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Data assimilation: general formulation
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Bayes theorem:
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Solution is pdf!
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Motivation ensemble methods:
‘Efficient’ propagation of pdf in time




Non-linear Data Assimilation

* Metropolis-Hastings start from one sample, generate a
new one and decide on acceptance (better, or by chance), etc.
Slow convergence, but new smarter algorithms are being
devised.

* Langevin sampling idem, but always accept, each
sample expensive. Slow convergence, but smarter algorithms
are being devised.

e Hamiltonian Monte-Carlo idem, but almost always
accept, each sample expensive, faster convergence



Non-linear Data Assimilation

* Particle Filters/Smoothers Generate samples in
parallel sequential over time and weight them according how
good they are. Importance sampling. Can be made very
efficient.

e Combinations of MH and PF Expensive but good for
e.g. parameter estimation.



The Particle filter
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the weights.




What are these weights?

* The weight w; is the normalised value of the
pdf of the observations given model stateX’;.

* For Gaussian distributed variables is is given
by:

w; X p(y\%)
o exp [ (y— H(w) B (y — H(z:)

* One can just calculate this value
 Thatis all !l



No explicit need for state covariances

 3DVar and 4DVar need a good error
covariance of the prior state estimate:
complicated

* The performance of Ensemble Kalman filters
relies on the quality of the sample covariance,
forcing artificial inflation and localisation.

* Particle filter doesn’ t have this problem, but...



Standard Particle filter

The standard particle filter is degenerate for moderate
ensemble size in moderate-dimensional systems.



Particle Filter degeneracy: resampling

* With each new set of observations the old
weights are multiplied with the new weights.

* Very soon only one particle has all the
weight...

e Solution:

Resampling: duplicate high-weight particles
and abandon low-weight particles



Standard Particle filter




A simple resampling scheme

1. Put all weights after each other on the unit interval:
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2. Draw a random number from the uniform distribution over [0,1/N],
in this case with 10 members over [0,1/10].

3. Put that number on the unit interval: its end point is the first
member drawn.
oL | | | | | I | iy

4. Add 1/N to the end point: the new end point is our second member.
Repeat this until N new members are obtained.
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5. In our example we choose m1 2 times, m2 2 times, m3, m4,
m5 2 times, m6 and m7.



A closer look at the weights |

Probability space in large-dimensional systems is
‘'empty :the curse of dimensionality
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A closer look at the weights Il

Assume particle 1 is at 0.1 standard deviations s of M
iIndependent observations.

Assume particle 2 is at 0.2 s of the M observations.

The weight of particle 1 will be

1

Wy X exp [—5 (y — H(z;)) R (y — H(w;))| = exp(—0.005M)

and particle 2 gives

1

Wy X €XP {—— (y — H(x;)) R (y — H(x;))

5 = exp(—0.02M)




A closer look at the weights Il

The ratio of the weights is

2 exp(—0.015M)
wq

Take M=1000 to find

2 _ exp(—15) ~ 310"
wq

Conclusion: the number of independent observations is
responsible for the degeneracy in particle filters.



How to make particle filters useful?

1. Introduce localisation to reduce the number
of observations.

2. Use proposal-density freedom.

3. Several ad-hoc combinations of Particle
Filters and Ensemble Kalman Filters



1. Localisation in particle filters

Easy to make weights spatially varying, similar
to observation-space localisation in ETKF.

Main issue is at the resampling step: how to
combine particles from different areas in the
domain.

So need smooth updates without resampling.

Example is Ensemble Transform Particle Filter
(ETPF, Reich, 2014).



The ETPF

* Find a linear map between prior and posterior

ensemble:
— NZ:L‘ftw + &

with th - and th = w;

* Infinite number of solutions for t;. ETPF uses
minimal transportation by minimising

N.
= > tijllz] — 27|
1=1



The ETPF

Minimisation takes O(NZlog N,) operations.

Minimisation performed at every gridpoint,
like the ETKF, so expensive algorithm.

Possibility to reduce this to larger areas.
The random perturbation acts as inflation.

