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1 Overview
Overview

• Statement of problem and notation

• The Kalman filter

• The Ensemble Kalman filter

• Perturbed observation filters and square root filters

2 Introduction
In this section we will describe the filtering problem and establish the basic notation to be used through-

out the lecture.
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State estimation feedback loop

The Model
Consider the discrete, linear system,

xk+1 = Mkxk + wk, k = 0, 1, 2, . . . , (1)

where

• xk ∈ Rn is the state vector at time tk

• Mk ∈ Rn×n is the state transition matrix (mapping from time tk to tk+1) or model

• {wk ∈ Rn; k = 0, 1, 2, . . .} is a white, Gaussian sequence, with wk ∼ N(0,Qk), often referred to
as model error

• Qk ∈ Rn×n is a symmetric positive definite covariance matrix (known as the model error covariance
matrix).

The Observations
We also have discrete, linear observations that satisfy

yk = Hkxk + vk, k = 1, 2, 3, . . . , (2)

where

• yk ∈ Rp is the vector of actual measurements or observations at time tk

• Hk ∈ Rp×n is the observation operator. Note that this is not in general a square matrix.

• {vk ∈ Rp; k = 1, 2, . . .} is a white, Gaussian sequence, with vk ∼ N(0,Rk), often referred to as
observation error.

• Rk ∈ Rp×p is a symmetric positive definite covariance matrix (known as the observation error
covariance matrix).

We assume that the initial state, x0 and the noise vectors at each step, {wk}, {vk}, are assumed mutually
independent.
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The Prediction and Filtering Problems
We suppose that there is some uncertainty in the initial state, i.e.,

x0 ∼ N(0,P0) (3)

with P0 ∈ Rn×n a symmetric positive definite covariance matrix. The problem is now to compute an

improved estimate of the stochastic variable xk, provided y1, . . .yj have been measured:

x̂k|j = x̂k|y1,...,yj
. (4)

• When j = k this is called the filtered estimate.

• When j = k − 1 this is the one-step predicted, or (here) the predicted estimate.

3 Derivation of the Kalman Filter
• The Kalman filter (Kalman, 1960) provides estimates for the linear discrete prediction and filtering

problem. (The Kalman-Bucy filter (Kalman and Bucy, 1961) provides a continuous time analogue).

• We will take a maximum a posteriori (MAP) approach to deriving the filter.

• We assume that all the relevant probability densities are Gaussian so that we can simply consider the
mean and covariance.

• Rigorous justifcation and other approaches to deriving the filter are discussed by Jazwinski (1970),
Chapter 7.

Prediction step
We first derive the equation for one-step prediction of the mean using the state propagation model (1).

x̂k+1|k = E [xk+1|y1, . . .yk] ,

= E [Mkxk + wk] ,

= Mkx̂k|k (5)

The one step prediction of the covariance is defined by,

Pk+1|k = E
[
(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T |y1, . . .yk

]
. (6)

Exercise: Using the state propagation model, (1), and one-step prediction of the mean, (5), show that

Pk+1|k = MkPk|kM
T
k + Qk. (7)

Filtering Step
At the time of an observation we use Bayes theorem (see Ross’ lecture) to write down the posterior density as

p(xk|k) = p(xk|y1,y2, . . .yk) =
p(yk|xk)p(xk|y1,y2, . . .yk−1)

p(yk|y1,y2, . . .yk−1)
(8)

Note that, by definition

p(yk|xk) = N(Hkxk,R)

∝ exp

{
1

2
(yk −Hkxk)

TR−1
k (yk −Hkxk)

}
(9)

and

p(xk|y1,y2, . . .yk−1) = N(xk|k−1,Pk|k−1)

∝ exp

{
1

2
(xk − xk|k−1)TP−1k|k−1(xk − xk|k−1)

}
. (10)
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The denominator p(yk|y1,y2, . . .yk−1) is independent of xk.
We now find the maximum a posteriori estimate by maximizing p(xk|y1,y2, . . .yk) with respect to xk.

