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Introduction

• problems we are dealing with in practice are large and non-linear 
and expect to become even more so …

• e.g. high-resolution NWP is highly non-linear

• standard PF formulation can never work for large dimensional 

systems

• until fairly recently PF’s have been considered computationally 
unfeasible for large dimensional systems because of the 

degeneracy problem (curse of dimensionality)



Big data

• How big is the non-linear data assimilation problem? 

• Assume we need 10 frequency bins for each variable to build the 
joint pdf of all variables.

• Let’s assume we have a modest model with a million variables.

• Then we need to store 101,000,000 numbers.

• The total number of atoms in the universe is estimated to be about 

1080.

• So the data-assimilation problem is larger than the universe…



Curse of dimensionality
• The argument for the inefficiency of PFs in high dimensional systems is 

that the number of required particles increases exponentially with the 

effective dimension of the system (Snyder et al, 2008) 

• it is not the dimension of the state space that is the problem, but the 

dimension of the observation space Ny

• the higher Ny the more peaked the likelihood is

• this leads to particle weights varying enormously, with a few particles 

having much higher weight than all the others

• resampling produces copies of the few particles with the highest 

weights

• all variation in the particles is lost

• therefore to apply a particle filter to a high-dimensional system additional 

information is needed to limit the search space of the filter.



A closer look at the weights I

Assume
• particle 1 is at 0.1𝜎 of the Ny independent observations

• particle 2 is at 0.2𝜎 of the Ny independent observations

𝜎 is the standard deviation of the observation errors

These are two almost perfect particles, what more can you want?

The weight of particle 1 will be 

The weight of particle 2 will be 



The ratio of the weights is

Take e.g. Ny= 1000 (this is modest) to find

particle 2 has a negligible weight compared to particle 1 despite 
them both being excellent particles. 

Conclusion - the number of independent observations is
responsible for the degeneracy in particle filters.

A closer look at the weights II



Possible solutions
New efficient PF variants have been developed that have been shown to 
work for large dimensional systems with a limited number of particles

Options:

• introduce localization to reduce the number of observations

• use proposal-density freedom to exploit the future observational 

information 

• Approximations to the full PF

• combine PF and EnKF or Gaussian Mixtures or second-order exact 

filters

• Transportation particle filters



Proposal density particle filters

• Aim is to ensure that equally significant particles are picked from 
the posterior density. 

• To do this we have to 

1. ensure that all particles end up in the high-probability area of 

the posterior pdf, 

• use a scheme that pulls the particles towards the observations

2. ensure that the weights of the different particles are very 
similar, or even equal, before any resampling step

• Here we discuss:

• Equivalent-Weights Particle Filter (EWPF)

• Implicit Equal-Weights Particle Filter (IEWPF)



Exploring proposal density freedom

We start by writing the prior at time n as

(1)

assuming we have a set of weighted particles at time n-1

(2)

and using (2) in (1) we can write the prior at time n as



• The idea of proposal densities is to sample from a proposed pdf 

q(x) rather than the original model pdf p(x(n)|x(n-1))

• if we multiply the numerator and denominator of  the equation for 

the prior by the proposal transition density q(x(n) | x(n-1), y(n)) we get

note that the support of q should be greater than or equal to p(x(n)|x(n-1))



drawing xi
n from q leads to a weighted set of particles at time n

where

For the posterior pdf we now have



with weights

Note that 

1. the proposal depends on the future observation, and

2. the proposal can depend on all previous particles, not just one.

Allows us to change the trajectories of the particles, and so guide 

them closer to the observations



Optimal proposal density
• we can choose any proposal transition density for q; the aim is to 

use one that includes additional information from the 

observations in the future, in an optimal way.

• the optimal proposal density (Doucet et al., 2000) chooses

so the weights simplify to 

which is the maximum weight each particle can achieve

• but these will be degenerate for systems with a large number of 

independent observations.



The equivalent-weights 
particle filter (Ades and van Leeuwen)

The EWPF works as follows:

1. Determine the OPD weights for each particle wi
max = p(yn | xi

n-1)

2. Choose a target weight, wtarget

• this is chosen such that a certain percentage of particles can reach it

• those particles that cannot are abandoned & resampled in step 5. 

