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EnKF Practical Considerations

Ross Bannister, r.n.bannister@reading.ac.uk

Variational DA vs. Ensemble KF

Variational Bare ensemble KF

Description Minimize a cost function (maximum a-posteriori) N ens. members of poss. background and
analysis. Analyses derived from KF eqs.

Flavours 1D-Var, 3-D Var, 4-D Var (strong/weak const.) Stochastic EnKF, Deterministic (square-root)
forms, localized �lters

Uncertainty Respect obs and background uncertainty Respect obs and background uncertainty

Stats Gaussian Gaussian

Operators Allows weakly non-linearM, H
Allows direct and indirect observations

Need M, H, and MT, HT

Allows weakly non-linearM, H
Allows direct and indirect observations
Does not need M, H, and MT, HT

Obs types Direct and indirect observations Direct and indirect observations

A-priori

error stats
PB → B (prescribed)

B di�cult to determine
PB adapts with �ow (approx. from ens.)
Initial ensemble di�cult to determine

Ens. tends to be under-spread (�lter divergence)
Analysis Smooth and balanced (according to B)

Analysis err. stats can be est. with extra
procedures

Sampling noise in ens. leads to noisy analyses
Appropriate balance properties

Est. of analysis err stats from analysis ens.
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Lecture outline
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• Sampling error for one variable

• Sampling error in the EnKF

• Ensemble spread

• Localization
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Sampling error for one variable
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Sampling error and covariances

Basic ensemble estimate of the forecast error covariance matrix:

1. Take ensemble analysis at t = −T (N ensemble members
stored in an n×N matrix):

XA(−T ) =

 ↑ ↑
x
(1)
A (−T ) · · · x

(N)
A (−T )

↓ ↓

 .

2. Propagate all members to t = 0 (with added noise to
represent model error):

XB(0) =M [XA(−T )]+η =

 ↑ ↑
x
(1)
B (0) · · · x

(N)
B (0)

↓ ↓

 .

3. Calculate perturbations from the mean, x
′(i)
B = x

(i)
B −〈xB〉

(proxy for forecast errors):

X′B = X′B(0) =

 ↑ ↑
x
′(0)
B · · · x

′(N)
B

↓ ↓

 .

4. Formula for the sample error covariance:

PB ≈ P
(N)
B =

1

N − 1

N∑
i=1

x
′(i)
B x

′(i)T
B ,

=
1

N − 1
X′BX′TB .

This matrix is not calculated explicitly for large systems, but we can use the formula to explore the consequences of N � n.
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Sampling error and covariances (continued)

Reminder (example with stochastic formulation)

Analysis increment formula for member i : x
(i)
A − x

(i)
B = P

(N)
B HT

(
R + HP

(N)
B HT

)−1 (
y(i)
o −H(x

(i)
B )
)
,

= P
(N)
B v(i),

Reminder: sample forecast error cov. matrix: P
(N)
B =

1

N − 1

N∑
i=1

x
′(i)
B x

′(i)T
B .

1. Analysis increments (x
(i)
A − x

(i)
B ) lie in the subspace of the forecast error ensemble

Approximate PB with P
(N)
B in the analysis increment formula:

x
(i)
A − x

(i)
B ≈ 1

N − 1

N∑
i=1

x
′(i)
B x

′(i)T
B v(i),

≈ 1

N − 1

N∑
i=1

x
′(i)
B α(i),

where α(i) = x
′(i)T
B v(i) = x

′(i)
B · v(i).

Even if the observations indicate otherwise, the analysis increments are restricted to be a linear combination of the forecast error
ensemble. This is a low-dimensional space (N − 1 dimensions at most).
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2. The forecast error covariance matrix is rank de�cient

The rank of P
(N)
f is an indication of the size of the state space spanned by the forecast error ensemble.

rank
(
P

(N)
B

)
≤ N − 1.

This is a guide to the severity of the sampling problem in point 1.

3. The forecast ensemble spread will be subject to sampling error

• If the spread is too large then the analysis ens. will over-�t the obs. - too little trust in the fc. ens.

