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Lecture outline
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• Reminders

• Importance of the B-matrix

• Modelling B

• Measuring B
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Example state and observation vectors

xA analysis state
xB background state

Sometimes x and y are for only one time (3D-Var)

x-vectors have n elements in total
y-vectors have p elements in total
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Reminder of the variational cost function

J [x]∼ 1

2
|x− xB|2 +

1

2
|y −H(x)|2 ,

∼ 1

2
(x− xB)T (x− xB) +

1

2
(y −H(x))T (y −H(x)) ,

J [x]=
1

2
|x− xB|2B +

1

2
|y −H(x)|2R ,

=
1

2
(x− xB)TB−1 (x− xB) +

1

2
(y −H(x))TR−1 (y −H(x)) , 3DVar

J [x]=
1

2
(x− xB)TB−1 (x− xB)

︸ ︷︷ ︸
measures departure from xB

+
1

2

T∑

i=0

(y(ti)−H(x(ti)))
T [R(ti)]

−1 (y(ti)−H(x(ti)))

︸ ︷︷ ︸
measures departure from y

, 4DVar

xA = argmin(J [x]).

• The covariance matrices B and R in�uence the analysis profoundly.

• If H(x) is a linear or weakly non-linear function then we can write (3D-Var for simplicity):

y −H(xB + δx) ≈ y − (H(xB) + Hδx) ,

and xA can be written explicitly:

xA = xB + BHT
(
R + HBHT

)−1
(y −H(xB)) .
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Anatomy of a covariance matrix

Univariate background error covariance matrix (e.g. if x represents a pressure �eld only):

x = p =




p1
p2
.

.

.

pn


 , cov(p′) =

〈
p′p′T〉 =




〈
p′21

〉
〈p′1p′2〉 · · · 〈p′1p′n〉

〈p′2p′1〉
〈
p′22

〉
· · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

〈p′np′1〉 · · · · · ·
〈
p′2n

〉




.

variance

outer product covariance
(univariate)

where p′ = p− 〈p〉.

Multivariate background error covariance matrix (e.g. if x represents pressure, zonal wind and
meridional wind):

x =




p
u
v


 =




p1
.

.

.

pn/3
u1

.

.

.

un/3

v1
.

.

.

vn/3




, cov(x′) =
〈
x′x′T〉 =




〈
p′p′T〉 〈

p′u′T〉 〈
p′v′T〉〈

u′p′T〉 〈
u′u′T〉 〈

u′v′T〉〈
v′p′T〉 〈

v′u′T〉 〈
v′v′T〉


 .

multivariate covariance sub−matrix

autocovariance sub−matrix

These covariances are symmetric matrices.

• If x′ are forecast errors, εB, then above is B-matrix.

• Observation error covariance: R =
〈
y′y′T

〉
, y′ is observation error.
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Link to Gaussian PDFs
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x = xB − εB,

x ∼ N(xB,B),

εB ∼ N(0,B),

P (εB) =
1√

(2π)n det(B)
= exp−1

2
εTBB

−1εB.
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Importance of covariance matrices (demo with n = n, p = 1)

The analysis formula for the analysis increment is:

xA = xB + BHT
(
R + HBHT

)−1
(y −H(xB)) .

x =




T1
...
Ti
...
Tn



, xB =




TB1
...
TBi
...
TBn



, y = (y) , H(x) = Ti,

H =
(

0 · · · 1 · · · 0
)
,

B =




B11 · · · B1i · · · B1n
... . . . ...

...
...

Bi1 · · · Bii · · · Bin
...

...
... . . . ...

Bn1 · · · Bni · · · Bnn



, R =

(
σ2o
)
.

BHT =




B11 · · · B1i · · · B1n
... . . . ...

...
...

Bi1 · · · Bii · · · Bin
...

...
... . . . ...

Bn1 · · · Bni · · · Bnn







0
...
1
...
0




=




B1i
...
Bii
...
Bni



, HBHT =

(
0 · · · 1 · · · 0

) 


B1i
...
Bii
...
Bni




= (Bii) =
(
σ2Bi
)
,

xA =




TB1
...
TBi
...
TBn




+




B1i
...
Bii
...
Bni




1

σ2o + σ2Bi
(y − TBi) .

The analysis increment is a vector ∝ the ith column of B
(called a structure function or covariance function).
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Structure functions for �ow in the mid-latitude atmosphere



9

Modelling a covariance matrix

• Observation error covariance matrices (R):

� Often taken to be diagonal for independent obs. Observation error variances (diagonal elements) depend on charac-
teristics of the instrument.

� Another contribution is representivity error which will have diagonal (and possibly o�-diagonal) elements.

� If measurements are not independent (e.g. if they are derived using some procedure) then R should not be diagonal.

