Basic concepts in particle filters

Javier Amezcua

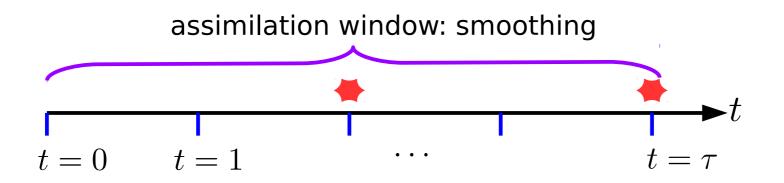
NCEO/ECMWF training course

Data assimilation

 $\mathbf{x}^t \in \mathcal{R}^{N_x}$ Model variables $\mathbf{y}^l \in \mathcal{R}^{N_y}$ Observations

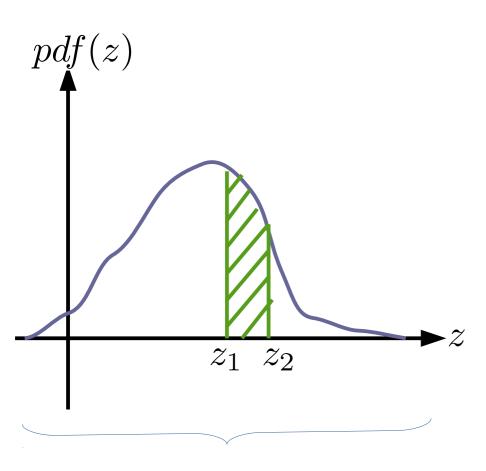
$$\mathbf{x}^{t} = m^{(t-1) \to t} \left(\mathbf{x}^{t-1} \right) + \boldsymbol{\beta}^{t}$$
$$\mathbf{y}^{l} = h^{l} \left(\mathbf{x}^{t=l} \right) + \boldsymbol{\eta}^{l}$$
$$\mathbf{x}^{0} r.v., \ \mathbf{x}^{0} \perp \boldsymbol{\beta}^{t} \perp \boldsymbol{\eta}^{l}$$

Let us work in the **discrete-time** world.



To obtain the posterior pdf we can use **Bayes' theorem**.

Probability density functions



Probability density function:

$$pdf(z) \ge 0 \ z \in \mathcal{R}^1$$
$$pdf(\mathbf{z}) \ge 0 \ \mathbf{z} \in \mathcal{R}^N$$

Probability:

$$p(z_1 \le z \le z_2) = \int_{z_1}^{z_2} p df(z) dz$$

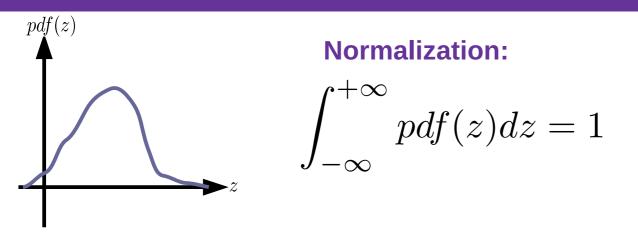
$$0 \le p \left(z_i \le z \le z_j \right) \le 1$$

