Nonlinear Data Assimilation
and Particle Filters

Peter Jan van Leeuwen

2

University of

Reading

Data Assimilation
National Centre for
Research Centre @ Earth Observation

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN



Big Data

How big is the nonlinear data-assimilation problem?

Assume we need 10 frequency bins for each variable to build
the joint pdf of all variables.

Let’s assume we have a modest model with a million variables.
Then we need to store 101:000,000 nymbers.

The total number of atoms in the universe is estimated to be
about 108¢

So the data-assimilation problem is larger than the universe...



Present-day methods

Find mode of posterior (very efficient methods for high-
dimensional weakly nonlinear problems, e.g. 4DVar).

Note that first guess is typically quite good, so linearisation
makes sense.

Gaussian assumptions on prior and likelihood, Ensemble
Kalman Filters.

Hybrids between the two.
But e.g. high-resolution NWP is highly nonlinear...



Data assimilation: general formulation
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Motivation ensemble methods:
‘Efficient’ propagation of pdf in time




Non-linear Data Assimilation

* Metropolis-Hastings Start from one sample, generate a
new one and decide on acceptance (better, or by chance), etc.
Slow convergence, but new smarter algorithms are being
devised.

* Langevin sampling idem, but always accept, each sample
expensive. Slow convergence, but smarter algorithms are
being devised.

e Hamiltonian Monte-Carlo idem, but almost always
accept, each sample expensive, faster convergence



All these methods use Markov Chains to
sample from the posterior
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Non-linear Data Assimilation

e Particle Filters/Smoothers Generate samples in
parallel sequential over time and weight them according how
good they are. Importance sampling. Can be made very
efficient.

e Combinations of MH and PF Expensive but good for
e.g. parameter estimation.



The Particle filter
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What are these weights?

The weight w); is the normalised value of the pdf of the
observations given model state ;.

For Gaussian distributed variables it is given by:

W; X P(y\fﬁz’)

X exp —% (y— H(z:)R™ (y — H(x,))

That is all 1!



No explicit need for state covariances

 3DVar and 4DVar need a good error covariance of the prior
state estimate: complicated

* The performance of Ensemble Kalman filters relies on the
quality of the sample covariance, forcing artificial inflation and
localisation.

* Particle filter doesn’ t have this problem, but...



Standard Particle filter

The standard particle filter is degenerate for moderate
ensemble size in moderate-dimensional systems.



Particle Filter degeneracy: resampling

* With each new set of observations the old weights are
multiplied with the new weights.

* Very soon only one particle has all the weight...
e Solution:

Resampling: duplicate high-weight particles and abandon low-
weight particles



Standard Particle filter




A simple resampling scheme

1. Put all weights after each other on the unit interval:
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2. Draw a random number from the uniform distribution over [0,1/N],

in this case with 10 members over [0,1/10].
3. Put that number on the unit interval: this points to the first member

o+ - > ' ° 1 [1I1

4. Add 1/N to the end point: the new end point is our second member.
Repeat this until N new members are obtained.

OL;Q;LI_I_L;H_U_U_U_HH

w4 w5 we w7w8 wiw10
5.In our example we choose m1 2 times, m2 2 times, m3, m4,

m5 2 times, m6 and m7.




Resampling is not enough...

« When the umber of observations is large the particle filter
with resampling is still degenerate...

e Why?



A closer look at the weights |

Probability space in large-dimensional systems is ‘empty’ : the

curse of dimensionality
N —(x
NS ‘
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A closer look at the weights |

Assume particle 1 is at 0.1 standard deviations s of M independent
observations.

Assume particle 2 is at 0.2 s of the M observations.

The weight of particle 1 will be

Wy X exp [—% (y— H(x;)) R (y — H(z;))

= exp(—0.005M)

and particle 2 gives

1

Wy X €XP {—5 (y — H(x;)) R (y — H(x;))

= exp(—0.02M)



A closer look at the weights Il|

The ratio of the weights is

2 exp(—0.015M)
wq

Take M=1000 to find

2 _ exp(—15) ~ 310"
wq

Conclusion: the number of independent observations is
responsible for the degeneracy in particle filters.



1.

How to make particle filters useful?

