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Recap of problem we wish to solve 
 

• Given prior knowledge of the state of a system and a set of observations, 
we wish to estimate the state of the system at a given time. 

 

Figure: 1D example of Bayes’ theorem.  

Moderate rain Heavy rain No rain 

For example this could be rainfall amount in a given 
grid box. 
A-priori we are unsure if there will be moderate or 
heavy rainfall. The observation only gives probability 
to the rainfall being moderate.  
Applying Bayes’ theorem we can now be certain that 
the rainfall was moderate and the uncertainty is 
reduced compared to both the observations and our 
a-priori estimate. 



Recap of 4DVar 
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• 4DVar aims to find the most likely state at time t0, given an initial estimate, 
xb, and a window of observations. 
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•    J (the cost function) is derived assuming Gaussian error distributions and a 
perfect model. 
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Recap of 4DVar: why do any different? 
 

Advantages 
• Gaussian and near-linear assumption makes this an efficient algorithm. 
• Minimisation of the cost function is a well posed problem (the B-matrix is designed to 

be full rank). 
• Analysis is consistent with the model (balanced). 
• Lots of theory and techniques to modify the basic algorithm to make it a pragmatic 

method for various applications, e.g. incremental 4DVar, preconditioning, control 
variable transforms, weak constraint 4DVar... 

• Met Office and ECMWF both use methods based on 4DVar for their atmospheric 
assimilation. 

 
Disadvantages 
• Gaussian assumption is not always valid. 
• Relies on  the validity of TL and perfect model assumption. This tends to restrict the 

length of the assimilation window. 
• Development of TL model, M, and adjoint, MT, is very time consuming  and difficult to 

update as the non-linear model is developed. 
• B-matrix is predominately static. 

 
This motivates a different approach… 

 



Sequential DA 
 

• Instead of assimilating all observations at one time, assimilate them sequentially in 
time. 

• This can be shown to be equivalent to the variational problem, assuming a linear 
model and all error covariances are treated consistently. 
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• Need to be able to evolve the uncertainty in the state from one 
observation time to the next. 

• The Kalman filter (Kalman, 1960) assumes a linear model 

 

The Kalman filter  
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The Kalman filter algorithm 

Prediction step 

• Evolve mean state to time of observation 

 

• Evolve covariance to time of observation allowing for model error,  

 

 

Observation update step  

• Update mean state given observation 

 

 

• Update error covariance given observation 



Motivation for the ensemble Kalman 
filter (EnKF)  

 • The Kalman filter assumes the evolution model and observation operator 
is linear. 

• The Extended Kalman filter (EKF e.g Grewal and Andrews (2008)) was 
developed to get around this problem by allowing for the mean state to be 
evolved by the non-linear model. 

• The EKF still needs the TL and adjoint model to propagate the covariance 
matrix. 

• Due to the size of this matrix for most environmental applications, the EKF 
is not feasible in practice. 

• An alternative approach to explicitly evolving the full covariance matrix is 
to instead estimate it using a sample of evolved states (known as the 
ensemble). 

 



Extended Kalman filter approach 
Explicitly evolve the mean and covariances forward in time using M, M and MT. 

Ensemble Kalman filter approach 
Sample from the initial time, evolve each state forward in time using M, then estimate 
the mean and covariance from the evolved sample. 

Time 1 
Time 2 
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EnKF algorithms 

• There are many many different flavours of EnKF. 

• EnKF algorithms can be generalised into two main categories: 

– Stochastic algorithms (e.g. the perturbed observation Kalman filter) 

– Deterministic algorithms (e.g. the ensemble transform Kalman filter) 

• All EnKF methods can be represented by the same basic schematic: 
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xb 
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. . . . 

• Developed by Evensen (1994) 

Prediction step 

– Evolve each ensemble member forward using the non-linear model 
with added noise. 

 

– Reconstruct the mean ensemble 

 

 

– And its covariance 

 

 

Filtering step 

– Update the ensemble using perturbed observations 

 

 

The perturbed observation Kalman 
Filter 

Where Re is the covariance reconstructed 
from the perturbed observations 

* 
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The perturbed observation Kalman 
Filter 

• The advantages of the perturbed observation KF is that it is very simple to 
implement and understand for toy models. However… 

– It is necessary to perturb the observations in order for the variance of 
the ensemble after the update step to correctly represent the 
uncertainty in the analysis. 

