires n variables to describe its state (i.e. for a forecast or analysis). The KF
then needs ∼ O(n2) pieces of information to describe the uncertainty of the state (uncertainties are described
by error covariance matrices which represent Gaussian-shaped probability density functions). In numerical
weather prediction, the number of variables is n ∼ O(107) (i.e. the number of pieces of information needed
to describe meteorological �elds on a grid covering all relevant parts of the Earth's atmosphere). Although
present-day technology can handle states with this number of variables, it cannot handle the error covariance
matrices, which require n2 ∼ O(1014) pieces of information. This motivates the need for approximate (but
e�cient) ways of dealing with large n.

2 The Ensemble Square-Root Kalman Filter

The impracticality of the KF equations in large systems has lead to the development of approximate forms.
One important development lies with ensemble methods. Such methods solve a reduced form of the KF
equations which deal with not one forecast/analysis state, but with an ensemble of N forecast/analysis
states. Ensemble methods describe a state's uncertainty by the spread in the ensemble at a given time
instead of using error covariance matrices. These methods have proved to be practical when N � n (e.g.
N ∼ O(102) for n ∼ O(107)), although they do introduce a range of new problems associated with the
approximations.

There are many �avours of ensemble KFs. The ensemble square-root Kalman Filter (EnSRKF) is one
popular variant. This method of DA has the following characteristics:

• The EnSRKF uses an ensemble of forecasts (output from a numerical model) to represent uncertainty
in the model's ability to capture reality. The quanti�cation of forecast uncertainty is essential for DA
as it informs how well information from the forecast should be trusted when confronting observational
information. The �lter works by constructing an ensemble of analyses which is designed to have a
spread equivalent to that predicted by the ordinary KF.

• The EnSRKF is a sequential method. This means that it chops up time into a number of intervals.
At times where no observations are available, the method propagates the ensemble forward in time
using the model equations (model error may be added during the propagation if model error is to be
represented). At times where there are observations, the method combines the forecast ensemble with
the observations to create a new ensemble which is consistent with all pieces of information.

• The EnSRKF combines the forecast ensemble with the observation(s) using an update equation. This
update equation is derived from the ordinary KF equations.

• The �square-root� part of the method's name applies to the particular �avour of ensemble DA that is
used here, which uses the forecast/analysis ensemble perturbations (from their mean) as a 'square-root'
of the forecast/analysis error covariance matrices. The square-root formulation (unlike non-square-root
formulations) does not require the observations to be perturbed during the assimilation procedure.

The equations for the EnSRKF are derived in the appendix for interested readers, but are summarized here
(shown for a general non-speci�c system). At time t, let the forecast state of the system be represented by
an n-element state vector, xf

k(t), and suppose that an ensemble of N such model states exist (1 ≤ k ≤ N),
and let these state vectors comprise the columns of the matrix Af (an n×N matrix) as follows:

Af(t) =
(
xf
1(t),xf

2(t), · · · ,xf
N (t)

)
. (1)

As long as the ensemble is distributed correctly, this forecast ensemble will represent possible realizations of
the real system. The spread (disagreement between) members represents the uncertainty of the forecasts.
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2.1 Time steps where observations are available

Suppose that observations are available at time t, and let these be assembled in the p-element vector y(t)
(for p observations). The EnSRKF may be used to update the members in such a way as to reduce the
spread of the ensemble consistent with the uncertainties of the forecasts and the observations (like models,
even observations are not perfect representations of reality).

Now let xf(t) be the n-element vector which is the mean of the ensemble members contained in Af . The
�rst stage of the EnSRKF is to �nd a new vector, xa(t), which represents a mean analysis state which is
closer to the observations than the forecast state is (the superscript �a� stands for �analysis�). The formula
for xa(t) is:

xa = xf + Af′STC−1(y −Hxf), (2)

where the time labels have been removed for convenience. The new symbols that appear in (2) are as follows.
Af′ is the n×N matrix of forecast perturbations from the forecast mean state, ie

Af′ =
(
xf
1 − xf ,xf

2 − xf , · · · ,xf
N − xf

)
, (3)

H is the p×n observation operator matrix (H acts on a model state and outputs the model's version of those
observations that are consistent with the input model state), S is the p×N matrix product

S = HAf′ , (4)

and C is the p× p matrix

C = SST + (N − 1)R, (5)

= ZΛZT, (6)

In (5) R is the p×p observation error covariance matrix, which describes the uncertainty of the observational
data. In (6), the matrix C has been decomposed into its eigenvectors, Z, and eigenvalues, Λ, which will be
used below.