3. Find the position in state space of each particle such that it has weight 
exactly equal to wtarget , we denote this position xi*

4. The move in step 3 is purely deterministic so we add a small random 

perturbation to each particle and then recalculate its weight.

5. Calculate full posterior weights for new particles and resample all 

particles such that their weights are equal again.



Choosing the target weight

In the SIR filter, the greater the weight of a particle, the higher its 
significance in estimating the posterior. 

• this would suggest that setting wtarget = max(wi
max) would lead to the most 

information being gained on the posterior pdf, but …

• no particle is able to achieve a weight greater than it’s maximum

• all but one particle would be lost

• if we choose wtarget = min(wi
max) then we keep 100% of the particles

• if we choose wtarget = median(wi
max) then we keep 50% of the particles

• if we choose to keep less than 100% of the particles then there will be 

certain particles that cannot reach the target weight no matter how we 
move them

• these will be replaced via resampling in step 5.



EWPF - step 3 details
• For the retained particles there are infinitely many ways to move a 

particle in state space such that it reaches wtarget

• In the EWPF the solution xi* is assumed to be given by

where K = QHT(HQHT + R)-1 and         is a scalar given by

with 



Barotropic vorticity model
Particle analysis mean vs truth

• SIR vs. EWPF (with 80% particles retained) 

• 256x256 grid = 65,536 state dimension

• 1150 time steps, observations every 50 time-steps

• 32 particles



EWPF weights
Values of normalised weights for each particle before re-sampling 
(time step 50)

25 of the 32 particles (80%) have almost equal weights



Comments …

• The EWPF ensures that the majority of the particles receive 
equivalent-weights, while they keep close to the observations. 

• Prevents filter degeneracy, regardless of the system dimension. 

• Fully nonlinear scheme, which represents the full posterior pdf. 

• Does not assume that posterior is a Gaussian distribution.



More comments …

• The EWPF is biased and does not converge to the posterior pdf for 
large Ne because of the equivalent-weights construction, 

• high weight particles are moved such that their weight becomes lower, 

equal to the target weight.

• In practice, the large Ne limit is not that relevant as the affordable 
number of particles will be low and so the Monte-Carlo error will be 

substantial

• As long as the Monte Carlo error is larger than the bias the scheme 

is a valid option for high-dimensional systems



Implicit equal weights particle filter
(Zhu et al)

• Steps of the IEWPF are very similar to the EWPF

• Main difference is in the way that we seek to reach the target 
weight

• in the EWPF we scale the deterministic part of the optimal proposal 

• in the IEWPF we scale the random part of the optimal proposal

• Samples drawn implicitly from a standard Gaussian distributed 
proposal density q(ξ) instead of the original one q(xn|xn−1, yn)

• these two are related by



At each observation time, the updated state of each particle i
is computed as

where is the mode of the OPD

The scalars 𝛼i are used to ensure that weight of each particle i
is equal to a target weight.

Single-stage IEWPF



Equal weights
To have equal weights, we need to find𝛼i so that for each 
particle i

… but this is messy …

Note: typically the target weight is chosen as wtarget = min(wi
max) so 

that all particles are kept, but other choices possible.



For moderately sized system the 𝛼i can be determined 
numerically by solving

where                                                                    is the lower incomplete 

gamma function 

Otherwise can derive approx solution in the limit Nx⟶∞

Solving for 𝛼i



Lorenz 96 model experiments

• 1000 dimensional

• 20 particles

• 𝛥t = 0.05 ~ 6 hours

• observations every 5 time steps, half of state



Particle trajectories 



Rank histograms: 10,000 time steps
land-sea configuration

observed gridpoint unobserved gridpoint



Comments

• By construction the 1-stage IEWPF does not converge to the 
correct posterior pdf

• not an issue as long as bias is smaller than the statistical noise in 

the method

• This version of the IEWPF scheme is only valid for high 

dimensional systems with low particle number

• Skauvold et al, 2019 show that bias is systematic, and leads 

to underestimation of the filter variance 

• New 2-stage version(s) currently being explored 



Two-stage IEWPF (Skauvold, et al 2019) 

At each observation time, the updated state of each particle is 
computed as

where         is mode of OPD as before, and                                      

• scalars 𝛼i are used to ensure that weight of each particle is 
equal to the target weight ( -1  ≤  𝛼i ≤  1 )

• fixed scalar 𝛽 is used to control the spread of the updated 
particles, without compromising particle weight equality

Equation for 𝛼i has the same form as in the single-stage case.