Introduce localisation to reduce the number of observations.
Use proposal-density freedom.
Transportation Particle Filters

Several ad-hoc combinations of Particle Filters and Ensemble
Kalman Filters (not discussed here).



1. Localisation in particle filters

* Easy to make weights spatially varying, similar to observation-
space localisation in ETKF.

 Mainissue is at the resampling step: how to combine particles
from different areas in the domain.

w, is high
w; is low

w;, is low
w; is high

 Examples are the Localized Particle Filter (Poterjoy, 2016) and
the Ensemble Transform Particle Filter (ETPF, Reich, 2014).



Localized Particle Filter (roterioy, 2016)

* For each observation k do:
1. Calculate weights w; X (1 — Wmin) (yk\a’;(k_ )) + Winin
2. Resample particles globally
3. For each grid pointj do:

1. Calculate localized weights:

wi) o w1 = wiin (k, 7)) Pyl ™) + winin (k, 5)
2. Calculate weighted mean x,, and variance
3. Calculate new particles at grid point j

(,j) = Tm + T1 ( Lk )(global) ) + 79 ( (,j_ )(local) — a:m)
e Pdf mapping for higher order moments



Distance (km)

Example convective storm
(Poterjoy, Sobash, Anderson, MWR, 2017)

Reflectivity, and velocity
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Data assimilation set up

Observations:

Reflectivity and radial velocity from radar in centre of domain

with 14 scan elevations between 0.5 and 19.5 degrees, every 5 min.
Observation errors 2m/s and 2dBZ, assumed independent.

DA methods:
Ensemble Adjustment Kalman Filter (EAKF), 100 members,
localisation radius 11.46km, adaptive multiplicative inflation.
Localized Particle Filter (PF), 100 members,
localisation radius 11.46 km, additive inflation 0.25 m/s and 0.25 K

DA experiment:
Experiments run 3 hours, after formation of squall line.



Horizontally averaged q, bias
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Note that

1) LPF has much less bias

2) Bias is constant over
forecast window.




Time averaged g, bias
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A major issue...

With localisation we can reduce the number of independent
observations that each grid point sees.

However, a rough estimate tells us that the standard deviation
of the weights is

Ow, = exp|N,]

Hence a modest 10 observations will give a typical difference in the
weights of about 22026,

so the filter will be degenerate even with localisation.

(This is a prediction...)



Ensemble Transform Particle Filter ETPF

* Find a linear map between prior and posterior ensemble:
N
a __ i ft.. + é‘
T; = N L Lig J
1=1

N | N
with Zti? — ~ and Ztij — w;
i=1 J=1

* Infinite number of solutions for t;. ETPF uses optimal
transportation by minimising

N
J(t) =) tijlla] — ]|
1=1



The ETPF

Minimisation takes O(IN?log V) operations. Minimisation
performed at every gridpoint, like the ETKF, so expensive
algorithm.

Possibility to reduce this to larger areas.
The random perturbation acts as inflation.

Localisation has same problem as in ETKF that large-scale
balances are broken.

Needs further exploration!



3. Exploring the proposal density freedom

Model: iUn — f(ﬂj‘n_l) —+ 5”

with stochastic model error B~ N((), Q)
Observations: y" = H(xfme) + E?frue

with for Gaussian obs errors G?Tue ~ N((), R)



The transition density

The joint-in-time prior pdf can be written as:

n—l) n—l)

p(a”, x — p(w”\x”_l)p(x

So the marginal prior pdf at time n becomes:
p(a") = [ p"le" " )p(a"") da"!

We introduced the transition densities

p(a”™|z"")



Transition densities p(z"|z" 1)

p(z"[z" ™) = d(a" — f(z" 7))

x" = f(x")

t+1

Deterministic model




Transition densities p(z"|z" ')

p(z"z" ') =N (f(z" ), Q)

t+1 ﬁ

Stochastic model




Bayes Theorem and the proposal density

Bayes Theorem now becomes:
p(y"|e")p(a")
p(y)

p(y"|a") n| .n—1 n—1 n—1
o e e d

p(x"y") =

We have a set of particles at time n-7 so we can write

and use this in the equation above to perform the integral:



The transition density

Performing the integral over the sum of delta functions gives:
"

n n—1

E p(x"|z]™")

The posterior is now given as a sum of transition densities.
In the standard particle filter we use these to draw particles
at time n, which, remember, is running the stochastic model
from time n-1 to time n. We know that is degenerate.

y" \

p(z"™|y") =

So we introduce another transition density, the proposal.