• Background error covariance matrices (B):

� Can be rarely represented explicitly (x ∈ Rn [n ∼ 109], B ∈ Rn×n [n× n ∼ 1018]).

� Di�cult to measure (need a large sample of (unknowable) forecast errors).

� Can be modelled using a variety of methods:

∗ 'Inverse Laplacians'.

∗ Di�usion operators (used e.g. in Ocean DA).

∗ Recursive �lters.

∗ Spectral methods, wavelet methods.

∗ Exploit physics (e.g. geophysical balance).

∗ Control variable transforms (transform to a space where B is simpler - e.g. diagonal).

• Model error covariance matrices (Q).



10

Making variational DA work - control variable transforms (CVTs)

• Key to success of 3D/4D-Var in NWP is the B-matrix.

• This is modelled, e.g., via (linear) change of variables - a CVT:

� δx = Uδv.

� Background errors in the δv-representation are assumed to be mutually uncorrelated:

〈
εBε

T
B

〉
B
≈ B,〈

δvδvT
〉
B

= I,〈[
U−1εB

] [
U−1εB

]T〉
B
≈ I,

∴ UUT ≈ B.

� This problem is minimized now w.r.t. δv:

J [δv] =
1

2
δvTδv +

1

2

[
y −H(xB)−HUδv︸︷︷︸

δx

]T
R−1

[
y −H(xB)−HUδv︸︷︷︸

δx

]
,

∇δvJ = δv −UTHTR−1 [y −H(xB)−HUδv] .
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Simple example of Control Variable Transform (CVT)

System (two correlated variables)

• State vector (〈T 〉 in K, ∆z in dam):

δx =

(
δ 〈T 〉
δ∆z

)
.

• Constraint applies (weakly applied hypsometric equation):

δ∆z = Lδ 〈T 〉︸ ︷︷ ︸
balanced contribution

+ δ∆zunbal︸ ︷︷ ︸
unbalanced contribution

,

where L =
R

10g
ln

1000hPa

500hPa
.

• Control vector (
〈
δvδvT

〉
B

= I):

δv =

(
δvbal
δvunbal

)
.

• Scale by background error standard deviations, δ 〈T 〉 =
σbalδvbal, δ∆zunbal = σunbalδvunbal:

(
δ 〈T 〉

δ∆zunbal

)
=

(
σbal 0
0 σunbal

)(
δvbal
δvunbal

)
.

• The complete CVT (δx = Uδv):

(
δ 〈T 〉
δ∆z

)

︸ ︷︷ ︸
δx

=

(
1 0
L 1

)(
σbal 0
0 σunbal

)

︸ ︷︷ ︸
U

(
δvbal
δvunbal

)

︸ ︷︷ ︸
δv

.

• Implied covariances (B = UUT):

B =

(
σ2bal σ2balL
σ2balL σ2balL

2 + σ2unbal

)
.

• Observation of 〈T 〉 then gives information about ∆z (and
vice-versa) in a physically consistent way.
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Methods to estimate B

Reminder

x =




x1
x2
...
xn


 , B =

〈
(xB − xt) (xB − xt)

T
〉
B
,

=




〈
(xB1 − xt1)2

〉
B

〈(xB1 − xt1)(xB2 − xt2)〉B · · · 〈(xB1 − xt1)(xBn − xtn)〉B
〈(xB2 − xt2)(xB1 − xt1)〉B

〈
(xB2 − xt2)2

〉
B

· · · ...
...

... . . . ...
〈(xBn − xtn)(xB1 − xt1)〉B · · · · · ·

〈
(xBn − xtn)2

〉
B


 .

〈•〉B : average over population of possible backgrounds.

Problem

xt is unknowable so need a proxy for forecast error xB − xt.
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Popular approaches

Method Description and references

�Canadian quick�
method

xB − xt ∼ (xB(t+ T )− xB(T )) /
√

2.
Take population from one long time run.
Polavarapu et al. (2005)

Analysis of
innovations

d = y −HxB

Choose a pair of direct and independent obs separated by r:

[y(r)− xB(r)] [y(r + ∆r)− xB(r + ∆r)] =

[{y(r)− xt(r)} − {xB(r)− xt(r)}] [{y(r + ∆r)− xt(r + ∆r)} − {xB(r + ∆r)− xt(r + ∆r)}]
〈[εy(r)− εxB(r)] [εy(r + ∆r)− εxB(r + ∆r)]〉 = 〈εy(r)εy(r + ∆r)〉+ 〈εxB(r)εxB(r + ∆r)〉 ,

(above assumes obs and bg errors are uncorrelated). Take population from many pairs with same ∆r.
Furthermore if ∆r > 0: 〈εy(r)εy(r + ∆r)〉 = 0.
Rutherford (1972), Hollingsworth and Lönnberg (1986), Järvinen (2001)

NMC method Choose pairs of lagged forecasts valid at the same time, e.g.: xB − xt ∼
(
x48
B (t)− x24

B (t)
)
/
√

2.
Take population from di�erence at many times.
Parrish and Derber (1992), Berre et al. (2006)

Ensemble method If you have an ensemble that is correctly spread:

xB − xt ∼ x
(i)
B − 〈xB〉 or xB − xt ∼

(
x
(i)
B − x

(j)
B

)
/
√

2.