Lorenz 96 model experiments

• 1000 dimensional

• 25 particles

• 𝛥t = 0.05 ~ 6 hours

• observations every time steps, half of state



Particle trajectories 

observed point

unobserved point



Comments

• Second perturbation introduces an additional tuning 
parameter

• how should we choose 𝛽?

• can tuning be automated?

• could also adjust dynamically?

• Is wtarget = min(wi
max) the best choice? May be better to target 

the mean or median weight.

These questions plus solution for 𝛼i in the limit Nx⟶∞ are 
currently being explored



The Ensemble Transform 
Particle Filter (ETPF)
(Reich, 2013) 

Avoids resampling by finding a linear transportation map between 
the prior and posterior ensemble such that 

• prior particles are minimally modified

• posterior particle have equal weights 

Each posterior particle i is written as linear combination of the Ne

prior particles as

where tij are entries of a Ne x Ne transformation matrix T , that satisfy



ensures that the particles have the correct mean

(Ne
2 − 2) undetermined elements tij to find - infinite solutions

The ETPF finds these by minimising the movement from old to new 

particles

with the condition tij ≥ 0



• Minimisation takes takes O(Ne
2 log Ne) operations and is performed 

at every grid point so expensive algorithm

• possibility to reduce this to larger areas

• By construction, the ETPF underestimates the posterior 

covariance

• If model is deterministic need to add small random noise to the 

particles to avoid collapse

• usually assume 𝝃 ~ N(0,h2Pf) with 0 < h < 1

• random perturbation is adhoc - related to inflation in EnKFs.

• ETPF can be localized but need to ensure that large-scale balances 
are not broken.



• Easy to calculate weights locally, i.e. make weights space dependent by 
only using observations close to the spatial point

• Main issue is at the resampling step - how to combine particles from 
different areas in the domain?

• Constructing a new particle that consists of one particle in one part of the 
domain and another particle in another part of the domain will lead to 
problems at the boundary between the two

w1 is high
w5 is low

w1 is low
w5 is high

Localization in particle filters (1)



Localization in particle filters (2)

• the ETPF can easily be localized by 
• only taking into account observations close to each grid point

• making the transformation matrix space dependent to ensure smooth 

transitions between different regions

• van Leeuwen 2009 proposes and discusses several localization 

methods

• The most obvious  approach is to weight and resample locally, and 

then somehow `glue’ the resampled particles together by 
averaging at the boundaries between them



• use idea of gluing particles back together but with extra averaging

• independent analysis is computed locally at each grid point

• the weight of particle i at grid point j  is calculated as based on the 

likelihood of only those observations yj that are within the given 
localization area

• SIR is then used to obtain particles              for each grid point j

Local Particle Filter 
(Penny & Miyoshi, 2016)



• to ensure the posterior particles are smooth, for each grid point j, each 
particle is smoothed by averaging over Np neighbouring points 

where jk for k = 1, . . . , Np denotes the grid point index for those points in 

the localization area around j

• shown to solves the degeneracy problem in simple 1D systems but is not 

clear if it will work well in complex systems



For each observation k = 1:Ny

1. calculate adapted weights for each particle i = 1:Ne

then normalise by their sum

2. resample particles according to normalised weights to form 

particles 
3. For each grid point j = 1:Nx

• calculate localized weights

𝜌( ∙ ) is the localization function with localization radius r.

Localized Particle Filter (Poterjoy, 2016)



3. …

• calculate the posterior mean for this observation at this grid 
point

• calculate new particles at grid point j

r1,j and r2,j are scalars that ensure smooth posterior fields

end
4. Apply probability mapping for higher-order corrections.



Conclusions
• Wide range of filters and smoothers can be derived from Bayes Theorem

• Best method will be system dependent

• In practice we will be dealing with high dimensional, highly non-linear, 

complex geophysical systems

• basic PF formulation can never work for these systems

• Fully nonlinear PF variants have been developed that have been shown to 

work for large dimensional systems with a limited number of particles

• Localization needs further exploration …

• Proposal-density freedom needs further exploration …

• Transportation Particle Filters need further exploration…

• But first localized Particle Filter has been implemented by DWD for 

weather prediction (Potthast et al, MWR 2019)
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