The magic: proposal transition density

Multiply numerator and denominator with a proposal density g:

N

nimn  PY"E™) 1 p(z ”!af”‘l) n
p(:L’ ‘?/): - nn1 ( ’331]\[79)
Note that

1) the proposal depends on the future observation, and
2) the proposal can depend on all previous particles, not just one.

1) Ensures that the particles end up close to the observations

because they know where the observations are.
2) Allows for an equal-weight filter, as the performance bounds

suggested by Snyder, Bickel, and Bengtsson do not apply.



What does this all mean?

 The standard Particle Filter propagates the original model by

drawing from p(x" [x"1).
* Now we draw from q(xn ]a:‘?;\,l, yn), so we propagate the

state using a different model.
* This model can be anything, e.g.



Examples of proposal transition densities

The proposal transition density is related to a proposed model.

For instance, add a relaxation term and change random forcing:
xn _ f(l’n_l) 14 57’1,—1 1 K (yn o H(ZCn_l)>

Or, run a 4D-Var on each particle (implicit particle filter).
This is a special 4D-Var:

- initial condition is fixed

- model error essential

- needs extra random forcing

Or use the EnKF as proposal density.



How are the weights affected?

Draw samples from the proposal transition density g, to find:

x; Z p(x

,qu n’x1N7y)

(x™|y™) sz " —

2orls oplap )

p(z"|y") = o(x" — i)

1

which can be rewritten as:

with weights w,; =

Likelihood weight Proposal weight



Algorithm

1. Generate initial set of particles

2. Run proposed model conditioned on next observation
3. Accumulate proposal density weights p/q

4. Calculate likelihood weights

5. Calculate full weights and resample

Note, the original model is never used directly.



How to calculate p/qg in the weights?

Let’ s assume that the original model has Gaussian distributed
model errors:

p("la" ) = N (f(="),Q)

To calculate the value of this term realise it is the probability of
moving from x"1 to x. Since x" and x"! are known from the

proposed model we can calculate directly:

p(@}|2] ™) o< exp [—1 (27 = fap™h)" Q7" (2 - f(flf?’_l))]



Example calculation of p

* Assume the proposed model is

pt = f(z" )+ B+ K (yt — H(z"))

e Then we find

p(z}|z] ")

xexp |~ (K"~ H@ ™) + 50" @7 (K" — Hl ™)) +67)]

e We know all the terms, so this can be calculated



And g ...

 The deterministic part of the proposed model is:

o= [ K (g - H@ )

* So the probability becomes

n|..n 1An N\ — An_
q(ZE |$1 Nlay )OC@XP _552 TQ 1&’

 We did draw the stochastic terms, so we know what they are, so

this term can be calculated too.



The weights

* We can calculate p/g and we can calculate the likelihood so
we can calculate the weights:

o pe)  p(adfe H)
© Np(y™) q(a?|at N y™)




Example: EnKF as proposal

Model forecast to observation time: :L‘f'; — f(:l??_l) + 5?

EnKF update: r =x; + K(y" — H(x) — ¢;)

1

Use model equation:
rp = faf ™)+ B+ K(y" = H (f(z771) + 87) — &)

Regroup terms:

e

/
vy @) + K (v - H (f(2]

Leading to:




Particle filter with ‘usual’
proposal transition density




Proposal density freedom

Given particles at time n-1 the posterior pdf can be written:

o p(y \fL‘ Doz Y™
v") Z q(z"|y",..)

q(x™y", ..)

