The Ensemble Kalman filter PRACTICAL

Dr Sanita Vetra-Carvalho, Dr Javier Ameczua, Dr Natalie Douglas

Data-assimilation training course. 5-8th March 2019, University of Reading

1

DA Toy Models

We will use two toy models:

- Lorenz '63 with 3 variables
- Lorenz '96 with 12 variables

DA Toy Models: L63

$\frac{\mathrm{d}x}{\mathrm{d}x} = \sigma(y-x).$	The constants:
$\mathrm{d}t$ dt	$\sigma = 10,$
$rac{\mathrm{d}y}{\mathrm{d}t} = x(ho-z)-y,$	$\rho = 8/3,$
	$\beta = 28$
$\mathrm{d}z$	are the system parameters, chosen
$rac{\mathrm{d} t}{\mathrm{d} t} = xy - eta z.$	such that we have a chaotic system.

The equations relate the properties of a two-dimensional fluid layer uniformly warmed from below and cooled from above. In particular, the equations describe the rate of change of three quantities with respect to time:

- x is proportional to the rate of convection,
- y to the horizontal temperature variation,
- and z to the vertical temperature variation.

DA Toy Models: L96

For $i=1,\ldots,N$:

$$rac{dx_i}{dt} = (x_{i+1} - x_{i-2})x_{i-1} - x_i + F$$

where it is assumed that

$$x_{-1} = x_{N-1}, x_0 = x_N$$
 and $x_{N+1} = x_1$

Here, x_i is a system variable and F = 8 is a forcing term.

How to run the models

Lorenz '63

ControlL63Enkf.py

This is the control file, and it is the one which you will be running and modifying.

• L63model.py

This file contains all the instructions to run the L63 model.

• L63misc.py

This file generates different observation operators, creates the observations, and generates a simple background error covariance matrix.

• L63kfs.py

This file contains the routines to perform SEnKF and ETKF.

L63plots.py

This file has instructions for different plots.

Lorenz '96

ControlL96EnKF.py

This is the control file, and it is the one which you will be running and modifying.

· L96model.py

This file contains all the instructions to run the L96 model.

• L96misc.py

This file generates different observation operators, creates the observations, and generates a simple background error covariance matrix.

· L96kfs.py

This file contains the routines to perform SEnKF, ETKF.

· L96plots.py

This file has instructions for different plots.

How to run the models

You will run different sections of the file *ControlL63EnKF.py*.

The sections are enumerated as comments of the file (recall that in python # is used for comments).

To run only a section of a file you can highlight the desired instructions with the mouse, and the press F9.

How to run the models

- Section 1 generates the nature run of the experiment, i.e. what we consider to be the true system. You can change the system parameters if you want to.
- Section 2 is related to the observations. You can select which variables to observe, how frequently and with what variance.
- Section 3 contains the DA experiments using ETKF, SEnKF and L-SEnkF for the L96. Here you can vary the size of the ensemble, inflation, localisation (for L96), and DA method.
- Section 4 allows you to perform parameter estimation (L63 only).

Output

A number of plots will be generated by the code including:

- nature run or truth
- observations
- ensemble forecast and analysis mean
- forecast and analysis ensemble
- RMSE vs Ensemble Spread