Localisation has same problem as in ETKF that
large-scale balances are broken.

Needs further exploration!



2. Exploring the proposal density freedom

The joint-in-time prior pdf can be written as:

n—l) n—l)

p(a”, x — p(x”lx”_l)p(x

So the marginal prior pdf at time n becomes:

p(a") = [ p"le" " )p(a"") da"!

We introduced the transition densities

p(a™|z" ")




Meaning of the transition densities

Stochastic model:

i f(fn_l) +ﬁn—1

So, draw a sample from the model error pdf, and use that in the
stochastic model equations.
For a Gaussian model error we find:

p("" ) = N ("), Q)




Bayes Theorem and the proposal density

Bayes Theorem now becomes:

p(y"|z")p(x")
p(y)

p(y"|a") n| .n—1 n—1 n—1
o el () da

p(x"y") =

We have a set of particles at time n-7 so we can write

1 N
pa"™ ) == 0" — i)
N3

and use this in the equation above to perform the integral:



The magic: the proposal density

Performing the integral over the sum of delta functions gives:

y x" n—
p(a"y") = ‘ Zp 22 )

The posterior is now given as a sum of transition densities.
In the standard particle filter we use these to draw particles
at time n, which, remember, is running the stochastic model
from time n-1 to time n. We know that is degenerate.

So we introduce another transition density, the proposal.



The proposal transition density

Multiply numerator and denominator with a proposal density q:

T mn N T n—
p(y™|z™) 1 p(x™|z} )

p(y") N = glan|z]y,yn )

q(x n’x1N7y )

p(z"™|y™) =

Note that 1) the proposal depends on the future observation, and
2) the proposal depends on all previous particles, not just one.

1) Ensures that the particles end up close to the observations
because they know where the observations are.

2) Allows for an equal-weight filter, as the performance bounds
suggested by Snyder, Bickel, and Bengtsson do not apply.




What does this all mean?

* The standard Particle Filter propagates the
original model by drawing from p(x" [x"1).

* Now we draw from q(z"|z" ', y™), so we
propagate the state using a different model.

* This model can be anything, e.g.



Examples of proposal transition densities

The proposal transition density is related to a proposed model.

For instance, add a relaxation term and change random forcing:

= [+ 0 K (Y - H@ )

Or, run a 4D-Var on each particle (implicit particle filter).
This is a special 4D-Var:

- initial condition is fixed

- model error essential

- needs extra random forcing

Or use the EnKF as proposal density.



How are the weights affected?

Draw samples from the proposal transition density g, to find:

2rls A

x; Z p(x

p(z"™y"™) = e
i—=1 q ’xl - N 7y )

o(x™ — xl')

Which can be rewritten as: pla"y™) =Y w;d(a" — )

with weights w; =

Likelihood weight Proposal weight



How to calculate p/g in the weights?

Let’ s assume that the original model has Gaussian distributed
model errors:

plaa" ) = N (@), Q)

To calculate the value of this term realise it is the probability of
moving from x/-7 to x/. Since x/ and x/-" are known from the
proposed model we can calculate directly:




Example calculation of p

* Assume the proposed model is
" — f(.ilﬁ‘n_l) _|_6n + K (yn . H(ZIZ‘n_l))

* Then we find

p(z}|z] ")

X exp [—; (K(y” — H(:U?_l)) + 5;”’)T Q" (K(yn - H(fc?_l)) T 5?)]

e We know all the terms, so this can be calculated



And g ...

 The deterministic part of the proposed model is:
0" = [T 4 K (y" - B )

* So the probability becomes

n|_.n 1A’n, n
Q(m |5131N1>y ) X exXp T 5P TQ 5

* We did draw the stochastic terms, so we know
what they are, so this term can be calculated too.



The weights

 We can calculate p/g and we can calculate
the likelihood so we can calculate the weights:

) platlar)
© Np(y") q(aP |2ty y)




Example: EnKF as proposal
EnKF update:

vy =x; + K°(y" + e — H(xj))

2

Use model equation:

= fal Y B+ K (y” +e—H ((f(x?_l) + ﬁ?))

