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1.
The Data Assimilation

Problem
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Data Assimilation
Alm:
Find the best estimate (analysis) of the
expected states/parameters of a system,

consistent with both observations and the
system dynamics given:

* Numerical prediction model

* Observations of the system (over time)
« Background state (prior estimate)
Estimates of error statistics
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Example - State Estimation

Diffusion of temperature in a bar

T°=0 Tt T2 Tk "

Tk = temperature at grid point z,

[T

TZ

Sy

States of the system: T =
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Example - State Estimation

Diffusion of temperature in a bar

| | | | | | | | .z
TO=0 Td T2 T T+ =0

TX = temperature at grid point z, and time t,

|
(T
States of the system T?
attime t. : T :
\ 7 )

University of @ National Centre for
. Earth Observation
@ Reading = T e




Example - Observations

Take observations at grid points at time t,

| | | | | | | .7
T0=0 T1 T2 Tk Tn Trl=Q
(TP +er Y [0 10 0
Yim\rkpeek J 700 0 0 1

where Ele} =0, Elee!} =R,
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Example - Observations

Take observations at grid points at times t;

| | | | | | | I ,Z
T0=0 TL T2 T T Tm=0
(TP +er Y [0 10 0
Yi = TF+e )~ VL0 0 0 1
implies y, = HT, + ¢
where E{ei} =01 E{e@-e;} =R,
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Example - Observations

Take observations at grid points at times t;

| | | | | | | I V4
T°=0 THT? T ™o Tm=0
(TP +er Y [0 10 0
Yi = TF+e )~ VL0 0 0 1
implies y, = HT, + ¢
where Elei} =0, E{e@-e;} =R,
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Example - Prior Estimate

Prior estimate at time t, at all grid points z,

TL0=0 T, T,2 T, T, T,*1=0

( T) + el
TE + e \

\ Tj + e )

where E{ey} =0 | Eleyel } = B
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Example - Data Assimilation Problem

Prior: T, =T+ e p
Ny )
<) :

Observations: Yo = HT, + e i

Question: can we estimate the o~

state of the system T, at t, from
this iInformation? How accurate
IS the estimate?
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Example

Using these equations

Implies:

yo — HTy = €

= a set of linear equations for Ty .
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Example

Using these equations

Implies: T, — T, = e
yo — HTy

|
@
S

= a set of linear equations for Ty .
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Example - Solution

Find the solution that minimizes the error variance

and gives the weighted least square error: .
min efB_leb + egRgleo ¢
To * o
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Example - Solution

Find the solution that minimizes the error variance

and gives the weighted least square error: .
min e/ B 'e, + e R ey = ¢
T b 0 ~
0 -

min (T, — Ty)" B~ (T, — Ty) +
+ (yo — HTy)' Ry ' (yo — HT))
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Example - Solution

Find the solution that minimizes the error variance

and gives the weighted least square error: .
min e/ B 'e, + e R ey = ¢
T b 0 ~
0 -

min (T, — Ty)" B~ (T, — Ty) +
+ (yo — HTy)' Ry ' (yo — HT))

This gives T, with minimum variance.
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Example - Numerical Model

Difference equation describing diffusion

T T+l =0

TA TA B Tk—l—l QTA —|—TA 1

where ¢ Is the diffusion coefficient
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Example - Numerical Model

Difference equation describing diffusion

I I I I I I I I ,Z
T0=0 T! T2 Tk T.n Tmi=0

K ! k1 ko k=1
i — 1, _CTz’ — 207 + 1

Ot 022
mplies  Tfy = Tf +cp(TF™ = 2T + T/ é\

where ¢ Is the diffusion coefficient
and ;= §t/6%°
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Example - Numerical Model

Write in matrix-vector form

T0=0 T2 T2 Tk T

Thy =T +cp (T =20 + 1)