Statistical **support** of the variable

Cumulative density function

$$cdf(z_1) = \int_{-\infty}^{z_1} pdf(z)dz$$

Properties and operations

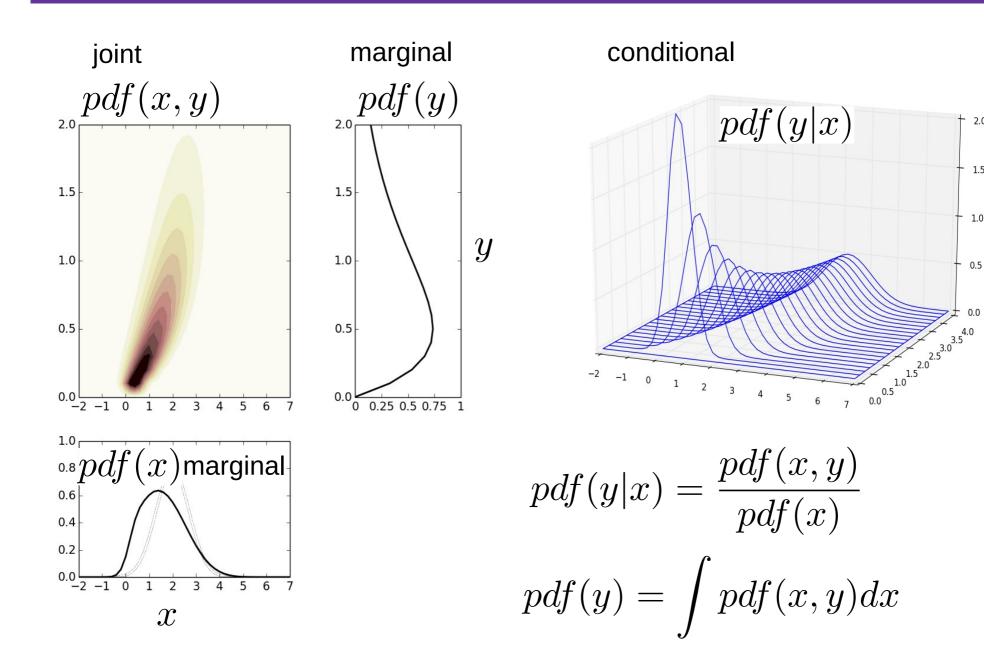


Expected value: center of mass of the distribution (barycentre/centroid) $\mu_{z} = E[z] = \int_{-\infty}^{+\infty} zpdf(z)dz$ $\mu_{g}(z) = E[g(z)] = \int_{-\infty}^{+\infty} g(z)pdf(z)dz$

Variance: mean quadratic deviation from the expected value

$$\sigma_z^2 = Var[z] = \int_{-\infty}^{+\infty} \left(z - \mu_z\right)^2 p df(z) dz$$

Joint, conditionals, marginals



5

2.0

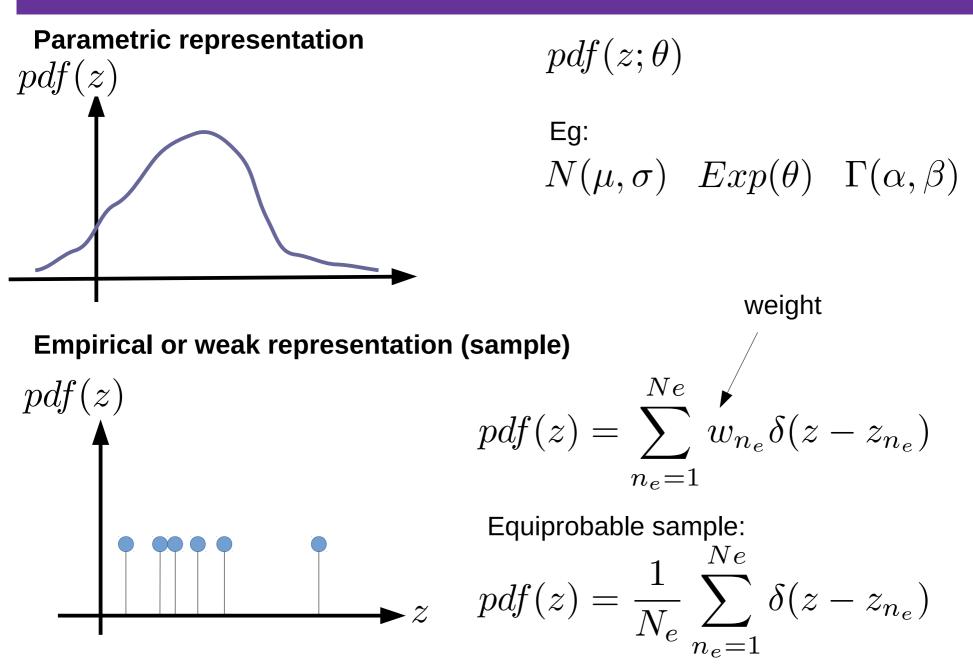
1.5

1.0

0.5

0.0

Representing pdf's



The Dirac delta function

$$pdf(z) = \frac{1}{N_e} \sum_{n_e=1}^{N_e} \delta(z - z_{n_e})$$

Properties:
$$\delta(z-z^*) = 0 \ \forall z \neq z^*$$

$$\int_{-\infty}^{+\infty} \delta(z - z^*) dz = 1$$

The Dirac delta 'kills' integrals:

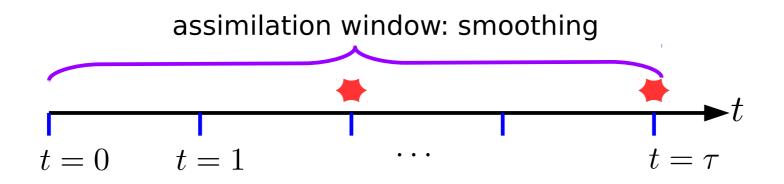
$$\int_{-\infty}^{+\infty} g(z)\delta(z-z^*)dz = g(z^*)$$

Back to data assimilation

 $\mathbf{x}^t \in \mathcal{R}^{N_x}$ Model variables $\mathbf{y}^l \in \mathcal{R}^{N_y}$ Observations

$$\begin{aligned} \mathbf{x}^{t} &= m^{(t-1) \to t} \left(\mathbf{x}^{t-1} \right) + \boldsymbol{\beta}^{t} \\ \mathbf{y}^{l} &= h^{l} \left(\mathbf{x}^{t=l} \right) + \boldsymbol{\eta}^{l} \\ \mathbf{x}^{0} \ r.v., \ \mathbf{x}^{0} \perp \boldsymbol{\beta}^{t} \perp \boldsymbol{\eta}^{l} \end{aligned}$$

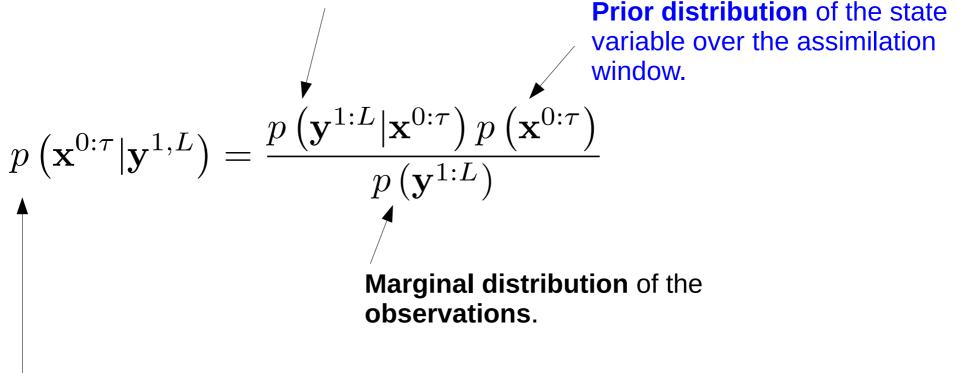
Let us work in the **discrete-time Markovian** world.



To obtain the posterior pdf we can use **Bayes' theorem**.

Bayes theorem

Likelihood of the observations over the assimilation window.