Take population from ensemble members and over many times.
Houtekamer et al. (1996), Buehner (2005), Bonavita et al. (2015)
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Summary

• Covariance matrices appear in many DA methods (especially variational DA).

� A covariance matrix describes the shape of a Gaussian distribution.

� B and R appear in variational cost function (and Q in weak constraint formulations).

• Covariance matrices are important.

� E.g. B speci�es how precise xB is, and how to give smooth analysis increments between positions in space and between
di�erent variables.

• B is too large to be known (and there is too little information to know it anyway!)

� B needs to be modelled based on reasonable ideas.

� The method of �control variable transforms� is a leading method.

� Minimize J in �control variable space� (easy) which is related to model space via the control variable transform.

• It is impossible to measure B exactly.

� Use a proxy method.
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Further reading - selected books and papers
• Barlow, R.J., Statistics - A guide to the use of statistical methods in the physical sciences, John Wiley and Sons (1989). This is an elementary, readable book on statistics for the scientist (e.g. it

derives the Gaussian distribution from �rst principles). It also covers the least squares problem.

• Rodgers C.D., Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scienti�c Publishing (2000). This is a very readable book. Even though it focuses on satellite retrieval theory
(mathematically a similar problem to data assimilation), this is a good book for virtually everything that you need to know about covariances. It also contains a summary of basic data assimilation
methods and has a useful appendix on linear algebra.

• Lewis J.M., Lakshmivarahan S., Dhall S., Dynamic Data Assimilation: A Least Squares Approach, Cambridge University Press (2006). This huge book covers a lot of material with a lot of repetition.
It has some good introductory chapters and some useful results if you know where to look. (Unfortunately there are LOADS of typos.)

• Kalnay E., Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press (2002). A large section of this book covers data assimilation, and there is also a lot of basic
material for the budding dynamic modeller. The data assimilation part is introductory, but covers most key ideas. It will leave you wanting to know more!

• Schlatter T.W., Variational assimilation of meteorological observations in the lower atmosphere: a tutorial on how it works, J. Atmos. and Solar-Terr. Phys. 62 pp.1057-1070 (2000). It is worth
getting hold of this paper as it is an excellent description of variational data assimilation (relevant to lectures later in the course).

• Bannister R.N., A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances., Q.J. Roy. Met. Soc.
134, 1951-1970 (2008) and Bannister R.N., A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics., Q.J.
Roy. Met. Soc. 134, 1971-1996 (2008). What can I say - blatant self publicity! A source of information about background error covariances and how they can be modelled.

• Polavarapu S., Ren S., Rochon Y., Sankey D., Ek N., Koshyk J., Tarasick D., Data assimilation with the Canadian middle atmosphere model. Atmos.-Ocean 43: 77�100 (2005). �Canadian
quick� method.

• Rutherford I.D. 1972. Data assimilation by statistical interpolation of forecast error �elds. J. Atmos. Sci. 29: 809�815. Original reference to the analysis of innovations method.

• Hollingsworth A., Lönnberg P., The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind �eld. Tellus 38A: 111�136 (1986). The most famous
work on the analysis of innovations method.

• Järvinen H., Temporal evolution of innovation and residual statistics in the ECMWF variational data assimilation systems. Tellus 53A: 333�347 (2001). More recent work on the analysis of innovations
method.

• Parrish D.F., Derber J.C., The National Meteorological Center's spectral statistical interpolation analysis system. Mon. Wea. Rev. 120 1747�1763 (1992). Original reference for the NMC method.

• Berre L., �tef nescu S.E., Pereira M.B., The representation of the analysis e�ect in three error simulation techniques. Tellus 58A 196�209 (2006). In-depth analysis of the NMC method.

• Houtekamer P.L., Lefaivre L., Derome J., Ritchie H., Mitchell H.L., A system simulation approach to ensemble prediction. Mon. Wea. Rev. 124, 1225�1242 (1996). Explains the ideas behind
the generation of an ensemble.

• Buehner M., Ensemble derived stationary and �ow dependent background error covariances: Evaluation in a quasi-operational NWP setting. Q.J.R. Meteorol. Soc. 131, 1013�1043 (2005). Example
background error covariances derived from an ensemble.

• Bonavita M., Holm E., Isaksen L., Fisher M., The evolution of the ECMWF hybrid data assimilation system, Q.J.R. Meteor. Soc. (2015). Latest paper documenting the ensemble-based calibration

of the ECMWF B-matrix.


