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1 The Lorenz equations

We consider various data assimilation schemes applied to the Lorenz equations, a
simple dynamical model with chaotic behaviour. The Lorenz equations are given by
the nonlinear system

dx

dt
= −σ(x − y), (1)

dy

dt
= ρx − y − xz, (2)

dz

dt
= xy − βz, (3)

where x = x(t), y = y(t), z = z(t) and σ, ρ, β are parameters, which in these
experiments are chosen to have the values 10, 28 and 8/3 respectively.

The system is discretized using a second order Runge-Kutta method, which gives
the following discrete equations:

xk+1 = xk + σ∆t/2[2(yk − xk) + ∆t(ρxk − yk − xkzk)
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− σ∆t(yk − xk)], (4)

yk+1 = yk + ∆t/2[ρxk − yk − xkzk + ρ(xk + σ∆t(yk − xk)) − yk

− ∆t(ρxk − yk − xkzk)

− (xk + σ∆t(yk − xk))(zk + ∆t(xkyk − βzk))], (5)

zk+1 = zk + ∆t/2[xkyk − βzk

+ (xk + ∆tσ(yk − xk))(yk + ∆t(ρxk − yk − xkzk))

− βzk − ∆t(xkyk − βzk)], (6)

where ∆t is the model time step and k is the time step index.

2 Four-dimensional variational data assimilation

(4D-Var)

2.1 Introduction

The 4D-Var schemes in these programs minimize a function of the form

J =
1

2
(x0 − xb

0)
TB−1(x0 − xb

0) +
1

2

n∑

i=0

(y(i) − Hi(xi))
TR−1(y(i) − Hi(xi), (7)

where we assume that B = σ2
b
I and R = σ2

o
I. A full 4D-Var scheme minimizes this

cost function by use of the nonlinear model and its adjoint, whereas an incremental
4D-Var scheme minimizes a series of simplified cost functions in different ‘outer
loops’. You are provided with routines for both types of schemes. The routines used
are as follows:

lorenz4d.m Top level routine for full 4D-Var
lorenz4d inc.m Top level routine for incremental 4D-Var
calcfg.m Calculate cost function and its gradient for full 4D-Var
calcfg inc.m Calculate cost function and its gradient for incremental 4D-Var

modeuler.m Nonlinear model for Lorenz system
modeuler tl.m Tangent linear model
modeuler adj.m Adjoint model

test tl.m Test tangent linear model
test adj.m Test adjoint model
test grad.m Test of calcfg
test gradinc.m Test of calcfg inc
menu asl Used to provide menus
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2.2 Test routines - Building a 4D-Var system

When building a 4D-Var system, there are standard ways of testing the various
components before it is used for assimilation. You can experiment with these tests.

2.2.1 Test of tangent linear model

Suppose that M is a nonlinear model and M is the tangent linear model. Then for
small perturbations γδx we have

M(x + γδx) − M(x) ≈ M(x)γδx. (8)

Hence if we plot the relative error

ER =
M(x + γδx) − M(x)

M(x)γδx
(9)

as γ → 0 we should find that ER → 0.
Exercise: Use the routine test tl to plot the relative error. Try introducing an

error into the tangent linear code modeuler tl and see what effect it has on the test.

2.2.2 Test of adjoint model

For a linear model M and its adjoint M∗ we have the identity

< Mδx,Mδx >=< δx,M∗Mδx > (10)

for any inner product <,> and perturbation δx. This can be used to test that the
adjoint is coded correctly.

Exercise: Use the routine test adj to test the adjoint code. Try introducing an
error into the adjoint code modeuler adj and see what effect it has.

2.2.3 Gradient test

Let J be a cost function and ∇J be its gradient. Then we can check that the exact
gradient of the cost function has been coded by using the identity

Φ(α) =
J (x + αh) − J (x)

αhT∇J (x)
= 1 + O(α), (11)

where h is a vector of unit length, which we can take to be ∇J (x)||∇J (x)||−1. For
small values of α not too close to machine zero we expect Φ(α) to be close to 1.