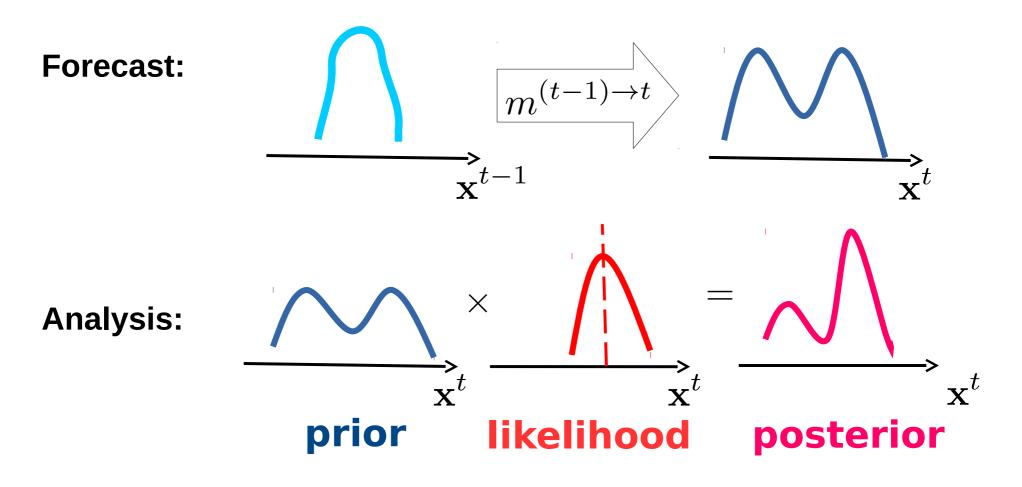


Posterior probability distribution of the state variables given the observations over the assimilation window.

How to get these elements?

Working with pdf's

Consider the following 1-step scenario:



Solutions:

Forecast:

Continuous system:

- With model error (Wiener process): Fokker-Plank equation.
- Without model error: Liouville equation

Discrete system:

- With model error. Transition probabilities. **Chapman-Kolmogorov** equation.

- Without model error. Chapman-Kolmogorov equation using Dirac deltas.

Analysis:

Bayes Theorem.

The simplest particle filter

$$p(x|y) = \frac{p(y|x)p(x)}{\int p(y|x)p(x) \, dx}$$

$$\int \text{Use ensemble} \qquad p(x) = \sum_{i=1}^{N} \frac{1}{N}\delta(x - x_i)$$

$$p(x|y) = \sum_{i=1}^{N} w_i \delta(x - x_i)$$

with

$$w_i = \frac{p(y|x_i)}{\sum_j p(y|x_j)}$$

the weights.

The weights

- The weight w_i is the normalised value of the pdf of the observations given model state x_i.
- For Gaussian distributed variables it is given by:

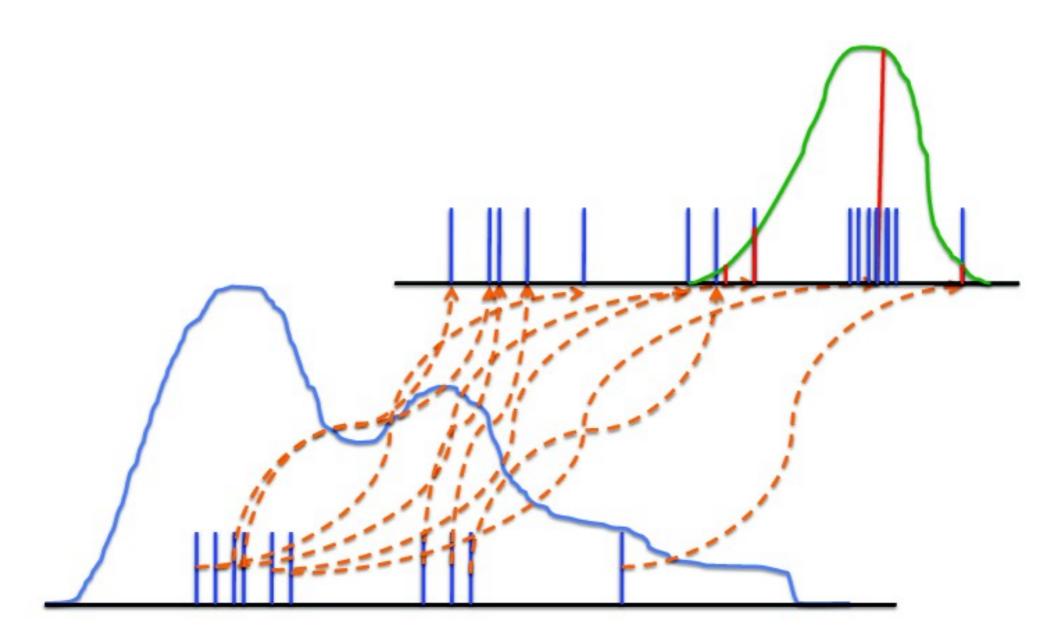
$$w_i \propto p(y|x_i)$$

$$\propto \exp\left[-\frac{1}{2}\left(y - H(x_i)\right)^T R^{-1}\left(y - H(x_i)\right)\right]$$

• That is all !!!