– This introduces additional sampling noise. 

– The perturbed ob KF also needs to invert the rank deficient matrix  

 

 

• This motivates the development of square-root or deterministic forms of 
the EnKF which do not need to perturb the observations. 



• The idea of ESRF is to create an updated ensemble with covariance 
consistent with 

 

• Recall that the ensemble covariance matrix is given by  

 

 

• Instead of updating each ensemble member separately, as in the 
perturbed observation KF, the ESRF generates the new ensemble 
simultaneously by updating Xf instead of x(i),f 

Ensemble Square Root Filter 



• Prediction step 

– This is the same as for the perturbed observation ensemble KF. The 
rest is different... 

• Forecast-observation ensemble 

– Transform the forecast ensemble to observation space 

– from this can compute the mean        and perturbation matrix 

• Update ensemble mean and perturbation matrix 

 

 

 

 

 

• Need to define the matrix T. 

Ensemble Square Root Filter 



Ensemble Square Root Filter 

The T matrix 

• The matrix T is chosen such that 

 

 

 

• This does not uniquely define T which is why there are so many different 
variants of the ESRF, e.g. the Ensemble Adjustment Kalman Filter 
(Anderson (2001), and the Ensemble Transform Kalman Filter Bishop et al. 
(2001)) 

• Tippet et al. (2003) review several square root filters and compare their 
numerical efficiency. 

 



The Ensemble Transform Kalman Filter 

• First introduced by Bishop et al. (2001), later revised by Wang et al. (2004). 

• T is computed from the eigenvalue decomposition of  

 

 

 

• The revision by Wang et al. highlighted that any T which satisfies the 
estimate of the analysis error covariance does not necessarily lead to an 
unbiased analysis ensemble, see  Livings et al. (2008) for conditions that T 
must satisfy for the analysis ensemble to be centred on the mean. 



Model error 

• The ensemble Kalman filter allows for an imperfect model by adding noise 
at each time step of the model evolution. 

 

• The matrix Q is not explicitly needed in the algorithm, only the effect of 
the model error in the evolution of the state. 

• There have been many different strategies to including model error in the 
ensemble, based on where you think the source of the error lies. A few 
examples are 

– Multiphysics- different physical models are used in each ensemble member 

– Stochastic kinetic energy backscatter- replaces upscale kinetic energy loss due 
to unresolved processes and numerical integration. 

– Stochastically perturbed physical tendencies 

– Perturbed parameters 

– Or combinations of the above 

• Can verify the model error representation against  independent 
observations (e.g. Berner et al. 2011 also see next lecture). 

 



Summary of the Ensemble Kalman 
Filter 

Advantages 

– The a-priori uncertainty is flow-dependent. 

– The code can be developed separately from the dynamical model e.g. 
NCEO’s EMPIRE system which allows for any model to assimilate 
observations using ensemble techniques. 

– No need to linearise the model, only linear assumption is that statistics 
remain close to Gaussian. 

– Easy to account for model error. 

Disadvantages 

– Sensitive to ensemble size. Undersampling can lead to filter divergence. 
Ideas to mitigate this include localisation and inflation (see next EnKF 
lecture). 

– Assumes Gaussian statistics, for highly non-linear models this may not be 
a valid assumption (see lecture on particle filters) 

– The updated ensemble may not be consistent with the model equations. 



Summary of the Ensemble Kalman 
Filter 

The different EnKF algorithms 

– Many different algorithms exist. 

– Stochastic methods update each ensemble member separately and 
then estimate the first two sample moments to give the ensemble 
mean and covariance. 

– Deterministic methods update the ensemble simultaneously based on 
linear/Gaussian theory. 

 

EnKF vs 4DVar 

– Each method has its own advantages and disadvantages- there is no 
clear winner. 

– Hybrid methods aim to combine the best bits of both (see lecture later 
today on hybrid methods) 
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