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1.    

The Data Assimilation  

Problem 



 Data Assimilation 
Aim: 

 Find the best estimate (analysis) of the 

expected states/parameters of a system, 

consistent with both observations and the 

system dynamics given: 

 
 

•  Numerical prediction model 

•  Observations of the system (over time) 

•  Background state (prior estimate) 

•  Estimates of error statistics 





Example  -  State Estimation 

T0 = 0 Tn+1 = 0 T1 …. …. T2 Tk 

  

Diffusion of temperature in a bar 

Tn 

States of the system:  

Tk   =  temperature at grid point   zk 
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Example  -  State Estimation 



Example  -  Observations 
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Take observations at grid points at times  ti 



Example  -  Observations 
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where , 

Take observations at grid points at times  ti 



Example  -  Prior Estimate 

T0
0 = 0 T0

n+1 = 0 …. …. 
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T0
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2 T0
k T0
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Prior estimate at time  t0  at all grid points  zk  

where , 



Example  -  Data Assimilation Problem  

Prior: 

Observations: 

Question:   can we estimate the  

state of the system        at  t0  from  

this information?   How accurate 

is the estimate?  



Example   

Using these equations 

implies: 

 =  a set of linear equations for         . 
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Example  -  Solution  

Find the solution that minimizes the error variance  
and gives the weighted least square error: 



Example  -  Solution  

Find the solution that minimizes the error variance  
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Example  -  Solution  

Find the solution that minimizes the error variance  
and gives the weighted least square error: 

This gives  T0  with minimum variance.  





Example  -  Numerical Model  
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Difference equation describing diffusion 

where   c   is the diffusion coefficient  
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Example  -  Numerical Model  
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Example  -  Numerical Model  
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Example  -  System Equations  

Prior: 

Model: 

Observations: 

where 

and errors are uncorrelated in time 



Example  -  Data Assimilation Problem  

Prior: 

Model: 

Observations: 

Question:   can we estimate the  

state of the system        at  t0  from  

this information?   How accurate 

is the estimate?  



Example  -  YES 

Using: 

implies: 

 =  a set of linear equations for         . 



Example  -  Solution  

Find the solution that minimizes the error variance  
and gives the weighted least square error: 



Optimal Estimate 

subject to 

,   i = 0, 1, …n – 1  



Optimal Estimate 

subject to 

,   i = 0, 1, …n – 1  

Best Linear Unbiased Estimate 



Optimal Unbiased Estimate 

subject to 

,   i = 0, 1, …n – 1  

Maximum A Posteriori Likelihood  



Example  -  Application   

Temperature diffusion with source term 

T0 = 0 Tn+1 = 0 T1 …. …. T2 Tk Tn 

z 

Heat source 

Twin experiment:     

• Truth is solution for  T0
k  = 1  for all k 

• Background is  T0
k  = 2  for all k 

• Observations are from truth with no noise at 

5 grid points at every time step for 40 steps 

Model: 



Solid = Truth,   Dotted = Background,   + = Observation,   Red = With Assimilation 

Heat Equation with Source 

Forecast: 



2.    

     Variational Data Assimilation 



2.    

    Variational Data Assimilation 



Optimal Unbiased Estimate 

subject to 

 

 

 

i

i

i

b

H

R

B

y

x - Background state (prior estimate) 

- Observations 

- Observation operator 

- Background error covariance matrix 

- Observation error covariance matrix 

 

, 



 

Significant Properties: 

 

•  Very large number of unknowns (107 – 108) 

•  Few observations (105 – 106) 

•  System nonlinear unstable/chaotic 

•  Multi-scale dynamics 

  



Variational Assimilation 

subject to 

Solve iteratively by gradient optimization methods. 
 

Use adjoint methods to find the gradients. 
 

          3DVar  if  n = 0       4DVar  if  n > 1 

, 



Then the adjoint equations are 

Adjoint Model  

Define the Lagrangian functional as 

where is the linearized dynamical model 

). 

 and            is the linearized observation operator  



Adjoint Model   

The  adjoint  variables          measure the  

sensitivity of the objective function         

to changes in the solutions   xk    of the state  

equations. 