• If the spread is too small then the analysis ens. will under-�t the obs. - too much trust in the fc. ens.

� Once in this regime, it is di�cult to escape as the ens. will (e�ectively) ignore the obs..

� This is called ��lter divergence� (because we diverge from reality).

Filter divergence means that each ensemble member will (e�ectively) be free running.

4. The correlations will be subject to sampling error

• The error in the sample correlation between errors at locations i and j has expectation:

[E(δC
(N)
B )]ij ∼

1√
N

(
1− ([CB]ij)

2
)
,

(errors are expected to be large when N small and/or correlations are close to zero).

• Pairs of distant points would be expected to have correlations close to zero.

Sampling error means that we can't trust distant correlations. Left untreated this noise will destroy the bene�ts of DA (analysis
increments will be in�uenced by distant observations).
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From Houtekamer & Mitchell (1998)

(a) p−p correlation (NAE)

latitude

(b) u−p correlation (NAE)
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05−members

theoretical

From Bannister, Migliorini & Dixon (2011)
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Making progress

What can be done to reduce/mitigate this problem N � n?

• Use more ensemble members.

� This is expensive.

� How many is 'enough'? +

• Ensemble in�ation.

� Arti�cially increase the size of each x
′(i)
B .

� How do we know what the ensemble spread should
be?

• Localization.

� Eliminate far-�eld correlations.

� How should this be done?

� Does this have any other consequences?

• Combine ensemble with variational approaches.

� Adopt a hybrid method.

� How to do this? See next lecture.
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Ensemble in�ation: how do we know what the ens spread should be?

Method 1: Rank histograms (Talagrand diagrams)

• Each ensemble member should be equally likely.

• Consider a point in space that has many observations:

� Rank values of ensemble members at that point from
lowest to highest (N − 1 bins). Add an extra bin at
each end to give N + 1 bins.

� Bin each observation to give a frequency histogram.

• Interpretation:

� ∪-shaped: the ensemble is under-spread.

� ∩-shaped: the ensemble is over-spread.

� Flat: the ensemble is correctly spread.

� Asymmetric: the ensemble is biased.

N.B. When observational error is signi�cant, noise needs to �rst be added to each ensemble member (noise is sampled from the
observation error distribution). Otherwise even a correctly distributed ensemble would look under-spread. See Hamill (2001).
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Ensemble in�ation: how do we know what the ens spread should be?

Example rank histograms

Rank histograms for surface precipitation rate rate. From Migliorini et al. (2011).
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Ensemble in�ation: how do we know what the ens spread should be?

Method 2: Spread/skill diagrams

Suppose that we have an ensemble of N forecasts, x(i), and a large number of observations, yj.

1. For each ob (ob index j):

(a) Calculate ens mean model-ob:

1

N

N∑
i′=1

Hj(x(i′)).

(b) Calculate ens variance:

σ2ens,j =
1

N − 1

N∑
i=1

(
Hj(x(i))−

1

N

N∑
i′=1

Hj(x(i′))

)2

.

(c) Calculate the ens mean-square innovation:

d2j =
1

N

N∑
i=1

(
yj −Hj(x(i))

)2
.

2. Chose a number of bins spanning the range of ens variance
values. Let there be M obs per bin. Each ob (and the
associated ens variance and innovation) is associated with
a given bin.

3. For each bin (bin index k):

(a) Calculate the mean ens variance averaged over the
bin:

σ2ens(k) =
1

M

∑
j∈bin k

σ2ens,j.

(b) Calculate the mean-square innovation averaged over
the bin:

σ2innov(k) =
1

M

∑
j∈bin k

d2j .

4. Assuming that N is su�ciently large, ensemble is unbi-
ased, obs and ensemble errors are uncorrelated, all obs
have same error stats (σ2o), and ensemble correctly spread:

σ2innov(k) = σ2o + σ2ens(k).

5. Plot σ2innov(k) (the 'skill') against σ2ens(k) (the 'spread').

6. Can use this information to derive an in�ation factor. See
Wang and Bishop (2003).
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Ensemble in�ation: how do we know what the ens spread should be?