This is equivalent to minimizing

J(xk) =
1

2
(yk −Hkxk)TR−1k (yk −Hkxk)

+(xk − xk|k−1)TP−1k|k−1(xk − xk|k−1) (11)

with respect to xk.
One can show that this is equal to

x̂k|k = x̂k|k−1 + Kk(yk −Hkx̂k|k−1), (12)

where Kk ∈ Rn×p is known as the Kalman gain and is equal to

Kk = Pk|k−1H
T
k (HkPk|k−1H

T + Rk)−1. (13)

• Note that since x̂k|k has been derived as a MAP estimate it is equal to the mode of the distribution.

• Since the densities involved are Gaussian it is also equal to the mean of the distribution - a fact we
will use in deriving the posterior covariance.

Posterior Covariance
At the time of an observation, we have seen that the update to the mean may be written as a linear

combination of the observation and the previous estimate:

x̂k|k = x̂k|k−1 + Kk(yk −Hkx̂k|k−1), (14)

where Kk ∈ Rn×p is known as the Kalman gain. We now consider the covariance associated with this

estimate:
Pk|k = E

[
(xk − x̂k|k)(xk − x̂k|k)T |y1, . . .yk

]
. (15)

Using the observation update for the mean (12) we have,

xk − x̂k|k = xk − x̂k|k−1 −Kk(yk −Hkx̂k|k−1)

= xk − x̂k|k−1 −Kk(Hkxk + vk −Hkx̂k|k−1),

replacing the observations with their model equivalent,
= (I−KkHk)(xk − x̂k|k−1)−Kkvk. (16)

Thus, since the error in the prior estimate, xk − x̂k|k−1 is uncorrelated with the measurement noise we find

Pk|k = (I−KkHk)E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)T

]
(I−KkHk)T

+KkE
[
vkv

T
k

]
KT

k . (17)

Remark
Using our established notation for the prior and observation error covariances. we obtain the formula

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)T + KkRkK
T
k . (18)

This is sometimes known as the Joseph form for the covariance update. It is valid for any value of Kk. If
we choose the optimal Kalman gain, it can be simplified further (see below).

Simplification of the a posteriori error covariance formula
Using the value of the Kalman gain we are in a position to simplify the Joseph form as

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)T + KkRkK
T
k = (I−KkHk)Pk|k−1. (19)

Exercise: Show this.

Note that the covariance update equation is independent of the actual measurements: so Pk|k could be
computed in advance.
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Summary of the Kalman filter
Prediction step
Mean update: x̂k+1|k = Mkx̂k|k
Covariance update: Pk+1|k = MkPk|kM

T
k + Qk.

Observation update step
Mean update: x̂k|k = x̂k|k−1 + Kk(yk −Hkx̂k|k−1)
Kalman gain: Kk = Pk|k−1H

T
k (HkPk|k−1H

T + Rk)−1

Covariance update: Pk|k = (I−KkHk)Pk|k−1.

Scalar Example
Exercise: Suppose we have a scalar, time-invariant perfect model system such that M = 1,w = 0,Q =

0,H = 1,R = r. By combining the prediction and filtering steps, show that the following recurrence
relations written in terms of prior quantities hold:

xk+1|k = (1−Kk)xk|k−1 +Kkyk (20)

Kk =
pk|k−1

pk|k−1 + r
(21)

pk+1|k =
pk|k−1r

pk|k−1 + r
. (22)

If we divide the recurrence for pk+1|k, (22), by r on each side, and write ρk = pk+1|k/r we have

ρk =
ρk−1

ρk−1 + 1
. (23)

Solving this nonlinear recurrence we find

ρk =
ρ0

1 + kρ0
. (24)

So ρk → 0 as k →∞, i.e., over time the error in the state estimate becomes vanishingly small.

4 Kalman Filter properties

Maximum a posteriori and minimum variance
For our derivation we assumed

• Linear model (state propagation) and observation operator

• Gaussian statistics for the uncertainty in the initial state and observations

We found the Kalman filter as a maximum a posteriori estimate under these assumptions.

From the Joseph form of the posterior error covariance we can show that choosing the Kalman gain
minimizes trace(Pk|k). Hence the Kalman filter is a minimum variance estimate.
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Filter stability

Theorem 1 (see Jazwinski (1970)). If the dynamical system, (1), (2), is uniformly completely observable
and uniformly completely controllable, then the Kalman filter is uniformly asymptotically stable.

Observability and controllability

• Observability measures if there is enough observation information. It takes into account the propaga-
tion of information with the model.