Equation (2) says how the mean of the ensemble should be updated given the new observations. The
following formula speci�es how the whole ensemble should be updated. This is found from the n×N matrix
of analysis perturbations, Aa′ :

Aa′ = Af′V(I−ΣTΣ)1/2VT. (7)

The new symbols that appear in (7) are found as follows. First de�ne the p×N matrix X:

X = Λ−1/2ZTS. (8)

The N ×N matrix XTX is the following, which is also given in its eigen-decomposition, with eigenvectors,
V, and eigenvalues (ΣTΣ):

XTX = STZΛ−1ZTS = VΣTΣVT, (9)

(the reason for writing the eigenvalues in a composite form ΣTΣ - rather than with a single symbol - is to
allow the matrix Σ to be identi�ed as the matrix of singular values of X; this will be important to some
readers, but is not essential to the understanding of the method). This completes the de�nition of all of the
symbols in (7). It is useful to note that (7) may be written in the following form

Aa′ = Af′T, (10)

where T = V(I−ΣTΣ)1/2VT. This is useful because T may be interpreted as the N×N matrix of weighting
coe�cients (in the sense that the kth analysis perturbation may be regarded as a linear combination of the
N forecast perturbations, whose weighting coe�cients are speci�ed in the kth column of T).

The �nal step is to construct the full ensemble from the perturbations and then to propagate this ensemble
to the next time step (to give the forecast ensemble for the next time step):

Aa(t) = (xa,xa, · · · ,xa) + Aa′ , (11)

Af(t+ ∆t) = M(Aa(t)) + δA(t), (12)

where (Aa,Aa, · · · ,Aa) is the n × N matrix of identical mean analysis states in each column, M is the
(potentially) non-linear forecast model (acting on each column of its matrix argument separately), and δA
is an n × N matrix of stochastic error perturbations (to simulate an imperfect model). The stochastic
perturbations have speci�ed error covariance Q.
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2.2 Time steps where observations are not available

In the absence of observational information, no data assimilation can be performed and so only the forecast
is performed:

Af(t+ ∆t) =M(Af(t)) + δA(t), (13)

(note that in (13) the initial conditions are the forecast states at time t, rather than the analysis states in
(12)).

3 The model that the EnSRKF will be used with

The EnSRKF will be used with observations to update a run of the Lorenz 63 model (with stochastic forcing
if speci�ed). The Lorenz 63 model propagates a state of three variables (n = 3, x, y and z) according to the
following coupled, non-linear ordinary di�erential equations:

∂x

∂t
= −σ(x− y), (14)

∂y

∂t
= x(ρ− z)− y, (15)

∂z

∂t
= xy − βz, (16)

where σ = 10, ρ = 28 and β = 8/3 are �xed parameters. In the demonstration package, the Lorenz 63
equations are solved using the fourth-order Runge-Kutta algorithm e.g.[3] and stochastic model error terms
are added if required.

Since n is small for this model, it is actually practical to apply the ordinary KF. We examine the EnSRKF
here, not for reasons of constructing a reduced representation of this system, but instead just to demonstrate
the workings of the method.

4 The EnSRKF/Lorenz 63 web demonstration

The web interface is located at the web address:
www.met.reading.ac.uk/∼darc/training/lorenz_ensrkf/lorenz_ensrkf.html.
This interface allows the reader to run the EnSRKF without the need to be concerned with source code or
plotting software. If preferred, the source code may be downloaded - see Sec. 4 (5). The following parameters
may be adjusted via the web interface:

Parameter(s) Description Default
value(s)

Notes

δt The time step of Lorenz
model numerics.

0.01 Default is a good value to
use.

N The number of ensemble
members.

6 2 ≤ N ≤ 25.

xtruth(0) The initial conditions (x, y,
z) of the true state.

3.0, -3.0,
12.0

Used as a reference run of
the model to compare to
the analyses and to
generate synthetic
observations.

B1/2 The initial prior standard
deviations of x, y, z.

1.0, 1.0,
1.0

To set-up the starting
points of the ensemble.

model error? Switch to turn on/o� model
error.

o� Used to simulate an
imperfect model by
periodically adding
stochastic noise with the
error covariance Q.
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Parameter(s) Description Default
value(s)

Notes

Q1/2 The model error standard
deviations of x, y, z.

4.0, 4.0,
4.0

Relevant only if model error
is switched on.

observe x, y, z? Switches to turn on/o�
observations of variables.

all on Must have at least one
variable observed.

R1/2 Observation error standard
deviations.