Consider the pair of random variables (/,X") and

L p(y"™|a; ") pla™|z7 ", y")
N ply™)  qlz™|y™,.)
The variance in the weights can be written:

Var(W)=Var;(Ex(W|I)) + E;(Varx (W|I))

W = w;(z") =



Optimal proposal density

A standard choice is to assume

a(="ly", ) = q(a"]z7 " y")
One also chooses Prob(I =) = i

Minimal variance in the weights is achieved by the optimal proposal:
ni.n—1 n ni.n—1 n
q(z" |z, y") = pla™|z ™", y")

The variance of the weights is
n‘wn 1)2
Var(W =3 Z —1

Degenerate for large number of independent observatoins.




Better than optimal: example 1

Again write posterior as:

a1y Z” )i

See posterior expression as mixture density and draw from
complete mixture: each particle has same weight by construction.
~1
So we choose . Loparh
Prob(I =1) = m
N p(y")

nd 2~ pla” 2l ")

We now find Var(W) =0, so ‘optimal proposal density’ not optimal!
But when number of independent observations is large we sample
from just one mixture density...



An even better proposal:

More general proposals are possible, specifically multi-step proposals:

N n—1 n—1

1 p(y"™lxy ") pla™|x! ™, y") 1
p(x™|y") = : ~ q(z"z |y Ny YY)
N,L_Zl p(y™) q(x™ ’le}\fay ) Y

where we just multiplied and divided by a proposal g(...) which
can depend on all previous particles, and with

a(a"2"|2h s y") = a(@” ", 2y )a(a |2 y")

This leads to a whole class of particle filters not hampered by
classical proofs of degeneracy.



Example

The following particle filter results in equal weights but is also
efficient for small ensemble sizes.

—1
1. Foreachidraw Zl?,zk ~ p(ZEn|ZEZL ,yn)
2. Foreachidraw &; ~ N(0, P)withP™'=Q '+ H"R'H
W no__ .k 1/2
3. Foreachiwrite " = . 4 o,; P 5@

And solve for &; in

p(ylz?)p(aflay ™) _
n—1 ) — Wtarget

(@25 s Y

wi(Oéz') —



Variance of the weights in these filters

Instead of seeing the weights as a function of the index | and the
position of the particle in state space x/, so

W(I, X™)

These filters try to find the position of the particles in state space
x;" given that the weight is equal to the target weight wqy-get , SO:

Xn (Ia wtarget)

Hence we have turned the problem around, ensuring equal weights!

Note that the full mathematical justification for this is still missing.



Experiments on Lorenz 1963 model

10,000 independent Lorenz 1963 models
30,000 variables, 10,000 O parameters
10 particles
Observations: -
:ivery 20 tlm-e steps, " \
rst two variables |
Observation errors Gaussian |
SIR needs 500,000 particles
for an effective ensemble \ _
size of about 300 on just one 71\
of the L63 models... N N\"F




Sequential parameter estimation

 SPDE " = f(z" 1, 0) + B"

* Unknown parameter

af

z" = f(z", 00) + g0 —0o) + 6"
* Model as " ="t 4y
T
hence model error  Q., = Qg + %Qng—‘g
_9f
Qx@ — %Qn

QQQ — Qn



40,000 dimensional system (30,000 variables,
10,000 parameters).
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Time evolution mean of first variable system 1, starting 10 lower than true value.



40,000 dimensional system (30,000 variables,
10,000 parameters).

20
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Time evolution mean of parameter system 1, starting 10 lower than true value.



Parameter mean values (dim=10,000)
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Application: the barotropic vorticity equation

Stochastic barotropic vorticity equation:

dq
— -Vg=F
8t+u q

256 by 256 grid - 65,536 variables
* Double periodic boundary conditions

* Semi-Langrangian time stepping scheme

* Twin experiments

* Observations every 50 time steps — decorrelation time of 42
e 32 particles

* Nudging plus equivalent-weights scheme



42 Observations over half of state

50 100 150 200 250

Truth Mean of particle filter ensemble



Individual
particles
are not
too smooth. 7~ ik

100 150 200 250 100 15
(c) Particle 23 (d) Particle 28



The update of the unobserved part

Particle 23 before update Particle 23 after update Difference
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Rank histograms
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2. Optimal transportation

The prior particles are a sample of the prior pdf, and we want to
transform that sample into a sample from the posterior pdf:

Smooth transformation



Estimate of the posterior

In sequential Bayesian Inference we do not know what the posterior
looks like. Here we explore the model transition density to find

( n‘y Zpy |3j ) ( n|xn 1’yn)

This estimate will not be very accurate when
* the number of particles at previous time is small,

* the number of observations is large, so the likelihood is highly
peaked in state space.

