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Reminder: what is data assimilation?

To blend information from models and observations.

State/parameter estimation (some kind of `optimal' blending).
The posterior PDF or reduced moments of it.

State vector and observation vectors
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Probability Density Functions

∫ b
a p(x)dx is the probability that X lies between values a and b.

Form of a Gaussian:

x∼ N(xb,B)

p(x) =
1√

(2π)n det(B)
exp−1

2

(
x−xb)T

B−1
(
x−xb)
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Covariance matrices

A covariance matrix describes the second moment of a PDF.

x=


x1
x2
...
xn

 , x′ = x−〈x〉

cov(x′) =
〈
x′x′T

〉
=


〈
x ′21
〉
〈x ′1x ′2〉 · · · 〈x ′1x ′n〉

〈x ′2x ′1〉
〈
x ′22
〉
· · ·

...
...

...
. . .

...
〈x ′nx ′1〉 · · · · · ·

〈
x ′2n
〉
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Bayes' Theorem � the foundation of DA

p(x|y) =
p(x)×p(y|x)

p(y)

posterior dist. =
prior dist.×observation dist.

normalizing constant

Prior distribution: PDF of the state before observations are
considered (e.g. PDF of model forecast).

Observation distribution: PDF of observations given that the
state is x.

Posterior distribution: PDF of the state given the observations.
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Association between non-linearity and non-Gaussianity

Example with observation operator (observation of a scalar,
non-linear H )

ym = H (x) = H (xR +δx)

ym ≈ H (xR)+Hδx

Suppose the likelihood term is Gaussian distributed:

p(y |x) ∝ exp− (y −H (x))2

2σ2
y

∝ exp(quadratic in y or H (x))

∝ exp(non-quadratic in x)

linearize . . .

p(y |xR,δx)∼ exp−
(
y −H (xR)−Hδx

)
2

2σ2
y

∝ exp(quadratic in y or δx)

Non-linearity leads to non-Gaussianity; Gaussianity can be approx.
preserved if non-linearity is weak.

Lecturer: Ross Bannister What to use when?



Association between non-linearity and non-Gaussianity
(cont)

A non-linear forecast model xT = M (x0)

Again non-linearity leads to non-Gaussianity.
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Confused? Overwhelmed?

In realistic practical applications we cannot represent the PDFs
explicitly, so we need approximate DA methods

Data insertion/nudging

Kalman �lter (+ extended KF)

Variational data assimilation

Ensemble Kalman �lters

En-Var �lters

Hybrid methods

Particle �lters Which method to use
for your application?
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Data insertion/nudging

Data insertion

Overwrite model values with observations, xi → y .
Dangerous � e.g. sudden jump in value.

Nudging

Introduce observations gradually, e.g. for one observation of
gridpoint i :

∂x

∂ t
=m(x)− fi

(xi −y)

τ

fi structure function associated with obs position, τ timescale

No account of uncertainty of model or obs.

How to treat indirect observations?

No information in observation voids
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The Kalman �lter (and extended Kalman �lter)

.Propagates the mean state and its error covariance sequentially;
. forecast/analysis is mean of the prior/posterior; . the analysis is
the state that has minimum variance; . strong theoretical basis.

forecast state: xf
t = Mt(x

a
t−1)

forecast covariance: Pf
t = MtP

a
t−1M

T
t +Qt

analysis state: xa
t = xf

t +Kt

(
yt −Ht(x

f
t)
)

analysis covariances: Pa
t = (I−KtHt)P

f
t

Kalman gain: Kt = Pf
tH

T
t

(
HtP

f
tH

T
t +Rt

)−1
Assumes Gaussian prior and observations.

Assumes M and H are linear (weak non-linearity is allowed in
the extended KF).

