

Introduction to Data Assimilation

Some useful linear algebra

 $\begin{bmatrix} x_1 \end{bmatrix}$

Vector and matrix notation

$$\mathbf{x} \in \mathfrak{R}^{N}$$
 denotes a column vector with N (real) entries, i.e. $\mathbf{x} = \begin{bmatrix} x_{2} \\ \vdots \\ x_{N} \end{bmatrix}$

 x_n is the element in the n^{th} position of the vector **X**.

 \mathbf{x}^{T} denotes the transpose of \mathbf{x} ; it becomes a row vector: $\mathbf{x}^{T} = \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{N} \end{bmatrix}$.

 $\mathbf{A} \in \mathfrak{R}^{N \times M} \text{ denotes a matrix with } N \text{ rows and } M \text{ columns: } \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1M} \\ a_{21} & a_{22} & \cdots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NM} \end{bmatrix}.$

 a_{nm} is the element of **A** located in the n^{th} row and m^{th} column.

We can consider each column of a matrix to be a vector, then we can express it as:

 $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_M \end{bmatrix}, \text{ where the } m^{\text{th}} \text{ column is } \mathbf{a}_m = \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{Nm} \end{bmatrix}.$

The column rank of a matrix is the number of linearly independent columns; the row rank of a matrix is the number of linearly independent rows. Both ranks coincide. For a matrix $\mathbf{A} \in \mathfrak{R}^{N \times M}$, $rank(\mathbf{A}) \leq \min(N, M)$. A matrix is said to be full rank if its rank has the maximum possible value. Otherwise, it is called rank deficient.

 \mathbf{A}^{T} denotes the transpose of \mathbf{A} , it makes rows into columns and columns into rows. E.g., for N = 3 and M = 2:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}, \text{ then } \mathbf{A}^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \end{bmatrix}$$

A square matrix is one that has the same number of rows and columns, i.e. M = N.

A symmetric matrix is a square matrix that is equal to its transpose, i.e. $A = A^T$.

The diagonal of a square matrix is the collection of values a_{nm} where n = m, i.e. $\{a_{11}, a_{22}, \dots, a_{NN}\}$.

The trace of a matrix is the sum of the values in the diagonal, i.e. $trace(\mathbf{A}) = \sum_{n=1}^{N} a_{nn}$

A diagonal (square) matrix has zero values everywhere except on the diagonal:

 $\mathbf{A} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{NN} \end{bmatrix}.$

I denotes the identity matrix; it is a diagonal matrix with ones on the diagonal: $\mathbf{A} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}.$

Basic vector and matrix operations

The product of a scalar λ and a matrix $\mathbf{A} \in \mathfrak{R}^{N \times M}$ is: $\lambda \mathbf{A} = \begin{bmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1M} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{N1} & \lambda a_{N2} & \cdots & \lambda a_{NM} \end{bmatrix}$.

For two matrices $\mathbf{A} \in \mathfrak{R}^{N \times M}$ and $\mathbf{B} \in \mathfrak{R}^{M \times L}$, let the matrix product be $\mathbf{C} = \mathbf{A}\mathbf{B}$. Then $\mathbf{C} \in \mathfrak{R}^{N \times L}$ and $c_{nl} = \sum_{m=1}^{M} a_{nm} b_{ml}$. Note that the operation is defined only if the number of columns of the left factor is equal to the number of rows of the right factor.

For two matrices $\mathbf{A} \in \mathfrak{R}^{N \times M}$ and $\mathbf{B} \in \mathfrak{R}^{M \times N}$, both products $\mathbf{C} = \mathbf{A}\mathbf{B}$ and $\mathbf{D} = \mathbf{B}\mathbf{A}$ exist. However, in general $\mathbf{C} \neq \mathbf{D}$, i.e. matrix multiplication is not commutative.

The transpose of a product is the product of the transposes of the factors in reverse order, i.e. $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$.

The inverse of a square matrix $\mathbf{A} \in \mathfrak{R}^{N \times N}$ is denoted as $\mathbf{A}^{-1} \in \mathfrak{R}^{N \times N}$, and satisfies the relationship $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$. The inverse of a matrix may or may not exist (depending on the characteristics of \mathbf{A}), and finding it is not a trivial exercise.

The inverse of a diagonal matrix
$$\mathbf{A} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{NN} \end{bmatrix}$$
 is simply $\mathbf{A}^{-1} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \cdots & 0 \\ 0 & \frac{1}{a_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{a_{NN}} \end{bmatrix}$.

The inverse of a product is $(AB)^{-1} = B^{-1}A^{-1}$, given that both A^{-1} and B^{-1} exist.

The Schur (or Hadamard) product of two matrices $\mathbf{A} \in \mathfrak{R}^{N \times M}$ and $\mathbf{B} \in \mathfrak{R}^{N \times M}$ is an entrywise product, and is denoted as $\mathbf{C} = \mathbf{A} \circ \mathbf{B}$. In this case, $\mathbf{C} \in \mathfrak{R}^{N \times M}$ and $c_{nm} = a_{nm}b_{nm}$. This product is defined for any two matrices with the same dimensions, and is commutative, i.e. $\mathbf{A} \circ \mathbf{B} = \mathbf{B} \circ \mathbf{A}$.

The inner product (or dot product) of two vectors $\mathbf{x} \in \mathfrak{R}^N$ and $\mathbf{z} \in \mathfrak{R}^N$ is denoted as $\mathbf{X} \cdot \mathbf{Z}$,

 $\langle \mathbf{x}, \mathbf{z} \rangle$ and defined as $u = \mathbf{x}^T \mathbf{z} = \mathbf{z}^T \mathbf{x} = \sum_{n=1}^N x_n z_n$. Note that the result is a scalar.

In particular, the inner product of a vector with itself is $\mathbf{x}^T \mathbf{x} = \sum_{n=1}^{N} x_n^2$, the square of the Euclidean norm of \mathbf{x} .

The outer product of two vectors $\mathbf{x} \in \mathfrak{R}^N$ and $\mathbf{z} \in \mathfrak{R}^M$ is defined as $\mathbf{U} = \mathbf{x}\mathbf{z}^T$. The result is a matrix $\mathbf{U} \in \mathfrak{R}^{NM}$, where $u_{nm} = a_n b_m$. Note that the outer product is not commutative and in fact $\mathbf{x}\mathbf{z}^T$ and $\mathbf{z}\mathbf{x}^T$ have different dimensions.