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1 The Lorenz System

In this practical we explore the application of the full and incremental 4D-Var data assim-
ilation algorithms to the Lorenz 1963 equations, a simple dynamical model with chaotic
behaviour. The Lorenz equations are given by the nonlinear system

dx

dt
= −σ(x− y), (1)

dy

dt
= ρx− y − xz, (2)

dz

dt
= xy − βz, (3)

where x = x(t), y = y(t), z = z(t) and σ, ρ, β are parameters, which in these experiments
are chosen to have the values 10, 28 and 8/3 respectively.

The system is discretized using a second order Runge-Kutta method, which gives the
following discrete equations:
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xk+1 = xk + σ
∆t

2
[2(yk − xk) + ∆t(ρxk − yk − xkzk)

− σ∆t(yk − xk)] , (4)

yk+1 = yk +
∆t

2
[ρxk − yk − xkzk + ρ(xk + σ∆t(yk − xk))− yk

− ∆t(ρxk − yk − xkzk)

− (xk + σ∆t(yk − xk))(zk + ∆t(xkyk − βzk))] , (5)

zk+1 = zk +
∆t

2
[xkyk − βzk

+ (xk + ∆tσ(yk − xk))(yk + ∆t(ρxk − yk − xkzk))

− βzk −∆t(xkyk − βzk)] , (6)

where ∆t is the model time step and k is the time step index.

2 Four-dimensional variational data assimilation (4D-Var)

2.1 Introduction

The 4D-Var schemes in these programs minimize a cost function of the form

J (x0) =
1

2
(x0 − xb

0)
TB−1(x0 − xb

0) +
1

2

n∑
i=0

(hi(xi)− yi)
TR−1(Hi(xi)− yi), (7)

where we assume that B = σ2b I and R = σ2oI. A full 4D-Var scheme minimizes this cost
function by use of the nonlinear model and its adjoint, whereas an incremental 4D-Var
scheme minimizes a series of simplified cost functions in different ‘outer loops’. You are
provided with Matlab routines for both types of schemes. The routines used are as follows:

lorenz4d.m Top level routine for full 4D-Var
lorenz4d inc.m Top level routine for incremental 4D-Var
calcfg.m Calculate cost function and its gradient for full 4D-Var
calcfg inc.m Calculate cost function and its gradient for incremental 4D-Var

modeuler.m Nonlinear model for Lorenz system
modeuler tl.m Tangent linear model
modeuler adj.m Adjoint model

test tl.m Test tangent linear model
test adj.m Test adjoint model
test grad.m Test of calcfg
test gradinc.m Test of calcfg inc

menu asl Used to provide menus
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2.2 Test routines: building a 4D-Var system

When building a 4D-Var system, there are standard ways of testing the various components
before it is used for assimilation. You can experiment with these tests.

2.2.1 Test of tangent linear model correctness

Suppose that M is a nonlinear model and M is the tangent linear model. Then for small
perturbations γδx we have

M(x + γδx)−M(x) ≈M(x)γδx . (8)

Hence if we plot the relative error

ER = 100
||M(x + γδx)−M(x)−M(x)γδx||

||M(x)γδx||
, (9)

we should find that ER → 0 as γ → 0.

Exercise: Use the routine test tl to plot the relative error. Try introducing an error into
the tangent linear code modeuler tl and see what effect it has on the test (remember to
save a copy first!).

2.2.2 Test of adjoint model

For a linear model M and its adjoint MT we have the identity

<Mδx,Mδx >=< δx,MTMδx > (10)

for any inner product <,> and perturbation δx. This can be used to test that the adjoint
is coded correctly.

Exercise: Use the routine test adj to test the adjoint code. Try introducing an error into
the adjoint code modeuler adj and see what effect it has.

2.2.3 Gradient test

Let J be a cost function and ∇J be its gradient. Then we can check that the exact
gradient of the cost function has been coded by using the identity

Φ(α) =
J (x + αh)− J (x)

αhT∇J (x)
= 1 +O(α), (11)

where h is a vector of unit length, which we can take to be ∇J (x)||∇J (x)||−1. For small
values of α (not too close to machine zero) we expect Φ(α) to be close to 1.