1.0, 1.0,
1.0

R is used in the EnSRKF
algorithm. It is also used to
specify the covariance of
the observation noise used
to generate synthetic
observations.

∆tassim The number of time-steps
in the assimilation period.

200 Observations are spread
throughout the �rst ∆tassim

time-steps.
∆tfore The number of time-steps

in forecast period.
400 The last ∆tforetime-steps

are free forecasts.
Nobsbatches The number of batches of

observations (each batch
observingx, y, z as speci�ed
above) spread uniformly
throughout the ∆tassim

time steps.

5 The code might adjust this
parameter slightly if
∆tassim/Nobsbatches is
non-integer.

seed The random number seed. 123456 Change this to rerun with
di�erent random numbers.

Some notes on these parameters:

• The model is run over ∆tassim + ∆tfore time-steps in total.

• Over the �rst ∆tassim time-steps, the ensemble members are in�uenced by Nobsbatches batches of obser-
vations.

• Over the next (and last) ∆tfore time-steps, the ensemble members are pure forecasts.

• Observations are synthesized from the true trajectory by adding observation noise. This is the 'identical
twin experiment' method.

• The initial ensemble points are synthesized from the true initial condition by adding background noise.

• Random numbers are used to simulate errors in the observations, to simulate errors in the initial
conditions of the ensemble members and to simulate model errors when propagating the state with the
Lorenz model.

5 Downloading the source code for the EnSRKF

For readers who prefer to work with source code, there are two versions of the EnSRKF demo for the Lorenz
63 model.

• The C++ source code may be downloaded from this location:
www.met.reading.ac.uk/∼darc/training/lorenz_ensrkf/lorenz_ensrkf.cpp.
In order for this code to work without the need for additional mathematical libraries, this code includes
an eigen-routine. Note that this routine has not the most e�cient available and has not been optimized.

• A similar (but not identical) version written for the IDL language, with its own documentation, may
be downloaded from this location:
www.nceo.ac.uk/lorenz_enkf.php.

Please let us know if you download the code. We ask that the code should be used for non-pro�t uses only.

5

http://www.met.reading.ac.uk/~darc/training/lorenz_ensrkf/lorenz_ensrkf.cpp
http://www.nceo.ac.uk/lorenz_enkf.php


6 Worksheet of suggested experiments with the EnSRKF

The following tasks are suggested to help you understand the data assimilation method (and the EnSRKF
in particular). The assimilation is controlled via the web page
www.met.reading.ac.uk/∼darc/training/lorenz_ensrkf/lorenz_ensrkf.html
and the settings are described in Sec. 4. Helpful information is provided also on the web page just mentioned.

1. The �rst run is to familiarise you with the output from the web interface. Check that all settings are
at their default values as speci�ed in the table in Sec. 4 (if they are not, then click on the �Reset to

default values� button on the web page).

(a) Click on the �Run Ensemble Square-root Kalman Filter� button to start the assimilation. A
page of data will appear followed by four graphs.

(b) The left-hand column of data is a summary of the settings used and a key to the colours used in
the graphs. The right-hand column shows the details of the observations that have been simulated.
These observations have been derived from the truth run (shown alongside the observations) with
added observation noise.

(c) The �rst three graphs are plots of the x, y and z variables as a function of time. The blue line is
the true trajectory from which the noisy observations and noisy background state are simulated.
This is the trajectory that we would like the data assimilation method to follow. The red line is
the ensemble-mean forecast/analysis trajectory and the grey bars are its one-standard-deviation
error bars (found from the ensemble spread). The green dots are the observations and are shown
with their one-standard-deviation error bars. What do you notice about the error growth during
the forecasts, and when a forecast is confronted by an observation?

(d) The last plot is the truth (blue) and ensemble mean (red) trajectories in phase space.

(e) Hint: To help compare di�erent outputs, use the tabs feature that is available with most web
browsers: e.g. for Microsoft and Linux, click with the right mouse button on �Return to settings

page� button and choose �Open link in new tab�.

2. Return to the settings page. Repeat this run, but this time make each observation less accurate, e.g.
increase each observation error standard deviation to three times larger than the default values. How
does this change a�ect the ensemble mean trajectory and its error bars? How long are the forecasts of
x, y and z (after the last observation is assimilated) useful representations of the truth?

3. Suppose that the default settings (as in 1) are used, except this time observations of x are absent.
Would you expect the x trajectory to be una�ected by observations? Would you expect forecasts of x
in this system to be in complete disagreement with the true x? Run the experiment and explain what
you �nd. Try the same by returning to the settings in 1 but now removing y and then z observations.