Example spread/skill diagram

From Baker et al. (2014).
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How to increase the spread of an ensemble

• Multiplicative in�ation - multiply all ensemble members by a constant > 1. Hamill et al. (2000).

• Additive in�ation - add noise to each member - like adding model error in the EnKF during the forecast stage.

� Multi-physics - use a combination of di�erent physics schemes. Berner et al. (2011).

� Stochastic kinetic energy backscatter - add KE lost due to unresolved processes. Berner et al. (2009).

� Stochastically perturbed physical tendencies - perturb physics increments. Bouttier et al. (2012).

� Perturb model parameters - use di�erent settings for model parameters. Bowler et al. (2008).

• Relax slightly to background - analysis ensemble has lower spread than background ensemble, so relaxing will increase spread.
Zhang et al. (2004).

Degree of in�ation may be prescribed or tuned to achieve correct spread.



14

Localization

Reminder

Observation error cov. matrix: R

Sample forecast error cov. matrix: P
(N)
B =

1

N − 1

N∑
i=1

x
′(i)
B x

′(i)T
B .

Many ways of doing localization, e.g.:

• R-localization

� Restrict the observations that are allowed to in�uence each grid-point.

� Used in the LETKF.

• PB-localization

� Modify P
(N)
B with a localization/moderation function that decreases with separation.
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R-localization:

• Perform a separate ens analysis at each grid point.

• Include obs inside a de�ned radius. Multiply obs error
variance by a weight, ρ > 1 (increases with distance).

• Used in the LETKF.

• Di�cult to use for non-local observations.
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R-localization in the LETKF

The Localized Ensemble Transform Kalman Filter is a square-root formulation.

mean anal.: x̄A = x̄B + P
(N)
A HTR−1 (y −Hx̄B) ∈ Rn,

= x̄B + ∆x̄A,

anal. err. cov.: P
(N)
A =

(
P

(N)
B

−1
+ HTR−1H

)−1
,

=
1

N − 1
X′AX′TA ∈ Rn×n,

bg. err. cov.: P
(N)
B =

1

N − 1
X′BX′TB ∈ Rn×n,

perts to mean anal.: X′A =
√
N − 1P

(N)
A

1/2 ∈ Rn×N .

Describe all perts. as a linear combination of background perts:

in general: X′ = X′BW X′,X′B ∈ Rn×N , W ∈ RN×N ,

for bg. pert. ens.: X′B = X′BWB WB = IN ,

for anal. pert. ens.: X′A = X′BWA.

Can transform the analysis equations to W-space with the following:

P
(N)
A → P̃

(N)
A =

1

N − 1
WAWT

A ∈ RN×N ,

P
(N)
B → P̃

(N)
B =

1

N − 1
WBWT

B =
1

N − 1
IN ∈ RN×N ,

H → H̃ = HX′B ∈ Rp×N ,

R → R̃ = ρRρ ∈ Rp×p.
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The relevant update equations in W-space become:

mean anal. update: ∆̃x̄A = P̃
(N)
A H̃TR̃−1 (y −Hx̄B) ∈ RN ,

anal. err. cov.: P̃
(N)
A =

(
(N − 1)IN + H̃TR̃−1H̃

)−1
∈ RN×N ,

perts to mean anal.: WA =
√
N − 1P̃

(N)
A

1/2

∈ RN×N .

The analysis states in model space are then:

mean anal.: x̄A = x̄A + X′B∆̃x̄A,

anal. perts: X′A = X′BWA.

E&OE

• The key aspect of the LETKF is that we may allow only the weights in WA and ∆̃x̄A to update one point in space (or
vertical column) that was used to determine the ρ function.

• A di�erent set of weights can be determined for other points (with a di�erent ρ function).

• For e�ciency the observations used for a particular point can be restricted to a cut-o� radius.

• See Hunt et al. (2007).
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PB-localization

• Modify P
(N)
B with a localization/moderation function that

decreases with separation.