• Controllability measures if it is possible to nudge the system to the correct solution by applying
appropriate increments.

• Uniform asymptotic stability implies that regardless of the initial data x0,P0, with bounded obser-
vation errors, the errors in the output will remain bounded.

• Even with an unstable model M, the Kalman filter will stabilize the system!

Filter stability

• We have seen that the Kalman filter is an optimal filter.

• However, optimality does not imply stability.

• The Kalman filter is a stable filter in exact arithmetic

• Stability in exact arithmetic does not imply numerical stability!

Filter divergence

• Despite the nice stability properties of the filter in exact arithmetic, in practice the Kalman filter does
suffer from filter divergence.

• Filter divergence is often made manifest through overconfidence in the filter prediction (Pk|k too
small), with subsequent observations having little effect on the estimate.

• Filter divergence can be causes by inaccurate descriptions of the model (and model error) dynamics,
biased observations etc, as well as due to numerical roundoff errors.

5 The Ensemble Kalman filter
We now know something about the Kalman filter! This is only valid for

• Linear state evolution models

• Linear observation operators

For large systems, it is also rather computationally expensive to store and evolve the covariance P in time
since this may contain n(n+ 1)/2) independent elements.

The Extended Kalman filter

• The Extended Kalman filter(EKF) (see, e.g., Grewal and Andrews (2008)) was developed to get
around the linearity problem.

• This required tangent linear and adjoint models for the state propagation and observations

• It did not get around the need to store and propagate P

• There are numerous examples in the literature where the EKF fails
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The Ensemble Kalman filter

• The Ensemble Kalman filter (EnKF) was developed by Evensen (1994)

• The idea is to use an ensemble (statistical sample) of states to represent the evolution of the filtered
state pdf.

• Evensen (2009) is a textbook devoted to the Ensemble Kalman filter.

• Review articles on the EnKF include Ehrendorfer (2007); Evensen (2003); Lorenc (2003); Houtekamer
and Mitchell (2005).

• Note that there are several different variants of the filter.

• We will start by looking at the perturbed observation filter.

• We may look at some square root forms of the filter.

• We will not be able to cover all variants in the time available.

Notation for the EnKF

• We now set up the notation for the dynamical system we are trying to estimate

• We generalize to a nonlinear state evolution model.

• For now, we stick with a linear observation operator - although we will discuss later how to generalize
for nonlinear observations.

The Nonlinear Model
Consider the discrete, nonlinear system,

xk+1 = M (xk, k) + wk, k = 0, 1, 2, . . . , (25)

where

• xk ∈ Rn is the state vector at time tk

• M : Rn × 1→ Rn is the nonlinear state transition model (mapping from time tk to tk+1) or model

• {wk ∈ Rn; k = 0, 1, 2, . . .} is a white, Gaussian sequence, with wk ∼ N(0,Qk), often referred to
as model error

• Qk ∈ Rn×n is a symmetric positive definite covariance matrix (known as the model error covariance
matrix).

Remarks
Note that:

• Another common notation in the ensemble Kalman filter literature is to use ψ for the state (e.g.,
Evensen, 2009).

• Additive model error is not the most general (or indeed realistic) scenario. However since model
error is typically unknown it is sensible to treat it in a simple way
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The Observations
We also have discrete, linear observations that satisfy

yk = Hkxk + vk, k = 1, 2, 3, . . . , (26)

where

• yk ∈ Rp is the vector of actual measurements or observations at time tk

• Hk ∈ Rp×n is the observation operator. Note that this is not in general a square matrix.

• {vk ∈ Rp; k = 1, 2, . . .} is a white, Gaussian sequence, with vk ∼ N(0,Rk), often referred to as
observation error.

• Rk ∈ Rp×p is a symmetric positive definite covariance matrix (known as the observation error
covariance matrix).

We assume that the initial state, x0 and the noise vectors at each step, {wk}, {vk}, are assumed mutually
independent.

The ensemble and ensemble mean
Let {x(i)} (i = 1, . . . ,m) be an m-member ensemble in an n-dimensional state space.

The ensemble mean is the vector defined by

x =
1

m

m∑
i=1

x(i). (27)

If the members of {x(i)} are drawn independently from the same probability distribution, then x is an un-
biased estimator of the population mean (e.g., Barlow, 1989, Chapter 5), although in practice the estimates
obtained thereby may be subject to large sampling errors. In fact the expected value of the RMSE for the

ensemble mean is O(m−1/2).