Mi   is the Jacobian           of the linearized  

model operator and its  adjoint  is  Mi
T ,  

known as the tangent linear model (TLM)  

i 

Question  -  What are the adjoints? 



The  gradient  of           with respect to the 

initial condition   x0    is  then given by 

Adjoint Model   

At the optimal the state and adjoint equations  

must both be satisfied and the gradient must  

equal to  0 . 



  Algorithm  

• Estimate  x0 

• Run the nonlinear model forward;  find the 

‘innovations’  H[xi] – yi and evaluate the  

objective function    

• Run the adjoint model backward to find       

and evaluate the gradient  

• Use a gradient nonlinear minimization method  

to find an improved estimate of  x0    

• Repeat until required accuracy is reached. 

 

0 

To find the optimal: 



  Algorithm  



3.    

Incremental 4D Variational 

Assimilation  



Observation 

Time 

Temperature 

Background       

Incremental 4D-Var 

Analysis 

Solve a sequence of linear least squares problems that 

approximate the nonlinear problem by iteration . 



Incremental 4D-Var 

Set           (usually equal to background) 

For k = 0, …, K  find: 

Solve inner loop linear minimization problem: 
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  Algorithm  

• Estimate  x0 

• Run the nonlinear model forward to find xi  

• Estimate  δ x0   and run the tangent linear model (TLM)  

forward to find                     and evaluate the linearized 

objective function 

• Run the adjoint model backward using forcing terms     

                      to find         and evaluate the gradient of 

the linearized problem  

• Use a gradient minimization method to find an 

improved estimate of δ x0    

• Update x0  by adding  δ x0  to old estimate and repeat 

0 

To find the optimal: 



• Incremental 4D-Var without approximations is equivalent 

to a Gauss-Newton iteration for nonlinear least squares 

problems. 

• In operational implementation we usually approximate 

the solution procedure:  

–  Truncate inner loop iterations 

–  Use approximate linear system model 

• Theoretical convergence results have been obtained by 

reference to Gauss-Newton method. 

  Algorithm  

References:  Lawless, Gratton and Nichols, QJ RMetS, 2005 

and  Gratton, Lawless and Nichols, SIAM J on Optimization, 2007 



  Analysis 

The analysis   xa  is the optimal solution to the 

assimilation problem  and   xa  =  x0  + ea .  The 

uncertainty is given by 

where 



Accuracy/rate of convergence depend on the  

condition number =  λmax / λmin  of the Hessian: 

Conditioning of the Problem 

where 



Conditioning of Hessian 

Bij = 

Condition Number of (B-1 + HR-1HT)   vs  Correlation Length Scale  

Periodic Gaussian Exponential 

Blue = condition number    Red = bounds 



Preconditioning the Hessian   

To improve conditioning transform to new variable : 

 
•  z  =            (x0 – x0

b) 

•  Uncorrelated variables  

•  Equivalent to preconditioning by           

•  Hessian of transformed problem is 



Preconditioned Hessian 

Bij = 

Condition Number of Preconditioned Hessian   vs   Correlation Length Scale  

Periodic Gaussian Exponential 

Blue = condition number    Red = bounds 



Convergence Rates of CG in 4D –  

using SOAR Correlation Matrix  

 

Haben et al, 2011 





4.    

Model Error 



Example  -   Effects of Model Error 

Model:    Linear Advection 1-D Upwind Scheme 

 

Initial conditions:   Square wave 

 

Boundary conditions:   Periodic 

 

Stepsize:    t  =  1/80     x  = 1/40 

 

Observations:    Exact solution to  ut + ux = 0  at  

20 unevenly spaced points at each time step 



Solid = Truth,   Dotted = Background,   + = Observation,   Red = With Assimilation 



System Equations  

Prior: 

Model: 

Observations: 

where 

and errors are uncorrelated in time 



subject to  

  Variational Assimilation with 

Model Error 



subject to  

  Variational Assimilation with 

Model Error 



Can solve using the adjoint technique as  

before.  Now the adjoints are increased 

by an additional set of adjoint variables  

giving the sensitivity of the objective  

function        with respect to each of the  

model error variables       . 