Unfeasible when n is large as matrices are treated explicitly.
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Traditional variational data assimilation

.Forecast is mean of the prior, analysis is mode of the posterior
(minimises a cost fn); .OK when n is large; . iterative method of
solution; . can add extra constraints (e.g. weak constraint for
model error); . strong theoretical basis; .M and H can be
non-linear; . usually incremental formulation used

forecast state: xf
0 = M (xa

−T )

analysis state: xa
0

= xf
0+ arg min

δx0

J[δx0]

J[δx0] =
1

2
δxT

0B
−1

δx0+
1

2

T

∑
t=0

(
yt −Ht(x

f
t)−Htδxt

)T
R−1t (•)

subject to δxt+1 =Mt (δxt)

xf
t+1 = Mt

(
xf
t

)
Flavours: weak-constraint 4DVar (additional control vectors);
strong-constraint 4DVar (as above); 3DFGAT (set Mt = I); 3DVar
(use persistence model in the cost function, Mt (xt) = xt).
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Traditional variational data assimilation (cont)

grad: ∇δx0J[δx0] =B−1δx0−
T

∑
t=0

MT
0 · · ·MT

tH
T
tR
−1
t

(
yt −Ht(x

f
t)−Htδxt

)

Assumes Gaussian prior and observations.

Analysis is sub-optimal if M or H is non-linear; can end up in
a local minimum.

B0 is modelled/parametrised (e.g. need control variable
transforms) � not properly �ow-dependent and is too simple.

Need tangent linear of Mt and Ht and their adjoints (for
gradient calculation).

Usually no second moment of analysis found.

Di�cult to develop (time and expertise).

Di�cult to parallelize.
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Ensemble Kalman �lters

.Based on KF equations; . propagates N-member ensemble of
forecasts to estimate Pf

t ; .M and H can be non-linear; .works
when N� n (but see below); . avoids linear/adjoint coding; . easy
to code; . parallelization is scalable with N.

x
(i),f
t = Mt(x

(i),a
t−1) + β

(i)

n×N : X'ft =
(
x

(1),f
t − x̄f

t · · · x
(N),f
t − x̄f

t

)
p×N : Y′t =

(
Ht(x

(1),f
t )−H (x̄f

t) · · · Ht(x
(N),f
t )−Ht(x̄

f
t)
)

n×N : X'at =
(
x

(1),a
t − x̄a

t · · · x
(N),a
t − x̄a

t

)
Stochastic EnKF Ensemble Transform KF

x̄a
t = x̄f

t +Kt

(
yt −Ht(x̄

f
t)
)

x
(i)a
t = x

(i)f
t +Kt

(
yt + ε

(i)
y −Ht(x

(i)f
t )

)
X'at = X'ftTt

Kt = X'ftY
′
t

T
(
Y′tY

′
t

T + (N−1)Rt

)−1
Kt = X'ftTtT

T
t Y
′
t

T
R−1t

Tt =
(
I+Y′t

T
R−1t Y′t

)−1/2
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Ensemble Kalman �lters (cont)

Flavours

Stochastic EnKF

Singular Evolutive Interpolated Kalman Filter (SEIK)

Ensemble Transform Kalman Filter (ETKF)

Ensemble Adjustment Kalman Filter (EAKF)

Ensemble Square Root Filter (EnSRF)

etc.

Lecturer: Ross Bannister What to use when?



Ensemble Kalman �lters (cont)

Assumes Gaussian prior and observations.

Pf
t-matrix = X′t

fX'ft
T
/(N−1), rank de�cient (N < n)

Sampling noise (e.g. spurious covariances)
Needs localization to �x (how depends on the �avour)

Localization can be applied in model space: Pf
t ◦Ω (not

e�cient if done explicitly)
Localization can be applied in `observation' space, e.g.

Kt ≈ ρ ◦
[
X′t

fY′t
T](ρ ◦ [Y′tY′tT]+(N−1)Rt

)−1
Localization can be applied by performing a separate analysis
for each grid point and using observations in the locality only
(as in LETKF)
Localization can disturb physical properties of ensemble (e.g.
balance).

Filter divergence (ensemble under-spread)

Needs in�ation (additive, multiplicative, relaxation to prior,
. . . )
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EnVar (ensemble-variational)

.As variational DA, but where B→ X′0
fX′0

fT
/(N−1) from a

parallel ensemble; . has the bene�ts of variational DA but with a
�ow-dependent B-matrix; . analysis increment is a linear
combination of forecast ensemble perturbations. E.g. En4DVar:

xa
0

= xf
0+X

′f
χens χens is an N-element matrix

J[χens] =
1

2
χ

T
ensχens +

1

2

T

∑
t=0

(yt −Ht(xt))
T
R−1t (•)

subject to δxt+1 =Mt (δxt) and δx0 = X′fχens

xf
t+1 = Mt

(
xf
t

)
Assumes Gaussian prior and observations.