• What length-scale? How to do multivariate aspects?

• Has side e�ects (e.g. a�ects length-scales, a�ects bal-
ance).



19

PB-localization (univariate)

PLoc
B = PB ◦Ω,

=



P
(N)
B11 P

(N)
B12 · · · · · · P

(N)
B15 · · · · · · P

(N)
B18 P

(N)
B19

P
(N)
B21 P

(N)
B22 · · · · · · P

(N)
B25 · · · · · · P

(N)
B28 P

(N)
B29

...
... . . . · · · P

(N)
B35 · · · · · · ...

...
...

...
... . . . P

(N)
B45

...
...

...
...

P
(N)
B51 P

(N)
B52 P

(N)
B53 P

(N)
B54 P

(N)
B55 P

(N)
B56 P

(N)
B57 P

(N)
B58 P

(N)
B59

...
...

...
... P

(N)
B65

. . . ...
...

...
...

... · · · · · · P
(N)
B75 · · · . . . ...

...

P
(N)
B81 P

(N)
B82 · · · · · · P

(N)
B85 · · · · · · P

(N)
B88 P

(N)
B89

P
(N)
B91 P

(N)
B92 · · · · · · P

(N)
B95 · · · · · · P

(N)
B98 P

(N)
B99


◦



1.0 0.8 0.5 0.1 0.0 0.0 0.0 0.0 0.0

0.8 1.0 0.8 0.5 0.1 0.0 0.0 0.0 0.0

0.5 0.8 1.0 0.8 0.5 0.1 0.0 0.0 0.0

0.1 0.5 0.5 1.0 0.8 0.5 0.1 0.0 0.0

0.0 0.1 0.1 0.8 1.0 0.8 0.5 0.1 0.0

0.0 0.0 0.0 0.5 0.8 1.0 0.8 0.5 0.1

0.0 0.0 0.0 0.1 0.5 0.8 1.0 0.8 0.5

0.0 0.0 0.0 0.0 0.1 0.5 0.8 1.0 0.8

0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.8 1.0


,

P Loc
Bij = PBijΩij.

Can be extended to multivariate localization. But - we rarely have access to explicit PB or Ω matrices (n× n).
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Localization without explicit PB and Ω matrices

Sample forecast error cov. matrix from N members : P
(N)
B =

1

N − 1

N∑
l=1

x
′(l)
B x

′(l)T
B ,

Sample localisation/moderation matrix from K members : Ω(K) =
1

K − 1

K∑
k=1

ω(k)ω(k)T,

One matrix element: P
(N)
Bij =

1

N − 1

N∑
l=1

x
′(l)
Bi x

′(l)
Bj ,

One matrix element: Ω
(K)
ij =

1

K − 1

K∑
k=1

ω
(k)
i ω

(k)
j .

P Loc
Bij = P

(N)
Bij Ω

(K)
ij ,

=

[
1

N − 1

N∑
l=1

x
′(l)
Bi x

′(l)
Bj

][
1

K − 1

K∑
k=1

ω
(k)
i ω

(k)
j

]
,

=
1

N − 1

1

K − 1

N∑
l=1

K∑
k=1

x
′(l)
Bi ω

(k)
i︸ ︷︷ ︸

element i
of x̃′(m)

x
′(l)
Bj ω

(k)
j︸ ︷︷ ︸

element j
of x̃′(m)

,

=
1

N − 1

1

K − 1

M∑
m=1

x̃
′(m)
i x̃

′(m)
j , M = NK,

x̃′(m) = x
′(l)
B ◦ ω(k) =

 x
′(l)
B1
...

x
′(l)
Bn

 ◦
 ω

(k)
1
...

ω
(k)
n

 =

 x
′(l)
B1ω

(k)
1

...

x
′(l)
Bnω

(k)
n

 ,

m = 1 ⇒ l = 1, k = 1
m = 2 ⇒ l = 1, k = 2

...
...

m = K ⇒ l = 1, k = K
m = K + 1 ⇒ l = 2, k = 1

...
...

m = M ⇒ l = N, k = K

See Buehner (2005).
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Summary

• Ensemble data assimilation schemes su�er from sampling error as N � n:

� Analysis increments lie in subspace of ensemble.