 

At present this is too expensive for real time  

forecasting, but simplifications can be used.    

Adjoint Method  



Augmented Method  

One approach is to augment the dynamic  

equations with a simple model for the 

dynamics of the errors.  Then we only need 

to estimate the initial error       .  The 

additional adjoints can then be calculated  

efficiently.  If it is assumed that the error is  

a constant ‘bias’ error then the gradients 

can be found directly from the previous 

adjoint equations. 

0 



Example  -   Effects of Model Error 

Model:    Linear Advection 1-D Upwind Scheme 

 

Initial conditions:   Square wave 

 

Boundary conditions:   Periodic 

 

Stepsize:    t  =  1/80     x  = 1/40 

 

Observations:    Exact solution to  ut + ux = 0  at  

20 unevenly spaced points at each time step 



Solid = Truth,   Dotted = Background,   + = Observation,   Red = With Assimilation 

Evolving Error Model 



Application    



66 

Simple assimilation   
 
 
Model:   FOAM global model: 1o horizontal resolution 

 
Data assimilated: thermal profiles (including TAO 

moorings) and surface temperature  (no salinity) 

 

Assimilation method: analysis correction scheme 

 

Surface fluxes: climatological wind stresses (Hellerman-

Rosenstein) and heat fluxes  

 

 Period:    1995  
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Effect of simple data assimilation 

Annual mean potential temperatures (oC)  

along the equatorial Pacific 

surface 

300 m 

No assimilation With assimilation 
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Effect of simple data assimilation 

Annual mean vertical velocities  

at 110 oW (5 oN to 5 oS) contour interval = 

10-3 cm/s = 1 m/day 

surface 

400 m 

No assimilation With assimilation 
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Effect of simple data assimilation 

Annual mean temperature increment  

from assimilation along the equatorial  

Pacific (contour interval =oC per month) 

surface 

300 m 
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Circulations induced  by assimilation at 

equator where model is cold 

z 

1. Heating 

2. High pressure 

2. Low pressure 

3. w 

3. w 
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Central ideas  

1. Where thermal increments of the same sign   

are repeatedly being made the balance of forces 

in the model is incorrect 

 

2. Pressure fields in the opposite sense to those 

generated by the standard data assimilation  

increments need to be accumulated and applied 

 

3. These increments are  of small amplitude and  

large spatial scale so should not cause instabilities 
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Control theory & augmented state  

1. In control theory a state x(t) is evolved using a  

model f and observations y 

2. To control biases the state is extended/augmented 

by a bias, b(t), which is evolved and updated 



74 

Pressure correction method 

1. The  bias includes only scalar variables which contribute  

to the pressure field   

3. The model’s pressure field is calculated using the  

sum of the bias and model scalar fields  

2.  For these variables 

4. The model for the evolution of the bias is: 
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Repeat assimilation using pressure correction  

method with 

Annual mean potential temperatures (oC)  

along the equatorial Pacific 

surface 

300 m 

Pressure correction Original assimilation 

/10
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Annual mean vertical velocities  

at 110 oW (5 oN to 5 oS) contour interval = 

10-3 cm/s = 1 m/day 

surface 

400 m 

Original assimilation Pressure correction 

Repeat assimilation using pressure correction  

method with /10
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Original assimilation Pressure correction 

Repeat assimilation using pressure correction  

method with /10

Annual mean temperature increment  

from assimilation along the equatorial  

Pacific (contour interval =oC per month) 

surface 

300 m 
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Concluding summary  

1. Simple assimilation of thermal data into an OGCM 

drives unrealistic motions within equatorial belt 

 

2. A “pressure correction” method has been developed to  

control these motions using control theory ideas  

 

3. It enables a better balanced assimilation of  

thermal data within the equatorial belt of OGCMs  

 

4. There is a need to trial the method for seasonal forecasts  



5.    

Conclusions 



4D Variational Data Assimilation is a powerful 

technique for estimating and predicting the 

states of very large environmental systems. 

It is used in major operational forecasting 

centres.   The method can be adapted to a 

wide variety of problems and can be simplified 

by using approximations in the procedure. 

Conclusions  



   

 

 

Many challenges left!  