Pf-matrix = X′
0

fX'f0
T
/(N−1), rank de�cient (N < n).

Needs localization and a separate parallel ensemble.

4DEnVar schemes can get very complex with localization scheme.

En4DVar still needs the linear model and adjoint. 4DEnVar uses 4D ensembles
and avoids these, but localization becomes very di�cult. Worth considering for
very large ensemble.
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Hybrid methods

As variational DA, but where

B→ (1−β )B+βX'f0X'
f
0

T
/(N−1)

(new matrix is full rank and �ow-dependent).
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Hybrid methods (cont)

Traditional 4DVar with control variable transform:

J[χB] =
1

2
χ

T
BχB+

1

2

T

∑
t=0

(
yt −Ht(x

f
t)−Htδxt

)T
R−1t (•)

subject to δxt+1 =Mt (δxt) , δxt =UχB

Hybrid-En4DVar:

J[χB,χens] =
1

2
χ

T
BχB+

1

2
χ

T
ensχens +

1

2

T

∑
t=0

(
yt −Ht(x

f
t)−Htδxt

)T
R−1t (•)

subject to δxt+1 =Mt (δxt) , δxt =
√
1−βUχB+

√
βX′fχens

Assumes Gaussian prior and observations.

Still needs localization and a separate parallel ensemble.

Can get very complex to develop.
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Particle �lters

.Non-Gaussian; . fundamentally no need for covariance matrices;
. approximates prior and posterior PDFs as summation of
`delta-functions'. Standard PF:

prior PDF: p(x) =
N

∑
i=1

wprior
i δ (x−xi ),

N

∑
i=1

wprior
i = 1

posterior PDF: p(x|y) =
N

∑
i=1

wpost
i δ (x−xi ), wpost

i =
wprior
i p(y|xi )

∑
N
i=1

wprior
i p(y|xi )

Standard PF is degenerate (weight tends to accumulate for
one particle)

`Resampling' � still a problem for lots of obs.
`Localized PF' � weights become a function of position.
`Proposal density' � freedom to sample particles from another
distribution to try to even out the weights.
Localized adaptive PF (Potthast et al. 2019).
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Which method is right for you?

Do you have PDFs that are highly non-Gaussian for high-probability regions
(e.g. multi-modal)? Yes: PF. No: KF, Var, EnKF, EnVar, Hybrid.

Is n large (e.g. n > 100)? Yes: not the KF!

Is only a �rst moment of the posterior required? Yes: Var, EnVar, Hybrid. No:
EnKF, PF.

Is the prior error cov matrix quasi-static? Yes: Var. No: KF, EnKF, EnVar,
Hybrid, PF.

Are linearized/adjoint models available? Yes: KF, 4DVar, En4DVar,
Hybrid-En4DVar. No: 3DVar (still need lin/adjoint of H ), EnKF, 4DEnVar,
Hybrid-4DEnVar, PF.

How many model runs can you a�ord per cycle? ∼ 1: Var. Dozens: EnKF (loc),
EnVar (loc), Hybrid (loc), PF. Large number: as � (no loc).

Is easy parallelization crucial? Yes: EnKF,PF. No: KF, Var, EnVar, Hybrid.

Do you already have a model, but want minimal development time of the DA
system? Yes: EnKF via PDAF/DART.

PF=Particle Filter (various �avours); KF=Kalman Filter;
EnVar=Ensemble-Variational (includes En4DVar and 4DEnVar); Var=Variational
(includes 4DVar, 3DVar); loc=localization required; hybrid (includes hybrid-En4DVar,
hybrid-4DEnVar), PDAF=Parallel Data Assimilation Framework
(pdaf.awi.de/trac/wiki); DART=Data Assimilation Research Testbed
(www.image.ucar.edu/DAReS/DART).
Existing and new methods are constantly being developed.
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