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Bayes' theorem in DA

Likelihood. Pdf of the
observations given a value of Prior pdf. Pdf of

the state variable. \ the state variables
coming from the
Fobordi ™
pajly |Xx)p
pdf (x|y) =

/4 p(Y)\

Marginal pdf of the

Posterior pdf. Pdf observations. It is often
of the state the case we do not need to
variables given the compute this, since it acts
observations. as a normalisation

constant.



1. Variational methods

Jx) = (x—x,) P l(x—x,) + (y — HX)) R (y — H(X))

Jx) 1

Find the minimum of the cost function via (iterative) optimisation
techniques. One needs the gradient of the cost function.

The background error covariance is static.



2. Ensemble Kalman filter

Use sample estimators with the KF equations.

Nonlinear model forecasts

Uncertainty at Uncertainty at forecast time with
analysis time covariance P
(Gaussian)



Filters

Assimilate every time observations are available.
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Smoothers

Assimilate observations over a time window.
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Characteristics of traditional DA methods

Method Observations Covariance
Variational | Kalman || Sequential | Smoother || Static | Dynamic
3DVar v v v
4DVar v v (V') v
Optimal Interpolation v v v
Kalman Filters v v v
Kalman Smoother v v v
Solution is got
using (iterative) . :
minimisation ::Jonnc;eigtearlendty 'S
techniques. Solution is got fixed in time.
using explicit
linear algebra. Estimation is Estimation is

done for an

instant.

done within a

time window.

Uncertainty
evolves in time.




3D vs 4DVar

4DVar has important
iInformation from the
future (after all, it is a
smoother), 3DVar does
not.

The figure shows a
comparison of the
performance of the two
methods. Taken from
Evans et al, 2005.
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time step

DA cycle and observations: 8Ar, R=2*1
4D-Var assimilation window: 24Ar¢



How long should the assimilation window be?

The longer the 4D assimilation window the more observations
we’ll have... but also the more nonlinear the forecast will be.
The best should be somewhere in the middile.

Win=8 | 16 24 32 40 48 o6 64 72

> Fixedwindow | 059 | 059 | 047 | 043 | 0.62 | 095 096 | 091 | 098

Start with
short window

059 | 051 |047 | 043 | 042 | 039 044 | 038 | 043

Performance of 4DVar using It
the Lorenz 1963 and different I
lengths of assimilation window \,/\ /
(Kalnay et al., 2007). A "“
| A 0, e
It is recommendable to do the / e g
minimization progressively while ————F—F—

Increasing the assimilation
window (Pires et al., 1996). ~— g —
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Sampling
There Is always sampling noise in the estimators, this
reduces as the ensemble size increases.

Example with a univariate Gaussian distribution.

Effect of sample size in the estimation of the mean, p=10
300 samples considered
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Sampling

Two effects of finite sample size:
- Underestimation of sample covariance.
- Spurious long-range correlations.

Fixes:
- Covariance inflation
- Covariance localization

Also, the sample covariance matrix is singular for N>M...

How many members would we need? At least as many as the
number of unstable directions of error growth?



RMSE

Covariance inflation and
performance.

Lorenz 1963 H=LR=2I,M =3

analysis RMSE (averaged over 10° analysis cycles)

frequent cbservations
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Covariance localization

* When forecast error covariance is mispecified (e.g., due to
neglecting model error, or when M << N), it may include
spurious correlations between very distant grid points.

* A common solution is to multiply each Pt element by an
appropriate weight that reduces long-distance correlations.

* This ensures that only the components of P believed to

represent the corresponding components of Pb accurately
are retained.
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observations

Localization
Example using Lorenz 1996 Co Pb

Cut-off Gaspari-Cohn
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observations

Localization  ce(p’H|

Example using Lorenz 1996, observing every other variable.

Cut off Gaspari-Cohn

Localization Matrix Localization Matrix
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Combined effects of inflation and localization

Experiments with Lorenz 1996 and 40 variables, observing

every 2 time steps and every other variable.
RMSE LETKF
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Combining the best of 2 worlds?

A static covariance is full An ensemble
rank, It is invertible, it covariance has
gives idea of the iInformation of the flow,
climatology. but it can be singular
and contains sampling
errors.
R "
Climatology Flow/State
Dependence

B = aBstatic + (1 o a)B

ensemble > Compromise?

There are several ways to implement this.
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