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1. VECTORS AND MATRICES

1.1. Vector representation of information (n elements).

U1
VvV = (A y V; = (V)7
oy,
1.2. Matrix (m x n elements).
Niy -+ Ny - N,
N = Nil Nij Nzn ) sz - (N)Z]
Npi -+ Npmj -+ Npm

1.3. Matrix (m x n) acting on a vector.

n
vP = Nv?, v}) = E Nijv;l, 1 <4 < m as below:
=1

’U}f N11 Nlj Nln ’Ui'l Nuv"i‘—ﬁ—...+N1jv‘?+...—|—N1nvf;
’Uzb = Nil Nij Nzn ’U? = Nﬂ?]zf—l— +N,LJU;++N”1’U?L
vgl Nmi -+ Npj -+ Npg v Npivd + ...+ ijv; + ...+ Npnvi

1.4. Identity /unit matrix (p x p elements).
10 --- 0

01 --- 0 1 Q=
L= . . . .| (Ip)ij5ij{
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1.5. Matrix addition (m x n elements).

N =N*+NP N;; = N3+ N} as below:

Nlal N%n N})l N}Dn Nlal+NP1 Nlan+NFn
SRR S I ; 5

N2 ... N# Nb ... NP N2, + NP ... N2& 4 NP
ml mn ml mn ml ml mn mn

1.6. Matrix multiplication (m x n elements - an m x p matrix multiplied by an p x n
matrix).

p
N =N*N,  N;; = NjNp as below:

k=1
N{, - N, Ny .- Np, Nf1N{31+~~+N1apN;E’1 N?lN{)n—’_"'—’_NlapN;n
NZ, o o N,anp N;’l N]En NﬁﬂNﬂ + "'+N21pN;])31 N;;‘llNFn—l—... —i—Nf;LpN:En

In general, matrices are non-commutative N*INP # NPN#,

1.7. Matrix transpose (N has m x n elements, N® has n x m elements).

If N> =N*" NP =NZ%, eg:

Jv

a a a Nlal N2al
v (AR ) =
N21 N22 N23 Nf,?, N2a3

If N = N°T then matrix N® is symmetric (only square matrices (m = n) can be symmetric).

1.8. Transpose of a product of matrices.
(NaNb)T — NbTNaT.
1.9. Matrix inversion (n x n elements). Let N be a square (n x n) non-singular matrix.
If v = Nv?, then v® = N~ !vP.

In general (N™1);; # (N);:'.

)

Ni1 Nis 1 Nos  —Nyo
F =2, N-= N = det(N) = N11Nog—N12Nog.
orn=s ( Na1 Nap ) ’ det(N) \ —Na1  Nii /)’ et(N) Tz

If N is singular then it has a zero determinant and the inverse cannot be found in general.
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1.10. Diagonal matrix (n x n elements). A matrix is diagonal if N;; = 0if ¢ # j. N may be
written:

MO 0
0 Ao 0

N = diag(Ai, Aa, ..., An) = ,
0 0 An

The inverse of a square diagonal matrix is (N~1);; = (N);;*, (N~1);; = 0 for i # j:

i

Ny 0 - /Ny 0

0 Ny - _ 0  1/Nas

1.11. Euclidean vector inner product (scalar product/dot product) (n elements). Two
different vectors:

)

n
a=v* vP=vTyb = <va,vb> = g v®0P as below:
i=1

a b b
1 U1 ( a a a U1
’l}l .. Ul ... /l]n
a b _ b _ ,a,b a, b a, b
Yy v | = vy | =viv) - F v+ v,
a b b
The same vector:
n
2
b=v-v=viv=(v,v)= E v? = ||v||° as below:
=1
U1 U1 U1
(v v; Uy )
v; : v; = V5 =0V + -+ ov s+ VU,
Un Un Un

1.12. Non-Euclidean vector inner product. Two different vectors (m elements and n elements):

a=v* (CvP) =v?TCvP = <va,vb>c = va‘ Z C’ijv;? as below:

i=1  j=1
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(vf - v ) Cu - Gy C_ln Uli’
Cp -+ Cy - Ci v
Cmi - Cmj ++ Cun P
The same vector (n elements):
n n

=v-(Cv)=vICv=(v,V)g = Zvi ZC’ijvj = |v]|% as below:
= o

=1

( Cu - Ciy - Cin v

’1}1 PR U’L ... UTL ) . . .
Co -+ Cy - Cin v
Coi - Cpj - Con Un

1.13. Vector outer product (m x n elements).

N = v*v"" N =) as below:

a a, b a, b a, b
V8 b b b (o R 1 S O Nt
. ( ’l}l ... vj DR /l]n )
a _ a,b a,b a,b
Ui = ViU o Uy Uy
a a b a b a b
v2, U U Ul e Uy
1.14. Schur (or Hadamard) product. For matrices (m x n elements):
_ a b _ a n7b .
N =N"oN", N;; = N;zN;> as below:
a a b b a b a b
Nll Nln Nll Nln NllNll Nl’ann
; . o A = ; ;
a a b b a b a b
ml 7 Nmn le Nmn lele NmnNmn

For vectors (n elements)

v=v?ovP v =P as below:

v vy vivy
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1.15. The trace of a matrix (n x n elements). The trace of a square matrix N, tr(IN), is the

sum of the diagonal elements:
n

1.16. The Sherman-Morrison-Woodbury formula.
(A+CD") '=A'—A'C(I+D"A'C) ‘DA
Replacing C — CB and then setting C = D = H and A = R, the following useful formula results:
(B"'+H'R'H)BH' =H'R™' (R+HBH").

