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Introduction

The general aim of data assimilation is to improve a forecast by reducing the
error in the initial conditions.
Observations, y, and a-priori data, xb, are combined utilising a statistical
description of their respective errors and a description of the relationship
between state and observation space, h(x). The resulting analysis of the
current state, xa, then becomes the initial conditions for the next forecast.
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Multiple dimensions

xa = xb +K (y − h(xb)) (1)

Pa =
(

B−1 +HTR−1H
)

−1

K = PaH
TR−1

Notation
xb: background y: observation xa: analysis
B or σ2

b
: xb error variance R or σ2

y : y error variance Pa or σ2
a : xa error variance

K: Kalman gain h(x):observation operator H: Linearised h(x)
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Introduction

Monitoring the impact of the observations is particularly important in the
geosciences where observations tend to be very expensive
An objective measure of the impact of the observations may be used for:

◮ the assessment of the data assimilation scheme

◮ the design of new observing systems

◮ defining targeted observations

◮ data thinning
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Introduction

Measures of observation impact can broadly be split into two type

◮ those measuring the impact on the analysis

◮ those measuring the impact on the forecast

It can be expected that observations which have a large impact on the analysis
will also have a large impact on the forecast. However care must be taken in
comparing observations with different dynamical types due to the different roles
they have in the forecast.
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Influence matrix

The influence matrix measures the sensitivity of the analysis in observation
space to the observations (Cardinali et al., 2004).

S =
∂Hxa

∂y
(2)

This is a p × p matrix, where p is the number of observations, allowing for the
most influential observations or groups of observations to be identified.
From the expression for the Gaussian analysis given by (1), we can rewrite (2)
as

S = K
T
H

T ≡ R
−1

HPaH
T

When R is diagonal the diagonal elements of S are bounded by 0 and 1.
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Influence matrix
Lorenz 1963 identical twin experiment

The state is given by x = (x , y , z)T and observations are made of x at every
forth time step.

B =





1 0.5 0.25
0.5 1 0.5
0.25 0.5 1



 and the observation error variance is 1 at each

time step and uncorrelated in time.
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Influence matrix
Lorenz 1963 identical twin experiment

Can use the influence matrix to reduce the number of observations in the
assimilation. In this case the observations have been reduced by 60% by
summing up the magnitude of the values in each column of S and taking the
30 observations corresponing to the greatest influence on the analysis.
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Degrees of freedom for signal

The degrees of freedom in data assimilation is given by the expectation of the
cost function evaluated at the analysis. This can be shown to equal the
number of observations, p.
The degrees of freedom may be split into two parts; that measuring the signal,
ds , and that measuring the noise, dn. ds + dn = p.

ds = E [(xa − xb)
T
B

−1(xa − xb)] (3)

From the expression for the Gaussian analysis given by (1), we can rewrite (3)
as

ds = trace(HK) ≡ trace(S)

Hence ds is bounded by 0 and p.
Can look at subset of observations by calculating ds(i) = trace(Si ). ds(i) is then
bounded by 0 and pi .
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Degrees of freedom for signal

The degrees of freedom in data assimilation is given by the expectation of the
cost function evaluated at the analysis. This can be shown to equal the
number of observations, p.
The degrees of freedom may be split into two parts; that measuring the signal,
ds , and that measuring the noise, dn. ds + dn = p.

ds = E [(xa − xb)
T
B

−1(xa − xb)] (3)

From the expression for the Gaussian analysis given by (1), we can rewrite (3)
as

ds = trace(HK) ≡ trace(S)

Hence ds is bounded by 0 and p.
Can look at subset of observations by calculating ds(i) = trace(Si ). ds(i) is then
bounded by 0 and pi .
For the Lorenz 1963 example shown previously, ds = 2.327 when the full 50
observations were assimilated and ds = 1.992 when the reduced observations
were assimilated (a reduction of 86%).

Measuring the impact of observations School of Mathematical and Physical Sciences, University of Reading.