The ensemble covariance
The ensemble covariance is computed as

P =
1

m− 1

m∑
i=1

(x(i) − x)(x(i) − x)T , (28)

where choosing the factor 1
m−1 (rather than 1

m ) ensures that this is an unbiased estimator of the population
covariance matrix (e.g., Barlow, 1989, Chapter 5).

The ensemble perturbation matrix
It is convenient to introduce the ensemble perturbation matrix as the n×m matrix defined by

X =
1√
m− 1

(
x(1) − x x(2) − x . . . x(m) − x

)
. (29)

Note that this definition incorporates the factor 1/
√
m− 1, as in e.g., Bishop et al. (2001); Lorenc (2003).

Then the ensemble covariance matrix is the n× n matrix

P = XXT =
1

m− 1

m∑
i=1

(x(i) − x)(x(i) − x)T . (30)

• X is sometimes called a matrix square root of P.
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• This is inconsistent with the mathematical literature, where a square root of the matrix P is often
defined to be a matrix X such that P = X2 (see, for example,Golub and Van Loan (1996, sec-
tion 4.2.10)).

• However, the usage is well-established in the engineering literature (as in Gelb (1974, section 8.4))
and is also common in geophysical applications (as in Tippett et al. (2003)).

• If X is symmetric then the definitions coincide.

Exercise
Consider the ensemble given by 

1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 .

Compute x and X. What rank is the matrix X?

6 The perturbed observation ensemble Kalman filter

Prediction step
We denote forecast quantities with the superscript f and analysis quantities with the superscript a.

One-step prediction of the ensemble is accomplished simply using the state propagation model (25).

x
(i),f
k+1 = M (x

(i),a
k , k) + wk, i = 1, 2, . . . ,m; k = 0, 1, 2, . . . , (31)

The one step prediction of the ensemble mean is simply accomplished by taking the mean of the forecast
ensemble

xf =
1

m

m∑
i=1

x(i),f . (32)

Forecast covariance
The one step prediction of the covariance is simply accomplished by taking the covariance of the forecast

ensemble,

Pf = Xf (Xf )T =
1

m− 1

m∑
i=1

(x(i),f − xf )(x(i),f − xf )T . (33)

Filtering Step
We would now like to use an ensemble approximation to the Kalman filter to update the ensemble.

Recall the Kalman gain
Kk = Pk|k−1H

T
k (HkPk|k−1H

T + Rk)−1. (34)

We propose an ensemble approximation of this matrix by replacing Pk|k−1 with the ensemble approxima-
tion Pf , so that

Ke = PfHT
k (HkP

fHT + Rk)−1. (35)

Then the ensemble update is given by

x
(i),a
k = x

(i),f
k + Ke(yk −Hx

(i),f
k ). (36)

The update for the mean is simply the mean of this analysis ensemble

xa =
1

m

m∑
i=1

x(i),a. (37)

Exercise: Calculate xa in terms of xf .
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Q: Does this result in the “correct” analysis error covariance matrix?
According to the linear Kalman filter equations we have the relationship

Pk|k = (I−KkHk)Pk|k−1. (38)

Does this hold for the ensemble version of the filter?

Exercise
Show that the analysis ensemble covariance

Pa = (I−KeH)Pf (I−KeH).

Remark: If we compare with the Joseph form of the analysis error covariance (18) we see that this is missing
a factor KeRKe.

Perturbed observation algorithm
To correct the algorithm Burgers et al. (1998) showed that the observations should also be treated as

random variables
d
(i)
k = yk + v

(i)
k (39)

where

• yk ∈ Rp is the vector of actual measurements or observations at time tk

• {v(i)
k ∈ Rp; i = 1, . . . ,m} is an ensemble of samples of observation error with vk ∼ N(0,Rk).

The sample covariance is given by

Re =
1

m− 1

m∑
i=1

(d(i),f − df )(d(i),f − df )T . (40)

Note that due to sampling error it may be the case that d 6= yk if v 6= 0. In practice, the requirement for
zero mean measurement noise is imposed in the simulated sample.