Regroup terms:

Leading to:

e m—— ~.
T :(f(a;?_l) + K° (y" — H (f(x?_l))))Jr«l — K°H)(!" + K%;

A

r) = g(a? " y") + 3"




Algorithm

Generate initial set of particles

Run proposed model conditioned on next
observation

Accumulate proposal density weights p/q
Calculate likelihood weights

Calculate full weights and resample

Note, the original model is never used directly.



Particle filter with
proposal transition
density I




Transition densities

Proposal that depends on previous model state:

q(z?]...) = p(af |z ™)

Proposal that depends on observations and previous model

state: 1
q(z|...) = q(xi' |z} y")
e.g. optimal proposal density: Q(ZC:L‘) — p(gj?"gj?’_l, yn)

Proposal that depends on observations and all we know about

previous state:
q(zi|...) = qx n|$1 N> Y ")

This leads to a whole class of particle filters not hampered by

i |

classical proofs of degeneracy.



Implicit Equal-weight Particle Filter

Define an implicit map as follows:

= zd + o P2

z; is the mode of the optimal proposal density,
P.is the covariance of the optimal proposal density.

1)
2)
3)

4)
5)
6)

Draw &; from N(0,/) | |

Normalise each element fz-(j) = .55‘7)\/]\@/“@\\
Calculate @4 such that pre-weights of all particles equal to
target weight (see next slides)

Draw k from [1,..,N, ] with equal probability

Draw é’fk) again from N(0,1)

Recalculate x,” using & and normalised & for i # k.




How to find «;

Remember the new particle is given by:

= a? + /o P2

in which T, s, & are known, & normalised . Use this in expression
for weights and set all weights equal to a target weight:

n—1

p(z;' |z y" )p(y
q(§)

—1
Vg )

dx
dg§

prev
)

w; —

and solve for &; . At this stage all weights are equal by construction!



Solution for o

For Gaussian model errors and observation errors and H
linear we find for Q;;

a; — loga;, = C' — ¢

with solution
;= ~Wo 1 {_6—<1+c—¢i>}

in which W is the Lambert W function.
We choose one of the two solutions W, or W _; with equal

probability.
Target weight chosen equal to lowest weight of all particles.



Resulting scheme:

Effectively we use N, -7 random numbers to calculate (v;
such that the weights of the particles are equal.

Then one random number is chosen to ensure a proper
map from §i to x. Weights will vary, but only slightly.
This last step also ensures that the proposal has full
support.

Scheme can be seen as adaptation of implicit particle
filter (optimal proposal) to avoid weight collapse.
Scheme is biased because target weight is set to
lowest weight of all particles at their highest weight
positions.

The latter are equal to solution of weak-constraint
4Dvar without background term.



Experiment

Linear model of Snyder et al. 2008.

1000 dimensional independent Gaussian
linear model

20 particles
Observations every time step of whole state

xn _ xn—l 4 6n

B™ ~ N(0,1)



Linear model: Rank histogram
1000 time steps, 20 particles
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Normalised pdf 1000 time steps
1000 particles -> Convergence!
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Climate model HadCM3

|Identical twin experiment
32 particles
2.3 million variables

Daily observations of Sea-Surface Temperature with
uncertainty 0.55 K

Model errors smaller than 0.1 times deterministic
model update

Correlation structure from snapshots of long model
run.



Model error covariance
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Temperature (°C)

Time evolution of particles
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RMSE (K)

Results: Observed variable SST
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RMSE (K)

Results: Ocean Temperature
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Frequency

Rank Histograms
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Estimated pdfs
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Conclusions

Large number of ‘nonlinear’ filters and smoothers
available

Best method will be system dependent
Fully nonlinear equal-weight particle filters
for systems with arbitrary dimensions that
converge to the truth posterior pdf do exist.

Localisation, e.g. Ensemble Transform Particle Filter,
needs further exploration.

Proposal-density freedom needs further exploration.
Example shown for 1000 dimensional systems, but
methods have been applied to 2.3 million dimensional
systems too.