We can use the weights to compute any sample statistic.

Weight degeneracy

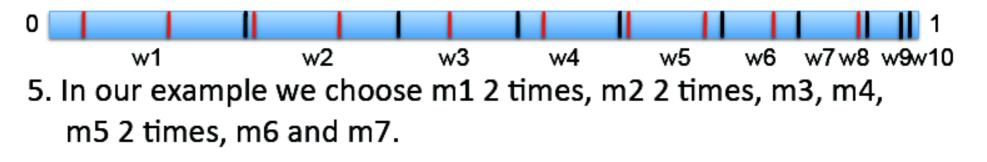


Simple resampling

1. Put all weights after each other on the unit interval:

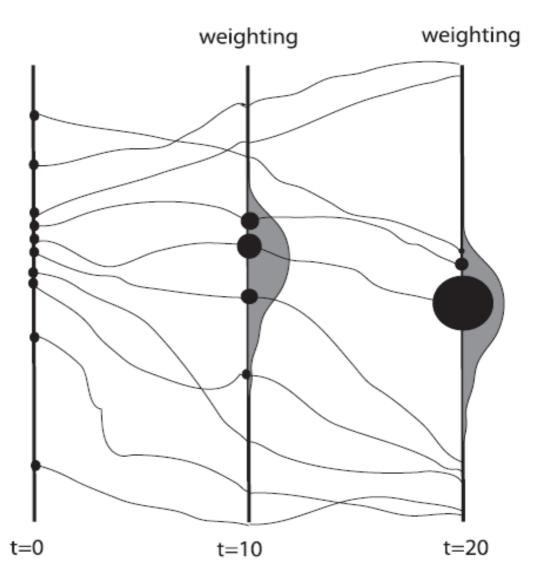
- Draw a random number from the uniform distribution over [0,1/N], in this case with 10 members over [0,1/10].
- 3. Put that number on the unit interval: this points to the first member

 Add 1/N to the end point: the new end point is our second member. Repeat this until N new members are obtained.

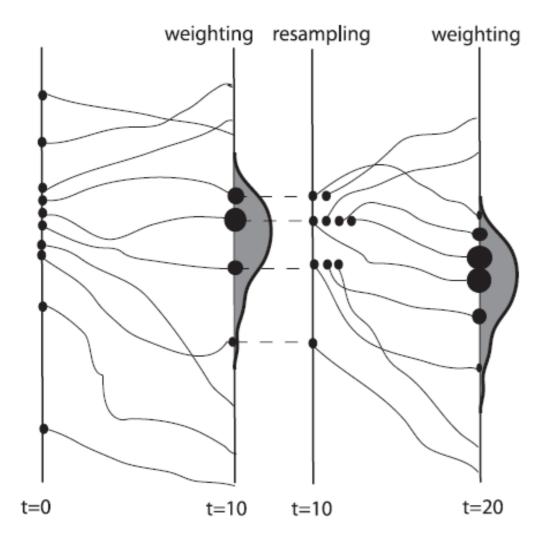


Particle filtering in time

If we iterate this in time we need to weight every time there is an observation.



Simple Importance Resampling



Particle filters degenerate

$$N_e \propto exp[D_{eff}^2]$$

Snyder et al 2008

$$D_{eff} \propto N_{y,indep}$$

Ades and Van Leeuwen 2013

Imperfect models

$$p(\mathbf{x}^{t}|\mathbf{y}^{1:t}) = \frac{p(\mathbf{y}^{t}|\mathbf{x}^{t})}{p(\mathbf{y}^{t})} p(\mathbf{x}^{t}|\mathbf{y}^{1:t-1})$$

$$\frac{p(\mathbf{y}^{t}|\mathbf{x}^{t})}{p(\mathbf{y}^{t})} \int p(\mathbf{x}^{t}|\mathbf{x}^{t-1}) p(\mathbf{x}^{t-1}|\mathbf{y}^{1:t-1}) d\mathbf{x}^{t-1}$$

$$\text{transition} \qquad \text{prior}$$

Giving a particle representation to the prior:

$$p(\mathbf{x}^{t-1}|\mathbf{y}^{1:t-1}) = \frac{1}{M} \sum_{m=1}^{M} \delta(\mathbf{x}^{t-1} - \mathbf{x}_m^{t-1})$$

