





# Data Assimilation Practicals: Four dimensional variational data assimilation (4D-Var)

Polly Smith

Data Assimilation Research Centre
p.j.smith@reading.ac.uk

# Introduction

In this practical we will be exploring two different variational data assimilation algorithms

- Full 4D-Var
- Incremental 4D-Var

# 4D-Var data assimilation

**Aim:** find the best estimate of the true state of the system (analysis) consistent with both observations distributed in time and the system dynamics.



# 4D-Var cost function

#### Minimize

$$\mathcal{J}(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}^b) + \frac{1}{2} \sum_{i=0}^{N} (\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i)^{\mathrm{T}} \mathbf{R}_i^{-1} (\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i)$$

with respect to  $x_0$ , subject to

$$\mathbf{x}_{i+1} = \mathcal{M}_i(\mathbf{x}_i)$$

 $\mathbf{x}^b$  - a priori (background) state

 $\mathbf{y}_i$  - Observations

 $H_i$  - Observation operator

**B** - Background error covariance matrix

 $\mathbf{R}_i$  - Observation error covariance matrix

# Minimization

use iterative gradient descent method to find minimum; requires information about the gradient of the cost function,  $\nabla J(\mathbf{x})$ 



# Minimization

On each iteration we have to calculate  $J(\mathbf{x})$  and its gradient

- to calculate  $J(\mathbf{x})$  we need to run the non-linear model
- the gradient of  $J(\mathbf{x})$  is obtained by backward integration of the adjoint model (from  $t_N$  to  $t_0$ )

BUT using the full non-linear model equations can be very computationally expensive.

Full non-linear 4D-Var problem is replaced by a sequence of (easier) linear least squares problems







Solve iteratively

$$set \mathbf{x}_0^{(0)} = \mathbf{x}_b$$

**outer loop:** for k = 0, ..., Nouter

compute 
$$\mathbf{d}_i^{(k)} = \mathbf{y}_i - \mathcal{H}_i(\mathbf{x}_i^{(k)})$$
, where  $\mathbf{x}_i^{(k)} = \mathcal{M}(t_i, t_0, \mathbf{x}_0^{(k)})$ 

inner loop: minimise

$$J^{(k)}\left(\delta \mathbf{x}_{0}^{(k)}\right) = \frac{1}{2} \left(\delta \mathbf{x}_{0}^{(k)} - \left(\mathbf{x}_{b} - \mathbf{x}_{0}^{(k)}\right)\right)^{T} \mathbf{B}^{-1} \left(\delta \mathbf{x}_{0}^{(k)} - \left(\mathbf{x}_{b} - \mathbf{x}_{0}^{(k)}\right)\right) + \frac{1}{2} \sum_{i=0}^{n} \left(\mathbf{H}_{i} \delta \mathbf{x}_{i}^{(k)} - \mathbf{d}_{i}^{(k)}\right)^{T} \mathbf{R}_{i}^{-1} \left(\mathbf{H}_{i} \delta \mathbf{x}_{i}^{(k)} - \mathbf{d}_{i}^{(k)}\right)$$

$$\delta \mathbf{x}_i^{(k)} = \mathbf{M}(t_i, t_0, \mathbf{x}^{(k)}) \delta \mathbf{x}_0^{(k)}$$

update 
$$\mathbf{x}_{0}^{(k+1)} = \mathbf{x}_{0}^{(k)} + \delta \mathbf{x}_{0}^{(k)}$$

**M** is the tangent linear of the non-linear model

# The Lorenz 63 model

- We will use a 'simple' model to test our data assimilation techniques.
- Three variable nonlinear dynamical system that exhibits chaotic behaviour for certain parameter settings.

$$\begin{array}{lll} \frac{dx}{dt} & = & -\sigma(x-y), \\ \frac{dy}{dt} & = & \rho x - y - xz, \\ \frac{dz}{dt} & = & xy - \beta z, \end{array} \quad \text{parameters} \begin{cases} \sigma = 10 \\ \beta = 8/3 \\ \rho = 28 \end{cases}$$

where 
$$x = x(t)$$
,  $y = y(t)$ ,  $z = z(t)$ 

# The Lorenz 63 model



# Twin experiments

- The model is run forward from a given initial state to produce a reference or 'truth' trajectory.
- This 'truth' is used to generate synthetic observations.
- We use the same model for the assimilation but we run from a different initial state ('background' or first guess).
- The assimilation system is assessed on how well the analysis approximates this reference state.

# **Exercises**

#### Part I

understanding how a 4D-Var system is tested, by running tests of

- Tangent linear model (test\_tl)
- Adjoint model (test\_adj)
- Gradient of cost function (test\_grad.m or test\_gradinc)

# Test of TLM correctness

Consider a perturbation  $\gamma \delta x$ , where  $\gamma$  is a scalar.

Then by a Taylor series expansion we have

$$M(\mathbf{x}_0 + \gamma \delta \mathbf{x}) = M(\mathbf{x}_0) + \mathbf{M}(\mathbf{x}_0) \gamma \delta \mathbf{x} + O(\gamma^2)$$

Hence

$$\lim_{\gamma \to 0} \frac{\left\| M(\mathbf{x}_0 + \gamma \delta \mathbf{x}) - M(\mathbf{x}_0) - \mathbf{M}(\mathbf{x}_0) \gamma \delta \mathbf{x} \right\|}{\left\| \mathbf{M}(\mathbf{x}_0) \gamma \delta \mathbf{x} \right\|} = 0$$

# Tangent linear test





# Test of adjoint model

For any operator  $\boldsymbol{M}$  and its adjoint  $\boldsymbol{M}^T$  we have

$$<$$
 M $\delta$ x, M $\delta$ x  $>$  =  $<$   $\delta$ x, M<sup>T</sup>M $\delta$ x  $>$ 

To test an adjoint model we

- 1. Start with a random perturbation  $\delta x$
- 2. Apply the TLM, which gives  $M \delta x$
- 3. Apply the adjoint model to the result of 2, to obtain  $\mathbf{M}^{T}\mathbf{M}\delta\mathbf{x}$

If the adjoint is correct

$$< M \delta x$$
,  $M \delta x > - < \delta x$ ,  $M^T M \delta x > = 0$ 

(satisfied to machine precision)

# **Gradient test**

By Taylor series expansion of J we have

$$J(\mathbf{x} + \alpha \mathbf{h}) = J(\mathbf{x}) + \alpha \mathbf{h}^T \nabla J(\mathbf{x}) + O(\alpha^2)$$

Define

$$\Phi(\alpha) = \frac{J(\mathbf{x} + \alpha \mathbf{h}) - J(\mathbf{x})}{\alpha \mathbf{h}^T \nabla J(\mathbf{x})} = 1 + O(\alpha)$$

and plot  $\Phi(\alpha)$  as  $\alpha$  tends to zero.

Note that **h** should be of unit length, e.g.

$$\mathbf{h} = \frac{\nabla J(\mathbf{x})}{\|\nabla J(\mathbf{x})\|}$$

# **Gradient test**

#### Correct gradient code





# **Exercises**

#### Part II

run and compare both

- full 4D-Var (lorenz4d)
- incremental 4D-Var (lorenz4d\_inc)

explore system behaviour when changing the input parameters

consider both accuracy of the analysis and rate of convergence

# Lorenz 63 model



# Lorenz 63 model



# Lorenz 63 model



# Matlab code

www.met.reading.ac.uk/~darc/training

Take a copy of the original files before you start to change them!