� Rank de�ciency.

� Filter divergence.

� Anomalous far-�eld correlations.

• To make ensemble DA practical:

� Ensemble in�ation.

� Localization.

� Use with other schemes (hybrid - next lectures).



22

Ensemble KF vs variational data assimilation, Schur product localization

• Lorenc A.C., The potential of the ensemble Kalman �lter for NWP - a compar-
ison with 4d-Var, Q.J.R. Meteor. Soc. 129, 3183-3203 (2003).

• Ehrendorfer M., A review of issues in ensemble-based Kalman �ltering, Meteo-
rol. Z. 16, 795-818 (2007).

Impact of sampling error

• Houtekamer P.L., Mitchell H.L., Data assimilation using an ensemble Kalman
Filter technique, Mon. Wea. Rev. 126, 796-811 (1998).

• Hamill T.M., Whitaker J.S., Synder C., Distance-dependent �ltering of back-
ground error covariance estimates in an ensemble Kalman �ler, Mon. Wea. Rev.
129, 2776-2790 (2001).

In�ation and localization

• Bowler N.E., Arribas A., Mylne K.R., Robertson K.B., Beare S.E., The MO-
GREPS short-range ensemble prediction system, Q.J.R.Meteor.Soc. 134, 703-
722 (2008).

• Berner J., Ha S.-Y., Hacker J.P., Fournier A., Snyder C., Model uncertainty in
a mesoscale ensemble prediction system: stochastic versus multiphysics repre-
sentations, Mon. Wea. Rev. 139, 1972-1995 (2011).

• Berner J., Schutts G.J., Leutbecher M., Palmer T.N., A spectral stochastic ki-
netic energy backscatter scheme and its impact on �ow-dependent predictabil-
ity in the ECMWF Ensemble Prediction System, J. Atmos. Sci. 66, 602-629
(2009).

• Bouttier F., Vié B., Nuissier O., Raynaud L., Impact of stochastic physics in a

convection-permitting ensemble, Mon. Wea. Rev. 140, 3706-3721 (2012).

• Zhang F., Snyder C., Sun J., Impacts of Initial Estimate and Observation Avail-
ability on Convective-Scale Data Assimilation with an Ensemble Kalman Filter,
Mon. Wea. Rev. 132, 1238-1253 (2004).

• Hunt B.R., Kostelich E.J., Szunyogh I., E�cient data assimilation for spatiotem-
poral chaos: a local ensemble transform Kalman Filter, Physica D 230, 112-126
(2007).

• Buehner M., Ensemble derived stationary and �ow dependent background error
covariances: Evaluation in a quasi-operational NWP setting, Q.J.R.Meteor.Soc.
131 pp.1013-1043 (2005).

Forecast veri�cation

• www.cawcr.gov.au/projects/veri�cation

• Hamill T.M., Interpretation of Rank Histograms for Verifying Ensemble Fore-
casts, Mon. Wea. Rev. 129., 550-560 (2001).

• Wang X., Bishop C.H., A comparison of breeding and ensemble transform
Kalman �lter ensemble forecast schemes, J. Atmos. Sci. 60, 1140-1158 (2003).

• Baker L.H., Rudd A.C., Migliorini S., Bannister R.N., Representation of model
error in a convective-scale ensemble prediction system, Nonlin. Processes Geo-
phys. 21, 19-39 (2014).

• Migliorini S., Dixon M., Bannister R.N., Ballard, S., Ensemble prediction for
nowcasting with a convection-permitting model - I: description of the system
and the impact of radar-derived surface precipitation rates, Tellus 63A, 468-496
(2011).

• Bannister R.N., Migliorini S., Dixon M. A. G., Ensemble prediction for nowcast-
ing with a convection-permitting model - II: forecast error statistics, Tellus 63A,
497-512 (2011).