Introduction Observation impact on the analysis Observation impact on the forecast Summary Discussion Conclusions Useful references

Degrees of freedom for signal
Statistics from Meteo France assimilation system
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Entropy measures

S and ds both aim to quantify the effect of the observations on the analysis
alone. This may give a limited view of the impact the observation is having.

Mutual information and relative entropy are two measures of observation
impact which quantify the effect of the observation on the change in entropy.
Entropy is a measure of the uncertainty associated with a variable.
Entropy for a single random variable is defined as

H(x) =

∫

P(x) lnP(x)dx.

For a Gaussian distribution the entropy is given by

H(x) = n ln(2πe)1/2 +
1

2
ln |Cx |,

where n is the size of the vector x and |Cx | is the determinant of it’s error
covariance matrix.
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Mutual information

Mutual information (also known as Shannon information content in Gaussian
data assimilation) is given by the reduction in entropy after the observations
have been assimilated.

MI = H(x)− H(x|y) (4)

For Gaussian error statistics (4) becomes

MI =
1

2
ln |BP−1

a | ≡ −
1

2

p
∑

i=1

ln(1− λi ),

where λi are the eigenvalues of the influence matrix.
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Mutual information

Mutual information (also known as Shannon information content in Gaussian
data assimilation) is given by the reduction in entropy after the observations
have been assimilated.

MI = H(x)− H(x|y) (4)

For Gaussian error statistics (4) becomes

MI =
1

2
ln |BP−1

a | ≡ −
1

2

p
∑

i=1

ln(1− λi ),

where λi are the eigenvalues of the influence matrix.
For the Lorenz 1963 example shown previously, MI = 5.9952 when the full 50
observations were assimilated and MI = 4.0910 when the reduced observations
were assimilated (a reduction of 68%).
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Comparison of Mutual information and degrees of freedom for signal
scalar Gaussian example
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Relative entropy

Relative entropy is a non-symmetric measure of the difference between the prior
and posterior pdf.

RE =

∫

P(x|y) ln
P(x|y)

P(x)
dxdy (5)

For Gaussian error statistics (5) becomes

RE = 1
2
(xa − xb)

TB−1(xa − xb) + 1
2
(ln |BP−1

a | + trace(B−1Pa)− n),
= 1

2
(xa − xb)

TB−1(xa − xb) + MI − 1
2
ds

Unlike the other measures RE depends on the value of the analysis increment
as well as the error covariances. It therefore cannot be calculated before an
observation has been made.
From the definition of ds it is clear that RE averaged over observation space is
MI .
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Relative entropy

Relative entropy is a non-symmetric measure of the difference between the prior
and posterior pdf.

RE =

∫

P(x|y) ln
P(x|y)

P(x)
dxdy (5)

For Gaussian error statistics (5) becomes

RE = 1
2
(xa − xb)

TB−1(xa − xb) + 1
2
(ln |BP−1

a | + trace(B−1Pa)− n),
= 1

2
(xa − xb)

TB−1(xa − xb) + MI − 1
2
ds

Unlike the other measures RE depends on the value of the analysis increment
as well as the error covariances. It therefore cannot be calculated before an
observation has been made.
From the definition of ds it is clear that RE averaged over observation space is
MI .
For the Lorenz 1963 example shown previously, RE = 6.8172 when the full 50
observations were assimilated and RE = 5.0801 when the reduced observations
were assimilated (a reduction of 75%).
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Comparison of measures
Each measure introduced provides complementary information. The choice of
measure to use depend on the intended application.

◮ Understanding impact of individual observation types: The influence
matrix is the only measure to provide information about an individual
observations impact on the whole of the analysis. Degrees of freedom may
be used to compare predefined subsets of observations. Mutual
information has the benefit of being additive with successive observations.

◮ Data thinning: Degrees of freedom for signal and mutual information have
both been used for channel selection of satellite instruments. This is often
performed offline.

◮ Assessment of data assimilation scheme: Degrees of freedom for signal can
be used to check the assumptions made in 4D-Var as the
E (Jb) = trace(S) iff these assumptions are correct. To calculate E (Jb) an
ensemble of 4d-Var is necessary (see Desroziers et al., 2009).