Perturbed observation filter algorithm
Using the perturbed observation errors results in the following EnKF algorithm - here compared alongside the

linear Kalman filter:

EnKF KF
Prediction step
x
(i),f
k+1 = M (x

(i),f
k , k) +wk, x̂k+1|k = Mkx̂k|k

Pf = Xf (Xf )T Pk+1|k = MkPk|kM
T
k +Qk.

Observation update step
x
(i),a
k = x

(i),f
k +Ke(d

(i)
k −Hx

(i),f
k ) x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1)

Ke = PfHT
k (HkP

fHT +Re,k)
−1 Kk = Pk|k−1H

T
k (HkPk|k−1H

T +Rk)
−1

Pa = Xa(Xa)T Pk|k = (I−KkHk)Pk|k−1.

Note

that the matrix (HkP
fHT +Re,k) may be singular and pseudo-inversion may be required.

Pseudo-inverse
We note that D = (HkP

fHT + Re,k) is symmetric positive semi-definite so D ∈ Rp×p has an
eigenvalue decomposition of the form

D = ZΛZT,

where Z ∈ Rp×p is an orthogonal matrix and Λ ∈ Rp×p is diagonal of rank r with diagonal elements
λ1, λ2, . . . , λr, 0, . . . , 0. A common choice of pseudo-inverse would be

D+ = ZΛ+ZT

where Λ+ is diagonal of rank r with diagonal elements λ−11 , λ−12 , . . . , λ−1r , 0, . . . , 0.

Note, for practical implementations, using the SVD is usually preferable to the eigenvalue decomposition-
for reasons of numerical accuracy.
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7 Ensemble square root filtering framework
• Last chapter was all about the perturbed observation ensemble Kalman filter (EnKF).

• This required us to perturb the observations in order to get the “correct” analysis error covariance
statistics.

• This has a few undesirable properties:

– Introduction of additional noise by perturbing the observations

– “Inversion” of the rank-deficient matrix HPfHT + Re

• Square root forms of the ensemble filter are sometimes called “deterministic” since they avoid the
need to stochastically perturb the observations.

The ensemble perturbation matrix
Recall that the ensemble perturbation matrix is the n×m matrix defined by

X =
1√
m− 1

(
x(1) − x x(2) − x . . . x(m) − x

)
. (41)

Note that X has rank at most m− 1:

defining 1m = (1, 1, . . . , 1)T ∈ Rm, we see that X1m = 0 by construction (Livings et al., 2008; Wang
et al., 2004).

Ensemble Covariance
Then the ensemble covariance matrix is the n× n matrix

P = XXT =
1

m− 1

m∑
i=1

(x(i) − x)(x(i) − x)T . (42)

Writing the formulation in terms of X is what gives the name square root filter.

This matrix inherits its rank properties from Xk and also has rank at most m− 1.

Prediction step
We denote forecast quantities with the superscript f and analysis quantities with the superscript a.

One-step prediction of the ensemble is accomplished simply using the state propagation model (25).

x
(i),f
k+1 = M (x

(i),a
k , k) + wk, i = 1, 2, . . . ,m; k = 0, 1, 2, . . . , (43)

The one step prediction of the ensemble mean is simply accomplished by taking the mean of the forecast
ensemble

xf =
1

m

m∑
i=1

x(i),f . (44)

Forecast-observation ensemble
The ensemble update may be written in terms of a forecast observation ensemble {yf

i,k} defined by

yf
i,k = Hk(xf

i,k). (45)

Like any other ensemble, the forecast observation ensemble has an ensemble mean yf
k and an ensemble

perturbation matrix Yf
k .
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Ensemble square root relationships
The update for the ensemble mean and perturbation matrix should satisfy (Tippett et al., 2003)

xa
k = xf

k + Kk(yk − yf
k), (46)

Xa
k = Xf

kTk, , (47)

where,

Kk = Xf
k(Yf

k )TD−1k , (48)

Dk = Yf
k (Yf

k )T + Rk. (49)
(50)

Notes:

• The n× pk matrix Kk is known as the gain matrix.

• The pk × pk matrix Dk is positive definite and invertible since Rk is a positive definite covariance
matrix, and the product Yf

k (Yf
k )T is positive semi-definite.