Some assumptions

Conditional independence of the observations.

$$p\left(\mathbf{y}^{1:L}|\mathbf{x}^{0:\tau}\right) = \prod_{l=1}^{L} p\left(\mathbf{y}^{l}|\mathbf{x}^{t=l}\right)$$

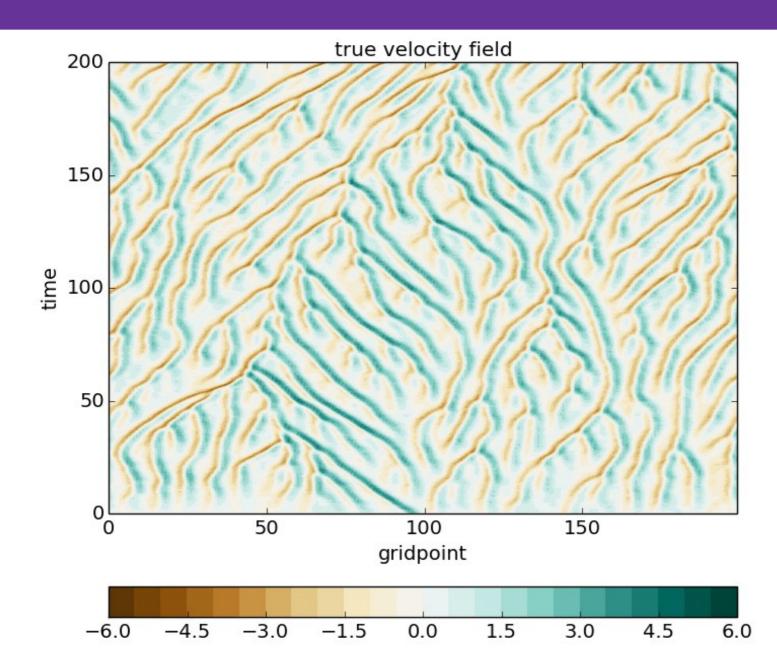
Likelihoods at different observational times

Markovian system. No memory.

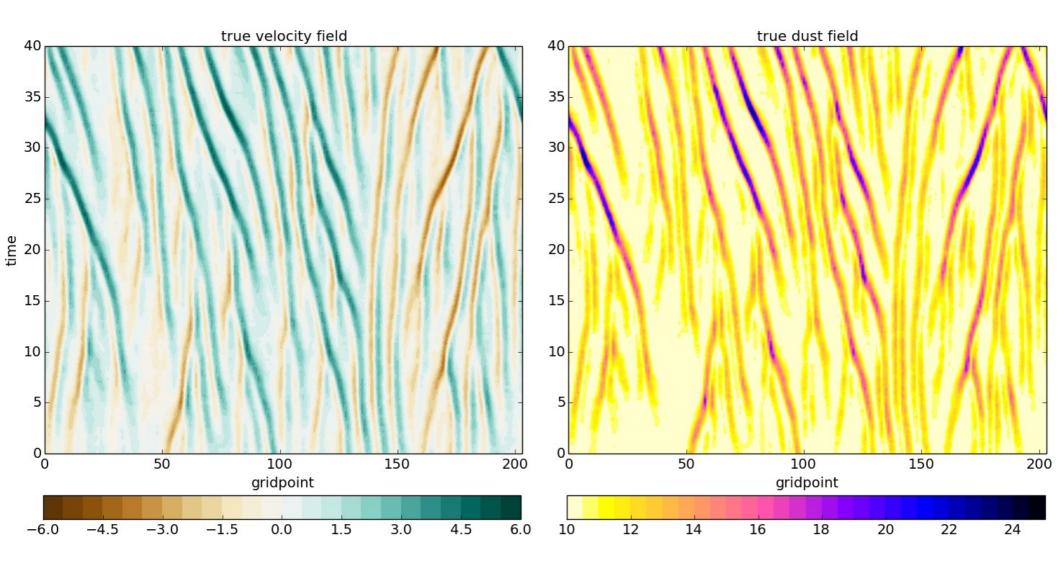
$$p\left(\mathbf{x}^{0:\tau}\right) = \prod_{t=1}^{\tau} p(\mathbf{x}^t | \mathbf{x}^{t-1}) \ p(\mathbf{x}^0)$$