4. Rerun the setting that you explored in 3, but this time double the number of measurement times to 10.

5. Return to the default settings (as in 1), but now use only 2 ensemble members. Does the assimilation
work, given that the observations do not sample the signal adequately? Try increasing the number of
measurement times to 6, 7, 8, 9, then 10.

6. The experiments so far have used a perfect model (that is the model used in the data assimilation is
the same as that used to generate the truth run, even though the initial conditions di�er in each case).
Return to the default settings again, but now switch on model error (the Lorenz equations have no
model error added for the truth run - only for the model used to propagate the ensemble members in
the DA). How does the model error a�ect the quality of the assimilation? Repeat with error standard
deviation 16 units for each variable: does increasing the number of observation times ever make up for
the fact that the assimilation model is not perfect?

7 Appendix: derivation of the EnSRKF equations

The formulas shown in Sec. 2 for the ensemble square-root Kalman Filter (EnSRKF) are derived for interested
readers in this appendix.
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7.1 The basic Kalman �lter

The starting point is the statement of the ordinary Kalman Filter (KF) equations. These describe how
a single, but imperfectly known state evolves in time. The state evolution is governed by a (linear and
imperfect) model, which is partially corrected by the assimilation of (imperfect) observational information.
The KF equations are:

xa = xf + K(y −Hxf), (17)

Pa = (Pf−1 + HTR−1H)−1 = (I−KH)Pf , (18)

K = PfHT(HPfHT + R)−1, (19)

xf(t+ ∆t) = M(xa) + δx, (20)

Pf(t+ ∆t) = MPaMT + Q. (21)

The symbols have the following meanings (all symbols refer to time t unless explicitly speci�ed otherwise):

• xa is the analysis state at time t. This represents the best estimate of the system's state after observa-
tions have been considered. It is sometimes called the posterior state. There are n pieces of information
in xa, so xa is an n-element (column) vector.

• xf is the forecast state at time t. It is a forecast from a previous analysis and is an n-element vector.
It is sometimes called the prior state (or background state) because it represents the estimate of the
system's state before observations have been considered.

• y represents the observational information at time t. There are p pieces of information in y, so y is a
p-element vector.

• H is the (linear) observation operator matrix at time t. It acts on xf and gives the model's version of
the observations. H is a p× n matrix.

• K is the Kalman gain matrix at time t. It acts on the di�erence between the actual observations and
the model's observations (this di�erence is called an innovation vector) and gives the analysis increment
vector which is added to the forecast to give the analysis. K is an n × p matrix and is made up of a
string of other matrices.

• Pf is the forecast error covariance matrix at time t. It describes the uncertainty of the forecast state.
Suppose δxf is one possible error in xf at time t, then Pf = 〈δxfδxfT〉, where the angled bracket
indicates average over all possible δxf that are consistent with information available about xf . Pf is an
n× n matrix.

• R is the observation error covariance matrix at time t. It describes the uncertainty of the observations.
R is a p× p matrix.

• M is the forecast model (propagating its n-element argument at time t to an n-element argument at
time t+ ∆t. M can be non-linear, but the KF equations are designed to be optimal when the forecast
model is linear. δx is a stochastic random noise vector to represent the fact that the forecast model is
imperfect.

• Pa is the analysis error covariance matrix at time t. It describes the uncertainty of the analysis state. It
has been written in two forms in (18). The second form, (I−KH)Pf , indicates that the analysis error
covariances are necessarily smaller than the forecast error covariances (by the presence of the minus
sign).

• M is the Jacobian ofM. It is an n×n matrix and is found from M = ∂M/∂x evaluated on the model
trajectory from the analysis state at time t to the next analysis time at t+ ∆t.

The KF works in a cycle. A forecast, xf (with error covariance Pf) at time t and observations, y (with error
covariance R) are combined in (17)to give the analysis, xa. In a similar way the forecast and observation
error covariances (Pf and R respectively) are combined to give the analysis error covariance, Pa in (18). The
analysis is propagated to the next observation time at t+ ∆t in (20) where it becomes the new forecast state,
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and the analysis error covariance is propagated in (21) where it becomes the new forecast error covariance
matrix. This forecast/update cycle is repeated. At no stage in this cycle is the state of the system known
exactly: the forecast stage introduces inevitable forecast errors and the analysis step reduces them - but
never to zero.