Relative entropy is unique in that it depends on the observation value therefore
it is sensitive to extreme observations. It could therefore be useful for routine
monitoring, identifying situations where observations are having an unusually
large influence on analysis.
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Observation impact on the forecast

Often the ultimate aim of data assimilation is to improve the forecast.
However, there is not always a clear relationship between observation impact on
the analysis and observation impact on the forecast.
For applications such as defining targeted observations it is particularly
important to take into to account the forecast dynamics and the synoptic
situation.
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OSSEs and data denial experiments

OSSEs (observation system simulation experiments) (e.g. Masutani et al.
(2010)) and data denial experiments (e.g. Kelly et al. (2007)) compare a
control forecast to a forecast which has had additional (simulated) observations
or fewer observations assimilated.
The difference between these forecasts gives an indication of the impact of the
observations on a variety of measures.
Caution is needed in careful validation and calibration when large amounts of
data are added or removed from a system which may have been optimally
tuned for the original set of observations (Gelaro and Zhu (2009)).
These experiments are very expensive and so only impact of a large subset of
observations can be looked at one time.
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Adjoint techniques

The adjoint technique as proposed by Langland and Baker (2004) approximates
the sensitivity of a scalar forecast error norm, C , to the observations.

∂C
∂y

= ∂xa
∂y

∂C
∂xa

= KT ∂C
∂xa

(6)

To calculate the sensitivities with respect to the analysis need the adjoint of
the forecast model, MT,

∂C

∂xa
= M

T ∂C

∂xf
, (7)

where ∂xf is the forecast field at the time of validation.
Like the influence matrix this approach allows the impact of individual
observations or subsets of observations to be computed simultaneously making
it advantageous over the data denial experiments.
Subject to accuracy of linearised model- so can only look at the sensitivity of a
short-term forecast.
A comparison of the adjoint and data denial techniques is performed by Gelaro
and Zhu (2009).
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Flow of entropy

Another quantity of interest is how the entropy at the forecast time depends on
the uncertainty in the initial conditions (which we know from MI depends upon
the observations).
For linear systems the evolved posterior remains Gaussian.
For non-linear systems could use an ensemble technique to evolve the posterior
to the forecast time without any assumptions about the linearity of the model.
However due to sampling noise this would only be feasible for a small
dimensional problem.
e.g. Time lagged mutual information (e.g. Kleeman, 2011)

TLMI = H(x(tf ))− H(x(tf )|x(t0))
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Summary

Many different complimentary measures of observation impact are available.
In quantifying the impact of the observations it is important to consider

◮ the application (e.g. monitoring of observations, maximising efficiency of
the assimilation, design of new instruments...)

◮ and subsequently which aspect of the system you are most interested in
(e.g. the analysis or forecast, the spread in their errors...).

You could even get creative and design your own measure of observation
impact tailored to your problem.
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Discussion
What happens when the assumptions you have made are wrong?

When calculating the information content of potential new observations it is
important to understand what simplifying assumptions have been made and
how accurate they are.
For example neglecting the error correlations of the observations will effect the
way the observations are assimilated and the conclusions that can be made
about their information content (e.g. Stewart et al. 2013).
Neglecting sources of error could also have a dramatic effect on the observation
impact, e.g. not allowing for model error would make the observations appear
to be inconsistent with the model trajectory.
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Discussion
non-Gaussian data assimilation

Recent development of advance data assimilation techniques mean that it is no
longer necessary to assume Gaussian statistics. However the break down of the
linear theory which methods such as variational data assimilation rely on also
means that the way observation impact is calculated needs to be readdressed.
Measures such as the analysis sensitivity may no longer be meaningful.
Measures based on the change in entropy are a more natural choice although
become more expensive to calculate as can no longer express them analytically
(Fowler and van Leeuwen, 2013).
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Conclusions

A measure of observation impact can be a powerful tool for maximising the
efficiency of and monitoring the data assimilation process. When choosing
which measure to use, thought needs to be given to both the application and
aspect of the assimilation you are most interested in. Care most also be taken
in interpretting the measure of observation impact given any simplifying
assumptions made.
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