Implies T@:_|_1 = T@ -+ C LT?/ — MT@
where 9 1 0 0 0
1 =2 1 0 0
M=1+cpuL,6K L= N '
0 0 0 1 =2
0 0 0 0 1

University of
@ Reading
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Example - Numerical Model

Write in matrix-vector form

T

Thy =T +cp (T =20 + 1)

implies T, =T, 4+cuLT,=MT,
where [—2 1 0 0 0 0
I 0 0

M=I1+cpuL 6 L=

University of
@ Reading

=0
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Example - System Equations

Prior: 1Ty =Ty + e
Model: Ti+1 — M T@
Observations: y, = HT; + e,

where Eley} =0  Eleel} =B
Eley=0 Elee/} =R,

and errors are uncorrelated in time
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Example - Data Assimilation Problem

Prior: T, =T+ e
l'.O)l. )}
( )
Observations: y. = HT, + e .-
Question: can we estimate the RS

state of the system T, at t, from
this iInformation? How accurate
IS the estimate?
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Example - YES

USing: Y, = I‘IrI‘2 + e, = HMTi_l + €

implies: T, — T, — g
yo — HTy = €
Y1 — HMTO = €
y2 — HM?T, = e

L

= a set of linear equations for Ty .
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Example - Solution

Find the solution that minimizes the error variance

and gives the weighted least square error: .
TO % &

min (T, — Ty)" B~ (T, — Ty) +

+ 3 (v — HMIT)TR; ! (y; — HMT,)
1 =10

National Centre for
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Optimal Estimate
min 7 = 1 (T, — To)"B~1(T), — To) +
+5 >(yi —HT,))'R; '(y; — HT,)

subject to

T?H—l :MTZ , iZO, ], n—1
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Optimal Estimate
min 7 = 1 (T, — To)"B~1(T), — To) +
+5 >(yi —HT,))'R; '(y; — HT,)

subject to

T?H—l :MTZ , iZO, ], n—1

Best Linear Unbiased Estimate

University of
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Optimal Unbiased Estimate

min 7 = 3 (T, — To)' B~(T, — To) +
+3 >(yi — HT,)'R;'(y; - HT))

subject to

T?H—l :MTZ , iZO, ], n—1

Maximum A Posteriori Likelihood

g Universi_ty of
Reading

National Centre for
Earth Observation

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN




Example - Application

Temperature diffusion with source term

I I I I I I I I JZ
T°=0 T! T2 Tk Tn T+l =0

I Heat source
Model: Tf,;_l_l - M T/L + S;

Twin experiment:

 Truth is solution for T¢ =1 for all k

« Backgroundis T =2 for all k

* Observations are from truth with no noise at
5 grid points at every time step for 40 steps
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Heat Equation with Source

initial conditions 20 timestep; t= 0.25
2.5 v 2.5 .
21 —— 2
1.5} - 1.5}
1} +—t 4 —t- + g 1+ :
0.5} 4 0.5} /—‘_—‘\‘\\ i
% 0.5 1 e 0.5 1
40 timesteps; t=0.5 Forecast: 80 timesteps; t=1
2.5 - > 5 ;
2} ‘ 2}
1.5} ; 1.5}
1} : 1|
. / \ ] ol /\
%o 0.5 3 % 0.5 1

Solid = Truth, Dotted = Background, + = Observation, Red = With Assimilation
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2.

Variational Data Assimilation
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2.

Variational Data Assimilation
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Optimal Unbiased Estimate

. 1 _
min J = §(X0 —x3)' B (x0 — x3) +

T35 Z —yi) R (H[x] - yi)
subject to X1 = M;(x;), i=0,....n—1

X, - Background state (prior estimate)
y. - Observations ‘
H . - Observation operator

B - Background error covariance matrix
R . - Observation error covariance matrix
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Significant Properties: e

« Very large number of unknowns (107 — 108)
- Few observations (105 — 108)  ~
« System nonlinear unstable/chaotic

« Multi-scale dynamics
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Variational Assimilation

1
min J = §(X0 —x,)' B (x — x3) +
X0
+ 5 Z YzTR (H[x;] —yi)
subject to Xit1] = M@(X@) 1 =0,....n—1

Solve iteratively by gradient optimization methods.
Use adjoint methods to find the gradients.