7.2 The ensemble square-root Kalman �lter

The KF equations are simple to use for systems with small n (e.g. n < O(102)). The storage required to
evaluate the KF equations however goes as ∼ O(n2) and the scaling of the number of �oating-point operations
required is even higher. Ensemble methods remove the need to represent large matrices explicitly and so
are often a feasible way of approximating the KF equations. Since n is only 3 for the Lorenz 63 model, it
is actually practical to apply the ordinary KF, but here we examine the EnSRKF just to demonstrate the
workings of the method. The starting point for derivation of the EnSRKF equations is the KF equations.

Suppose that we have N ensemble members, the KF update (17)for kth member is

xa
k = xf

k + PfHT(HPfHT + R)−1(y −Hxf
k) (22)

All parts of this expression are known except for Pf , but Pf can be approximated from the ensemble as
follows

Pf ≈ 1

N − 1

N∑
k=1

(xf
k − x̄f

k)(xf
k − x̄f

k)T. (23)

This is an approximation because Pf is derived from a statistical sample. It will be helpful to write this in
the matrix notation used in (3), where Af′ is the n×N matrix of ensemble member perturbations. Equation
(23) may then be written as

Pf ≈ 1

N − 1
Af′Af′T, (24)

where the sum in (23) is implied in the matrix algebra. This result applies equally well to the analysis error
covariance matrix:

Pa ≈ 1

N − 1
Aa′Aa′T. (25)

Equation (22) may also be written in matrix form

Aa = Af + PfHT(HPfHT + R)−1(Y −HAf), (26)

where Y is the p×N matrix of identical columns comprising the observation vector y. This matrix equation
is equivalent to the vector equation (22), but where in (26) each ensemble member corresponds to a given
column. The ensemble mean of this is

Aa = Af + Af′Af′THT
{

HAf′Af′THT + (N − 1)R
}−1

(Y −HAf). (27)

(and noting that Y = Y).
Equation (24) is now substituted into the second equality in (18), with the Kalman update from (19):

Pa = Pf −PfHT(HPfHT + R)−1HPf ,

=
1

N − 1
Af′Af′T − 1

N − 1
Af′Af′THT

{
H

1

N − 1
Af′Af′THT + R

}−1

H
1

N − 1
Af′Af′T.

In order to simplify the notation, we use matrices S and C as de�ned in (4) and (5) respectively. These make
the above into

Pa =
1

N − 1
Af′

[
I− ST

{
SST + (N − 1)R

}−1
S
]

Af′T,

Aa′Aa′T = Af′
[
I− STC−1S

]
Af′T. (28)

With S and C, (27) is similarly

Aa = Af + Af′STC−1(Y −HAf). (29)
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The idea of a square-root scheme is to �nd an ensemble of analysis perturbations (in the matrix Aa′)
that have the covariance given by (28) (think of the matrix Aa′ as the 'square-root' of the analysis error
covariance matrix as in (25)). Once such an ensemble matrix is found, it is added to the mean Aa in (29) to
give the full ensemble. The next step is to �nd Aa′ that has the property of (25). Firstly, since C is a square
and symmetric matrix, it may be written in its eigen-decomposition as in (6), where in (6) Z is the p × p
matrix of eigenvectors (ZZT = I) and Λ is the p× p matrix of eigenvalues. Using the additional de�nition of
the p×N matrix X as in (8) makes (28) into

Aa′Aa′T = Af′
[
I−XTX

]
Af′T.

Now decomposing XTX into its eigen-decomposition as in (9) where V is the N ×N matrix of eigenvectors
(VVT = I and VTV = I) and ΣTΣ is the N ×N matrix of eigenvalues gives:

Aa′Aa′T = Af′
[
I−VΣTΣVT

]
Af′T,

= Af′V
[
I−ΣTΣ

]
VTAf′T.

Matrix I − ΣTΣ is a diagonal square matrix, so �nding a square root of this matrix is simple. One such
square-root matrix is [I−ΣTΣ]1/2VT (this matrix times its transpose gives I−ΣTΣ) and leads to

Aa′Aa′T = Af′V
[
I−ΣTΣ

]1/2
VTV

[
I−ΣTΣ

]T/2
VTAf′T,

which, after comparing to (29) leads to this matrix of analysis ensemble perturbations:

Aa′ = Af′V
[
I−ΣTΣ

]1/2
VT,

(as in (7)). The important point here is that the largest matrices we need to store have dimensions n × N
(Af′ and Aa′) and we need to perform an eigen-decomposition on only a p× p matrix (C) and on an N ×N
matrix (XTX). In real problems, usually p� n and N � n, which makes the EnSRKF an e�cient approach
to the DA problem.
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