Exercise: Use the program test grad or test gradinc to test either of the two
cost functions. The output of these routines is a plot of Φ(α) and a plot of |Φ(α)−1|.
Try introducing an error into the gradient calculation to see how this affects the test
results.

3



2.3 Assimilation program

The routines used to run assimilation experiments are lorenz4d for the full 4D-Var
and lorenz4dinc for incremental 4D-Var. The menu options you must specify, with
some suggested values, are

Initial values of x, y, z 0.0–5.0
Assimilation period (in seconds) 0–10
Forecast period (in seconds) Any
Time step (in seconds) 0.0–0.05
Frequency of observations (in time steps) Any
Noise on background Variance = 0–4 (excluding zero)
Noise on observations Variance = 0–4 (excluding zero)
Convergence criteria Default values given
Number of outer loops 2 (Incremental version only)

Note that the time step must be a divisor of your total time, so values such as
0.02, 0.025, 0.05 work well. The output of the program is the fields of x and z, the
errors in x and z and the convergence of the cost function and its gradient. The
final norm of the gradient is also output in the Matlab command window.

The noise on the background and observations is produced randomly each time
the program is run. In order to compare the effect of different settings you can
choose to use the same realisation of random noise as in your previous experiment
by answering ’Yes’ to the question ’Read in noise from file?’. Note that in order for
this to work the number of observations must remain the same.

2.4 Suggested exercises

Start with the conditions
truth=(1.0,1.0,1.0)
Assimilation period = 2
Forecast period = 3
Time step = 0.05
Frequency of observations = 2

1. Run the 4DVar with the different relative errors on the background and ob-
servations. How does the behaviour of the scheme change?

2. Is it better to have very few accurate observations or more observations which
are less accurate? Consider both the accuracy of the analysis and the rate of
convergence.

3. Is it better to have a long assimilation window with few observations or a short
assimilation window with more observations? Does this depend on how much
error there is on the observations? Consider both the accuracy of the analysis
and the rate of convergence.
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4. How does the rate of convergence change if the background error is decreased
or increased so that the first guess is moved closer to or away from the truth?

5. Compare full 4D-Var and incremental 4D-Var for the same total number of
iterations. Are there conditions for which one scheme is better than the other?

6. For the incremental 4D-Var investigate the effect of different outer loops with
the same total number of iterations. Compare against the full 4D-Var solution.

2.5 Advanced exercises

The following exercises require you to understand and change the code.

1. Investigate the effect of correlated observation errors in 4D-Var.
Introduce correlations in your observation errors by changing the program so
that the same random noise is used to create the observation error for x, y and
z (or just two of these). How does this affect the assimilation results? Consider
what happens when the observation error covariance matrix is assumed to be
diagonal and not.

2. Investigate the effect of biased observations in 4D-Var.
Try replacing the random observation error with a constant bias for one or
more of the variables. What is the effect on the analysis?

3. Investigate the performance of 4D-Var when the model state is only partially
observed.
Change the code so that only two components of the state vector are observed.
How well is the other component retrieved by the assimilation? Compare
the effect of using a diagonal and non-diagonal background error covariance
matrix.

4. Investigate the effect of model error in 4D-Var. You may consider
(a) random stochastic error;
(b) an error in the parameters;
(c) a bias error.
Usually the numerical model we use to assimilate is not an exact representation
of the true system, but will contain model errors. We can investigate the effect
of this in a simple assimilation experiments by using one version of the model
to produce the ‘truth’ trajectory and the observations and using a different
version of the model to assimilate. To add error to the assimilation model you
may
(a) add a random forcing to one of the model equations;
(b) change one of the model parameters σ, β or ρ to be slightly different in the
assimilation model;
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(c) add a constant forcing to one of the model equations.
How does this affect the analysis?
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