2. FUNCTIONS

2.1. Scalar valued function of a vector (n elements) and its derivative.

af /o

0 af/o
s g vam= () = T
af ovn

3. MEAN, (CO)VARIANCE, CORRELATION AND GAUSSIAN STATISTICS

3.1. The variance, standard deviation and mean of a scalar. Consider a population of N
scalars, s', 1 <1 < N. The following are for the variance, var(s), standard deviation, o, and mean,
(s) (common notations are given)!:

var(s) = ((s — (s))*) = (s = 5)2 = € ((s — £(5))*) = %Z(Sl —(s))?,
s =1
os =/var(s), (s)=35=E&(s)~ i Zsl
=1

3.2. The covariance between two scalars. Consider two populations, each of N scalars, s, t,
1 <1< N. The following is for the covariance, cov(s,t) (common notations are given)?:

1

N
cov(s,t) = {(s = (Nt — 1)) = (s =5)t - 1) =€ ((s —E)(E - EW)) ~ = D (' = ()t = (1)).

1=1
The covariance between two scalars can be negative, zero or positive.

lSample variance and sample mean are those (approximate expressions) given in terms of a finite population (a
sample). In the formula for the sample variance, N = N if (s) is taken to be the ezxact mean, but N = N — 1 if (s)
is taken to be the sample mean.

2Sam1p1e covariance and sample mean are those (approximate expressions) given in terms of a finite population
(a sample). In the formula for the sample covariance, N = N if (s) and (t) are taken to be the ezact means, but
N = N —1if (s) and (t) are taken to be the sample means.
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3.3. The correlation between two scalars.

cov(s,t)

cor(s,t) = —1 < cor(s,t) <1, cor(s,s)=cor(t,t)=1.

050t

3.4. The covariance matrix between two vectors (one with m elements, another with n
elements). Consider two populations, each of N vectors, u!, vl, 1 <1 < N. The following is for
the covariance matrix, cov(u, v), which uses the outer product (common notations are given):

cov(u,v) = ((u—()(v—(v)")=@-0)(v-9T=£(u-E)v-EW)"),

2
2

(1=
B

|
B
<

|
<
\_/H

ot )y -3 (0 ) (8 ),
(o ) (1) o () 6 ) o ) 04— (o)
eovln) = £ 3 ) () L G- ) ) (o ) (0~ ()
(= ) O = (01) (o= o) (= (0)) -+ (uy = ) (0~ ()

If u = v, then cov(v,v) is the auto-covariance matrix of v. Diagonal elements are variances of each
element of v, i.e. (cov(v,v)),; = var(v;):

(vi = (o))

2

2~

cov(v,v) = =Y | (v () (v} — (v)) - (v} — (v3))? o (oh = (u)) (0 = (va))

=1

(v = (on)) (v1 = (V1)) - (v = {on)) (0 = (vi)) -+ (vh, = (on))*

Auto-covariance matrices are symmetric.

3.5. The correlation matrix between two vectors.

cor(u,v) = X cov(u,v)E;!, B, =diag(ou,, 0wy, 0u,), By = diag(cy,,0p,, -0y, ) as below:
oyl 0 o0 (cov(u,v))y;  (cov(u,v))y, - (cov(u,v)),,
0 oy -+ 0 (cov(u,v))y;  (cov(u,v))y, -+ (cov(u,v)),,
cor(u,v) = .
0 0 - oyt (cov(u,v)),,; (cov(u,v)),., - (cov(u,v)),
U;ll 0 0
0 U;zl 0
0 0 ot
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. (cov(u,v)),,
ie. (cor(u,v)),; = T”
Ui YU,

If u = v then cor(v,v) is the auto-correlation matrix of v:

cor(v,v) = X5 cov(v,v)E; ! as below:

Jv_ll o - 0 (cov(v,v))y; (cov(v,Vv))yy -+ (cov(v,V));,
cor(v,v) 0 av_zl 0 (cov(v,Vv))gy (cov(v,V))yy -+ (cov(v,V))y,
00 0 ot ) \ vV (eov(viv)), o (cov(viv),,
U;ll 0
0 01721
0 0
1 (cor(v,v))y -+ (cor(v,v));,
_ (cor(v, v))y, 1 e (cor(v,v)),,
(cor(v. V) (cor(v.v)), -+ I
(cov(v,Vv)),,

. 1,
ie. (cor(v,v));,; = ’.