The T-Matrix
The matrix Tk is an m×m, such that

TkT
T
k = I− (Yf

k )TD−1k Yf
k . (51)

This definition of Tk implies that

Pa
k = (Xf

k −KkY
f
k )(Xf

k)T . (52)

• Equation (51) does not define Tk uniquely (Tippett et al., 2003), so there are various possible imple-
mentations of an SRF, some of which may result in a biased filter (Livings et al., 2008; SAKOV and
OKE, 2008).

• However, Livings et al. (2008) showed that any Tk satisfying (51) is an invertible matrix.

Finally, given xa
k and Xa

k, the analysis ensemble {xi,k} is obtained as

xi,k = xa
k + x′i,k (53)

for i = 1, 2, . . . ,m, where the column n-vector x′i,k is the i−th column of the n×m matrix Xa
k.

The preceding discussion has given us a set of relationships that we must satisfy, but it has not given us
an algorithm that we can implement.

We need a method to calculate T!

Literature

• Tippett et al. (2003) review several square root filters, places them in a common framework, and
compares their numerical efficiency.

• Nerger and Hiller (2013) discuss strategies for parallel implementation.

• The Ensemble Transform Kalman filter of Bishop et al. (2001) and Wang et al. (2004). This is one
of the most popular implementations due to its numerical efficiency. Note that Bishop et al. (2001)
predates Livings et al. (2008) discovery of the results needed to ensure an unbiased implementation -
so don’t use this version!

• The EAKF (ensemble adjustment Kalman filter) (Anderson, 2001) and Whitaker and Hamill (2002)
are both written in a pre-multiplier form Xa = AXf .

• The DEnKF (deterministic ensemble Kalman filter) by SAKOV and OKE (2008) is used by the Met
Office.
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8 Statistical properties of the ensemble Kalman filter

Convergence to the Kalman filter for large ensemble sizes
Butala et al. (2009) and Mandel et al. (2011) showed that with linear forecast and observation models,

in the limit of large ensemble size the ensemble Kalman filter converges in probability to the Kalman filter.

The proof is beyond the scope of this lecture.

Ensemble spread
We now restrict ourselves to the case of linear H again and write Pa

t for the true analysis error covari-
ance.

Theorem 2 (Furrer and Bengtsson (2007), Corollary 2). Let HTH = In×n and R = σ2Ip×p. Then

trace[E(Pa)] < trace[Pa
t ].

Remarks:

• It may seem that that the assumptions are restictive, but it is always possible to define a projected
space dynamical system by letting ỹ = R−1/2y and x̃ = R−1/2Hx and for this system the assump-
tions of the corollary are satisfied.

• This result shows that the EnKF yields ensemble members with too little spread. Furrer and Bengts-
son (2007) show that this lack of spread is due entirely to the inverse in the sample Kalman gain, and
that this holds even when as E(Pf ) = Pf

t .

The proof of this theorem is beyond the scope of this lecture. Ross’ lecture this afternoon will talk about
some methods to deal with this problem!
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10 Appendix: Nonlinear observation operators
We largely dealt only with linear observation operators. It is straightforward to generalize to nonlinear

observation operators, H . There are two ways that this is typically done:

• State augmentation

• Creation of a “forecast-observation” ensemble. (This is not commonly used terminology but gives us
a label to refer to the method!)

State augmentation, Evensen (2003), section 4.5
In state-augmentation we append any nonlinear observations to the state vector at observation time and

define a linear observation operator on the augmented space:

x̃ =

(
x

H (x)

)
; Hx̃ =

(
0 I

)
x̃ = y. (54)

The observation update equations are now applied to the augmented system.

Forecast-observation ensemble
The other method is to use a forecast-observation ensemble {yf

i } defined by

y(i),f = H(x(i),f ). (55)

Like any other ensemble, the forecast observation ensemble has an ensemble mean

yf = H(xf ).

Note that this is NOT equal to H(xf ) in general.
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The forecast observation ensemble perturbation matrix

Yf =
1√
m− 1

(
y(1),f − yf y(2),f − yf . . . y(m),f − xf

)
.

is defined as any other ensemble perturbation matrix.

Exercise: Show that in the special case of a linear observation operator, H, yf = Hxf and Yf =
HXf .

We then have the observation update step as

x(i),a = xf + Ke(d
(i) − y(i),f ), (56)

Ke = Xf (Yf )T (Yf (Yf )T + Re)
−1. (57)
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