Transition densities Prior at the beginning of window

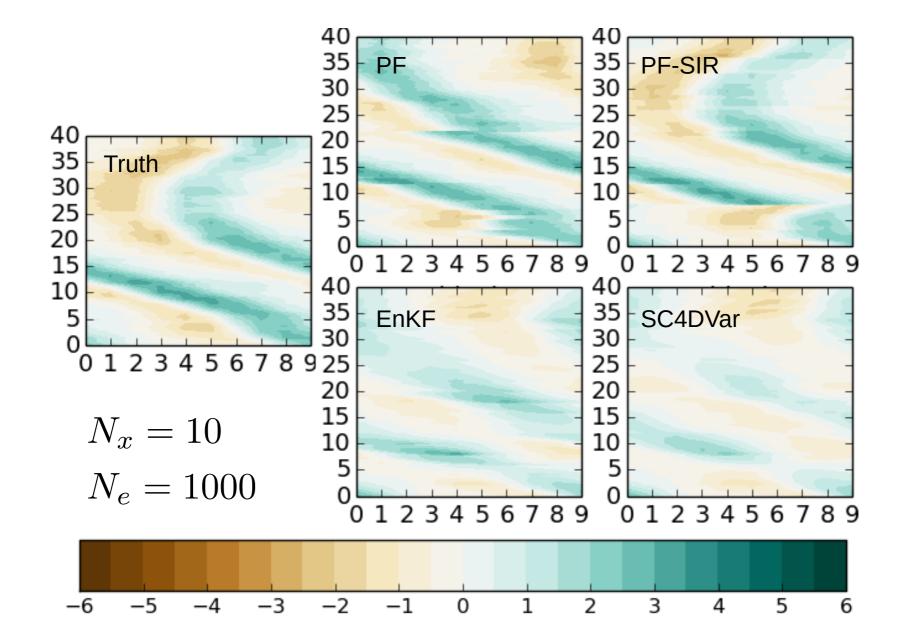
Example: Kuramoto-Shivashinski



Non-linear observations



Example: Kuramoto-Shivashinski



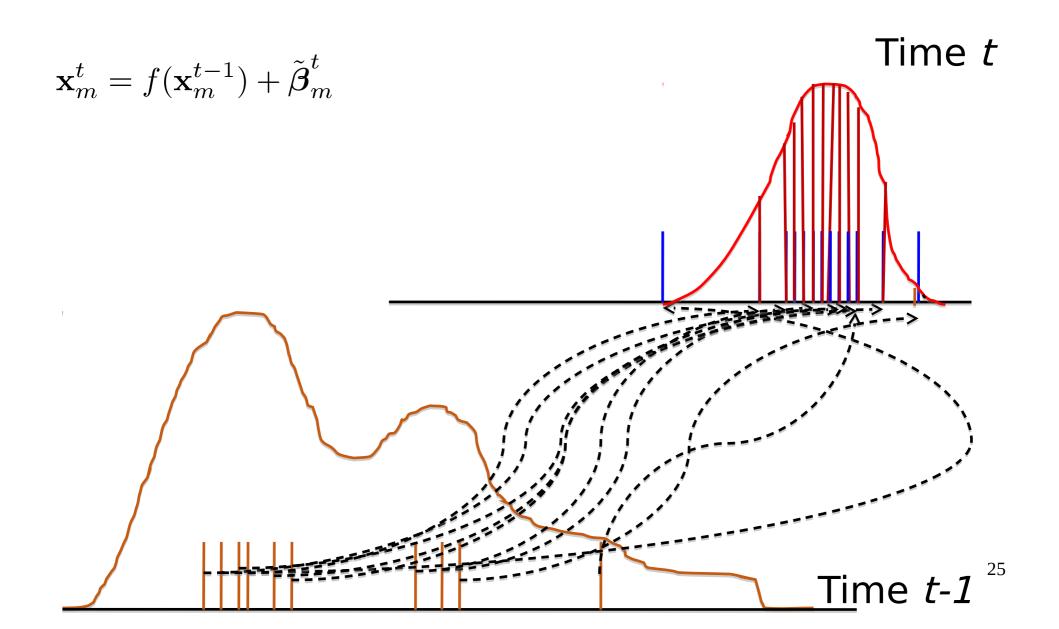
Proposal densities

$$p(\mathbf{x}^{t}|\mathbf{y}^{t}) = \frac{1}{p(\mathbf{y}^{t})} \frac{p(\mathbf{x}^{t})p(\mathbf{y}^{t}|\mathbf{x}^{t})}{q(\mathbf{x}^{t})} q(\mathbf{x}^{t}) = \sum_{m=1}^{M} w_{m} \delta(\mathbf{x}^{t} - \mathbf{x}_{m}^{t})$$
Particle representation
Point-wise evaluation
$$p(\mathbf{x}^{t}|\mathbf{y}^{1:t}) = \frac{1}{M} \frac{p(\mathbf{y}^{t}|\mathbf{x}^{t})}{p(\mathbf{y}^{t})} \sum_{m=1}^{M} \frac{p(\mathbf{x}^{t}|\mathbf{x}_{m}^{t-1})q(\mathbf{x}^{t}|\mathbf{x}_{m}^{t-1},\mathbf{y}^{t})}{q(\mathbf{x}^{t}|\mathbf{x}_{m}^{t-1},\mathbf{y}^{t})}$$

Proposal densities

- Simple nudging (e.g. van Leeuwen 2010)
- Proposal densities: Optimal proposal density
 - Equal-weight implicit sampling

'Informed' particles



Optimal proposal density

$$p(\mathbf{x}^t | \mathbf{y}^{1:t}) = C \sum_{m=1}^{M} \frac{p(\mathbf{y}^t | \mathbf{x}_m^t) p(\mathbf{x}^t | \mathbf{x}_m^{t-1})}{q(\mathbf{x}^t | \mathbf{x}_m^{t-1}, \mathbf{y}^t)} \delta(\mathbf{x}^t - \mathbf{x}_m^t)$$