Ov; Ov;
Auto-correlation matrices are symmetric.

3.6. Gaussian/normal probability density function. For n-variables:

—;ex —1 X — (X Tp- X — (X = Ccov(X,X
) = e | =5 (x = () P k= ()P o)
Forn =1: ) ( <>)2

For n = 2:

1 1 ( 1 T2 ) ( 0'% P12 )_1 ( 1
X) = €T 7,’1,‘ = ex P
p(x) = p(x1, 22) 42 (0202 — P2) P [ B Py o2 Lo

I

o

-1

Un



Some basic statistical concepts

A.S. Lawless

University of Reading

Random variable A random variable is a variable which takes on values at random.

Probability distribution function A probability distribution function P(z) describes
the probability that x will take on a certain value. Thus the probability that z lies

between x1 and x2 is given by

/:2 P(z)dz. (1)

1
Expectation value Suppose that a random variable x can take on all values between

—oo and co. Then the expectation value of x is given by
[e.9]
<z >= / xP(x)dx, (2)
—00

where P(z) is the probability distribution function of x. The expectation value is
a generalization of the mean. While the mean is calculated from a sum over a real
data sample, the expectation value sums over a theoretical probability distribution.
If a data sample is described by a theoretical distribution then as the size of the data
sample tends to infinity, the mean tends to the expectation value. The definitions
which follow can be applied to a finite data sample by replacing the expectation

value with the arithmetic mean.

We note the properties

<xzty>=<z>+<y>, (3)
but in general < zy >#< x >< y >.

Gaussian distribution The Gaussian distribution function (also known as the normal
distribution) is a particularly important probability distribution function. It takes

the form

P(xz;p,0) = Le_(gﬁ_“)rz/%z. (4)

oV 2T



It is a bell-shaped curve centred on x = p, with the width determined by 0. We
find that p is equal to the expectation value (or mean) of x and o is the standard

deviation of the distribution (see later definition).

The Gaussian distribution is important, since it describes well the distribution of
errors, an important part of data assimilation. We often assume that errors have a

Gaussian distribution.

Variance The variance of z, V(z), is given by

V(z) = <(z—<z>)*> (5)

= <a?>-—<z>?. (6)
The variance is a measure of the spread of  around the expectation value < x >.

Standard deviation The standard deviation is simply the square root of the variance

and is usually denoted by the symbol o, so that

For a Gaussian distribution:

68.27% of the area lies with o of the mean
95.45% of the area lies with 20 of the mean
99.73% of the area lies with 30 of the mean

Covariance Let x,y be two random variables. Then the covariance between x and y is

defined as

cov(z,y) = <(z—<z>)(y—<y>)> 9)

= <ay>—<zr><y>. (10)

The covariance measures the dependence between the two variables. If values of
x above the expected value have a tendency to occur with values of y above the
expected value, then both terms in (9) will have the same sign and the covariance
will be positive. A similar situation occurs if both have lower than expected values
together. If however values of x above the expected value occur with values of y below
the expected value, then the terms will have the opposite sign and the covariance will

be negative. If the variables x and y are independent then x— < x > has an equal



chance of being multiplied by a positive or negative y— < y > and the covariance

will be zero.

‘We note also that
cov(z,z) =V (x). (11)

Covariance matrix Suppose we have n random variables (1), ..., Z(,). Then we can

define a covariance between any two variables by
cov(z iy, 7(j)) =< () — < 2) >) (X))~ < 3(5) >) > . (12)
Then we can easily see that these covariances form an n X n matrix with entries
Vij = cov(z(y, T(5))- (13)

This matrix is known as the covariance matriz. We note two important properties

of this matrix:

1. The covariance matrix is symmetric, since cov(z;), ¥(;)) = cov(z(jy, Z(;))-

2. Using (11) we see that the diagonal entries of the covariance matrix are just

the variances.

Correlation coefficient The correlation coefficient p is a version of the covariance, nor-
malized by the standard deviations to give a dimensionless quantity. It is defined

for two variables z,y by
cov(zx,y)
o(z)o(y)

The correlation coefficient varies beteen —1 and 1. If p = 0 then the variables are

p(r,y) = (14)

independent and are said to be uncorrelated. If p = —1 or p = 1 then the variables

are completely correlated and one can be determined from the other.

Notes on statistics of errors

Let us suppose that Ty(r,¢) is some variable which we are trying to measure (eg. temper-

ature) and we have an estimate T, (r,¢) which has error €(r,t). Hence
Te(r,t) = To(r,t) + €(x,t). (15)
Then we say that

e The measurement is unbiased if < e(r,t) >= 0.



e The error is not spatially correlated if < e(r;,t)e(r;,t) >= 0 for i # j.

e The error is not temporally correlated if < e(r,t1)e(r,t2) >= 0 for t1 # to.
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