3DVar if n=0 ADVar if n>1

t National Centre for
\ Earth Observation
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Adjoint Model

Define the Lagrangian functional as
n—1

L=J+ Z 7\.,+1(X w1~ Mi(x4)):

Then the adjoint equatlons are
A, =0

n

A, = MiT A - H,;T R;I(Hf[x-i]' }Tf)
where M; Is the linearized dynamical model
and H, is the linearized observation operator

National Centre for
\_=# Earth Observation
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Adjoint Model

Question - What are the adjoints?

. . 0 . .
M; Is the Jacobian %L of the linearized
model operator and its adjoint is M.T,

known as the tangent linear model (TLM)

The adjoint variables Ap measure the
sensitivity of the objective function J

to changes in the solutions X, of the state
equations.

National Centre for
Earth Observation
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Adjoint Model

The gradient of J with respect to the
initial condition X, Is then given by

V,J=-4, + B'(x,-x,)

At the optimal the state and adjoint equations
must both be satisfied and the gradient must
equalto O.

National Centre for
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Algorithm

To find the optimal:

Estimate X,

Run the nonlinear model forward; find the
‘iInnovations’ H[x;] - y; and evaluate the
objective function J

Run the adjoint model backward to find Ao
and evaluate the gradient V,.J

Use a gradient nonlinear minimization method
to find an improved estimate of X,

Repeat until required accuracy Is reached.

Earth Observation
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Algorithm

FORWARD MODEL A1 J(x)

OBSERVATION
INCREMENT

OBSERVATION
INCREMENT

OBSERVATION
INCREMENT

\/,f \'\ v/ \\\//'

ADJOINT MODEL I'ulT

N

DESCENT ALG ORITHb >

<
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3.
Incremental 4D Variational
Assimilation
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Incremental 4D-Var

Temperature f

@ Observation

O
Analysis crnspntll :
Background
Xp

>  Time
Solve a sequence of linear least squares problems that
approximate the nonlinear problem by iteration .

University of
@ Reading
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Incremental 4D-Var

Set Xéo) (usually equal to background)
Fork=0, ..., K find: xgﬂ = Mi(x(k)), i=1,...,.0N

]

Solve inner loop linear minimization problem:

J®) [5}(8&)] = 1(6x(k) — [x"— Xo(m])TBﬂ_l (5}{3%) — [xP = xoM)
1 n
EZ (Fox") — d"Y TR H,6x ) — al)
i=0

subject to 5X§ﬂ = Mixgk) , di=Yyi;— H; [ng)]

Update:  x0 = x4 5x

University of
5 Reading

National Centre for
Earth Observation
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Algorithm

To find the optimal:

Estimate X,
Run the nonlinear model forward to find x;

Estimate ¢J X, and run the tangent linear model (TLM)
forward to find H,dx; — d; and evaluate the linearized
objective function

Run the adjoint model backward using forcing terms
Hpox, —d;  to find )\O and evaluate the gradient of
the linearized problem

Use a gradient minimization method to find an
Improved estimate of J X,

Update x, by adding ¢ X, to old estimate and repeat

Earth Observation

@ University of (D), National Centre for
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Algorithm

* Incremental 4D-Var without approximations is equivalent
to a Gauss-Newton iteration for nonlinear least squares
problems.

* In operational implementation we usually approximate
the solution procedure:

— Truncate inner loop iterations
— Use approximate linear system model

* Theoretical convergence results have been obtained by
reference to Gauss-Newton method.