Exercise: Use the program test grad or test gradinc to test the coding of either the full
or incremental 4D-Var cost function gradient. The output of these routines is a plot of
Φ(α) and a plot of |Φ(α) − 1|. Try introducing an error into the gradient calculation to
see how this affects the test results.
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2.3 Assimilation set up

The routines used to run assimilation experiments are lorenz4d for the full 4D-Var and
lorenz4dinc for the incremental 4D-Var algorithm. The menu options you must specify
(with some suggested values given) are

Initial values of x, y, z 0.0–5.0
Assimilation period (in seconds) 0–10
Forecast period (in seconds) Any
Time step (in seconds) 0.0–0.05
Frequency of observations (in time steps) Any
Noise on background Variance = 0–4 (excluding zero)
Noise on observations Variance = 0–4 (excluding zero)
Convergence criteria Default values given
Number of outer loops 2 (incremental version only)

Note that the time step must be a divisor of your total time, so values such as 0.02, 0.025,
0.05 work well. The output of the program is the fields of x and z, the errors in x and z
and the convergence of the cost function and its gradient. The final norm of the gradient
is also output in the Matlab command window.

The noise on the background and observations is produced randomly each time the pro-
gram is run. In order to compare the effect of different settings you can choose to use
the same realisation of random noise as in your previous experiment by answering ‘Yes’
to the question ‘Read in noise from file?’. Note that in order for this to work the number
of observations must remain the same.

2.4 Suggested exercises

Try starting with

truth = (1.0, 1.0, 1.0)
assimilation period = 2
forecast period = 3
time step = 0.05
frequency of observations = 2.

Consider the following questions:

1. Run the 4D-Var with different relative errors on the background and observations.
How does the behaviour of the scheme change?

2. Is it better to have very few accurate observations or more observations which are less
accurate? Consider both the accuracy of the analysis and the rate of convergence.

3. Is it better to have a long assimilation window with few observations or a short
assimilation window with more observations? Does this depend on how much error
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there is on the observations? Consider both the accuracy of the analysis and the
rate of convergence.

4. How does the rate of convergence change if the background error is decreased or
increased so that the first guess is moved closer to or away from the truth?

5. Compare full 4D-Var and incremental 4D-Var for the same total number of iterations.
Are there conditions for which one scheme is better than the other?

6. For the incremental 4D-Var investigate the effect of multiple outer-loops with the
same total number of iterations. Compare against the full 4D-Var solution.

2.5 Advanced exercises

The following exercises require you to understand and change the code.

1. Investigate the performance of 4D-Var when the model state is only partially ob-
served:

Change the code so that only two components of the state vector are observed.
How well is the other component retrieved by the assimilation? Compare the effect
of using a diagonal and non-diagonal background error covariance matrix.

2. Investigate the effect of correlated observation errors in 4D-Var:

Introduce correlations in your observation errors by changing the program so that
the same random noise is used to create the observation error for x, y and z (or just
two of these). How does this affect the assimilation results? Consider what happens
when the observation error covariance matrix is assumed to be diagonal and not.

3. Investigate the effect of biased observations in 4D-Var:

Try replacing the random observation error with a constant bias for one or more
of the variables. What is the effect on the analysis?

4. Investigate the effect of model error in 4D-Var:

Usually the numerical model we use to assimilate is not an exact representation
of the true system, but will contain model errors. We can investigate the effect of
this in a simple assimilation experiments by using one version of the model to pro-
duce the ‘truth’ trajectory and the observations, and using a different version of the
model in the assimilation. For example, you could consider

(a) random stochastic error - add random forcing to one of the equations in the
assimilation model;

(b) an error in the parameters - change one of the model parameters σ, β or ρ to
be slightly different in the assimilation model;

(c) a bias error - add a constant forcing to one of the equations in the assimilation
model.

How does this affect the analysis?
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