We will discuss this later.



Minimise Relative Entropy
(or Kullback-Leibner Divergence)

Use smooth iterative transport map 2z = T(a:') that minimises
K-L divergence:

KL = /q(x”\y”) log <Q(xn‘yn)> da™

p(z™|y™)

T(r) =z — ep(x)

leading to the iterative scheme.
o) — 50 — 9y KL (a5

How should we choose gb(az) ?



Use reproducing kernels as basis

Embed ¢(x) in the reproducing Kernel basis:

o) = (K(z,.), o(.) 7

Leading to
Vo) KL(x) = =By [K (2!, 2)V, log p('|y) + V. K (2, 2)]

SO we can now use

mgj) — xf;j_l) — eV ()KL (x,gj_l))

Weights play no role here, and unbiased if p(x" |y"™) unbiased.



Results on L63 for marginal pdfs 1D

0.25 A m— |astiter [ 0.175 -
= iniq
0.20 - 0.20 1 — post p 0.150 A
0.125 -
0.15 1 0151
0.100 -
Q e u
SIR 0.10 - 0.10 1 0.075 1
0.050 -
0.05 - 0.051
0.025 A
0.00 - 0.00 4 0.000 A
-8 -6 -4 -2 0 -8 -6 -4 -2 14 16 18
XA X> X2
0.20 - - |ast iter
0.150 — g | 01507
= post p
| 0.125 -
0.125 0.15 1
VMPE ']
2 075 - 2 0.10 1 ™ 0.075 A
0.050 - 0.050 -
0.05 -
0.025 - 0.0251
0.000 - 0.00 - 0.000 1
-6 -4 -2 -8 -6 -4 -2 16 18

X1 X2 X3



Results on marginal pdfs 2D
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And in high dimensions?

In sequential Bayesian Inference we do not know what the posterior
looks like. Here we explore the model transition density to find

p(z"|y™) Zp

New element is that we can use localisation to obtain a smooth but
more accurate estimate of the posterior, without sampling from this
posterior! Localisation will:
* Increase the effective number of particles
* Leads to better weight balance for the mixture coefficients
(Note that localisation scale not dictated by physics, so can be
smaller, so less observations in each area, so less degenerate!)

”\fb‘ )

p(a”lai ™ y")



Model equation and Kolmogorov equation

If the model equation is

ox

9t (z)
Then the pdf of x evolves as:
op(z) _ o

This is the Kolmogorov equation (Fokker-Plank equation).

Turn this around: if | know the evolution equation for the pdf | can
find the evolution equation for the state, so for the particles!



Transport of pdf

Bayes theorem reads:

p(zly) = L(y|z)p(z)

with
p(y|z)

p(y)
Define a sequence of pdfs that smoothly transform from prior to

posterior: 7T($,7') _ L(y|x)7(7)p(:€)
with 'Y(O) =0 ’7(1) — 1,50 7T($, O) — p(x), 7-‘-(377 1) — p(x\y)

L(y|z) =

Take time derivative to artificial time 7 :

8ﬂ 07y 0~y
/7/ _
= L'plog L— = mwlog L—



Finding f for the particles...

So we find the evolution equation for the pdf

on 0~y
~ — rloo =L
oT 08 oT
Remember that we want to write it as:
o
o =V (fm)
-

This leads to an equation for the vector function fin terms of
the scalar function 7(7) as follows:

0
Vi+ f(vViegL+ Viogp) = —logLa—Z

This equation can be solved for the 1D problem and needs smart
people for the high-dimensional problem...



Conclusions

Data assimilation is based on a solid mathematical framework:
Bayes Theorem.

Large number of filters and smoothers can be derived from that.

Best method will be system dependent

Fully nonlinear equal-weight particle filters for systems with
arbitrary dimensions do exist.

Localisation needs further exploration.
Proposal-density freedom needs further exploration.
Transportation Particle Filters need further exploration...

But first local Particle Filter has been implemented by DWD for
weather prediction!