References: Lawless, Gratton and Nichols, QJ RMetS, 2005

and Gratton, Lawless and Nichols, SIAM J on Optimization, 2007
@ ﬁ“ggﬁﬁg Eirth Observagon
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Analysis

The analysis x, Is the optimal solution to the
assimilation problem and x, = x, +e,. The
uncertainty Is given by

S{eaeg} = A = (B_1 + ﬁTﬁ_lfI)_l

where ( H, \ [Rop, 0 0 - 0 \
H,M, O R, O --- 0
H= | H2M;My R = 0 0 Ry --- 0

\ .I_InMn_l R MO ) \ 0 0 0 T Rn )

National Centre for
\—# Earth Observation
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Conditioning of the Problem

Accuracy/rate of convergence depend on the
condition number = A_../ A, of the Hessian:

max

A=B'+H'R'H

where [ Ho ) [Ro O -+ 0
~ HlMO.l A 0 R1 T 0
H — ) | R — . . . .
\ H,M,, / \ 0 0 -+ R, )
: ,‘ OHy,
My = djgl;k | Hy = Ix ’Mo k(%0)

National Centre for
Earth Observation
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Conditioning of Hesslian

Condition Number of (Bt + HRIHT) vs Correlation Length Scale

10 / -
= Condition number
T == =bounds 4

Caondition Number

0 002 004 D06 0O 01 012 014 016 018 02
lengthscale

Periodic Gaussian Exponential

e
— 2,
Bj= opexp 2L2J

Blue = condition number Red = bounds
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Preconditioning the Hessian

To improve conditioning transform to new variable :

2

* 2 =B (Xg—X%")

 Uncorrelated variables

« Equivalent to preconditioning by

» Hessian of transformed problem is

University of

Reading

I + Bl/QI:ITR—l:[:IBl/Z

National Centre for
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Preconditioned Hessian

Condition Number of Preconditioned Hessian vs Correlation Length Scale

4 T T T T T T T T T P
Q 7
> S

Condition number 2
26 = ==hounds
. n

Condition Number
-

-
: A 1 1 1 1 1 1

n 002 004 006 008 0O 012 014 016 018 02
lengthscale

Periodic Gaussian Exponential

12
Ij p €X] 272

Blue = condition number Red = bounds
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2

Convergence Rates of CG in 4D —
using SOAR Correlation Matrix

Lengthscale

0.01
0.1
0.2
0.3

lterations
Unprecond | Precond
8
54
187
361

3

11
12
12

University of

Reading

Haben et al, 2011
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4.
Model Error
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Example - Effects of Model Error

Model: Linear Advection 1-D Upwind Scheme
Initial conditions: Square wave

Boundary conditions: Periodic

Stepsize: t = 1/80 x =1/40

Observations: Exact solutionto u,+u, =0 at
20 unevenly spaced points at each time step

National Centre for
Earth Observation
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WALEF CQUATIW « ¢D YARIATIOWREL ASTIMILATION

initial conditions

o 0.5

40 timesteps; t= 0.5

0 0.5

20 timestep; t=0.25

1

o 0.5 1

I
-t

80 timesteps; t=1

o 0.5 1

Solid = Truth, Dotted = Background, + = Observation, Red = With Assimilation

University of
@ Reading

National Centre for
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System Equations

Prior: X, = Xo + €
Model: Xi+1 — Mz(xz) + €,
Observations: y; = H; [Xz] + €;

where Eley} =0  Eleel} =B
Eley=0 Elee/} =R,

and errors are uncorrelated in time
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Variational Assimilation with
Model Error

1 .
mig J = §(XU —x By (x0 — x0) +
X0,Eq
+.Z —yi) Ry (Hixi] = yi) +
T —1
+§§€é Q; €
subject to

Xit1 = M?;(X?;) + €,

1=0,...,n—1
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Variational Assimilation with
Model Error

1 |
min J = §(Xo - XB)TBSI(XO —xg) +
XD? T-
T —
- Yi) R; (H[ | —¥i) +
subject to

National Centre for
Earth Observation
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Adjoint Method

Can solve using the adjoint technique as
before. Now the adjoints are increased
by an additional set of adjoint variables
giving the sensitivity of the objective
function 7 with respect to each of the
model error variables ¢€; .