- -

When using the optimal $q(\mathbf{x}^t | \mathbf{x}_m^{t-1}, \mathbf{y}^t) = p(\mathbf{x}^t | \mathbf{x}_m^{t-1}, \mathbf{y}^t)$ proposal density:

The problem reduces to:
$$p(\mathbf{x}^t | \mathbf{y}^{1:t}) = C \sum_{m=1}^{M} p(\mathbf{y}^t | \mathbf{x}_{m-1}^t) \delta(\mathbf{x}^t - \mathbf{x}_m^t)$$

But it is **not** that **simple** to **sample** from the **OPD**.

Targeting

Problem: inspite of the use of proposal densities **degeneracy can occur**. However, for a given particle the proposal only depends on that particle.

$$p(\mathbf{x}^t | \mathbf{y}^{1:t}) = C \sum_{m=1}^{M} \frac{p(\mathbf{y}^t | \mathbf{x}_m^t) p(\mathbf{x}^t | \mathbf{x}_m^{t-1})}{q(\mathbf{x}^t | \mathbf{x}_m^{t-1}, \mathbf{y}^t)} \delta(\mathbf{x}^t - \mathbf{x}_m^t)$$

Solution: force equal* weights. For each particle, use a proposal density that depends on the whole sample.

$$p(\mathbf{x}^t | \mathbf{y}^{1:t}) = C \sum_{m=1}^{M} \frac{p(\mathbf{y}^t | \mathbf{x}_m^t) p(\mathbf{x}^t | \mathbf{x}_m^{t-1})}{q(\mathbf{x}^t | \{\mathbf{x}_m^{t-1}\}_m, \mathbf{y}^t)} \delta(\mathbf{x}^t - \mathbf{x}_m^t)$$