At present this Is too expensive for real time
forecasting, but simplifications can be used.

National Centre for
Earth Observation
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Augmented Method

One approac
equations wit

N IS to augment the dynamic
N a simple model for the

dynamics of t

ne errors. Then we only need

to estimate the initial error €, . The

additional adj
efficiently. If |
a constant ‘bi
can be found
adjoint equati

g Universi_ty of
Reading

oints can then be calculated
t Is assumed that the error is
as’ error then the gradients
directly from the previous
ons.
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Example - Effects of Model Error

Model: Linear Advection 1-D Upwind Scheme
Initial conditions: Square wave

Boundary conditions: Periodic

Stepsize: t = 1/80 x =1/40

Observations: Exact solutionto u,+u, =0 at
20 unevenly spaced points at each time step

National Centre for
Earth Observation

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

University of
@ Reading



Wave EQuANIAI- YA VARIATIONAL ASSIMICATIOWN

initial conditions 20 timestep; t=0.25

3
0.5
ol
~0.5/ Aottt
o 0.5 1 o 0-5 !

Il
ad

80 timesteps; t=1

0 0.5 1 o 0.5 1

Solid = Truth, Dotted = Background, + = Observation, Red = With Assimilation

Evolving Error Model

National Centre for
Earth Observation
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Application

g University of Elarttigngleentrq for
Reading e ool



Simple assimilation

Model: FOAM global model: 1° horizontal resolution

Data assimilated: thermal profiles (including TAO
moorings) and surface temperature (no salinity)

Assimilation method: analysis correction scheme

Surface fluxes: climatological wind stresses (Hellerman-
Rosenstein) and heat fluxes

Period: 1995

e ——
i i . |
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Effect of simple data assimilation
No assimilation With assimilation

msurface

Annual mean potential temperatures (°C)
along the equatorial Pacific

—
. . . t23
-\ Aﬂmm Ly of Readi ng Q- %
o7 Met Office




Effect of simple data assimilation
No assimilation With assimilation

surface

300 wi]

400 m

Latituda Latituda

Annual mean vertical velocities
at 110 °W (5 °N to 5 °S) contour interval =
103 cm/s = 1 m/day

e ——
i i . |
|The University of Reading g';-
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Effect of simple data assimilation

surface

Annual mean temperature increment
from assimilation along the equatorial
Pacific (contour interval =°C per month)

-\ Aﬂmw of Reading t::l

‘Met Office




Circulations induced by assimilation at
eguator where model Is cold

D 2. High pressure —
3. W ‘
l 1. Heating l
|
3. W ‘
- 2. Low pressure <+——

—
. . . t23
-\ Aﬂmm Ly of Readi ng Q- %
= Met Office




Central iIdeas

1. Where thermal increments of the same sign
are repeatedly being made the balance of forces
In the model is incorrect

2. Pressure fields in the opposite sense to those
generated by the standard data assimilation
Increments need to be accumulated and applied

3. These increments are of small amplitude and
large spatial scale so should not cause instabilities

e ——
i i . |
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Control theory & augmented state

1. In control theory a state x(t) is evolved using a
model f and observations y

x! =f(x) 5 x'—x/ =Ky, —h(x]))

2. To control biases the state is extended/augmented
by a bias, b(t), which is evolved and updated

x| = fr(L0h) 5 b = (LB
x{ —x] =K*(y,—h(x])) ; b'-b/ =K°(y,~h(x]))

f b

_\ Aﬂjverﬂw of Reading Lﬁ,:-l

‘Met Office




Pressure correction method

1. The bias includes only scalar variables which contribute
to the pressure field

2. For these variables K'=—1K* ; 0<Al 1

3. The model’s pressure field is calculated using the
sum of the bias and model scalar fields

4. The model for the evolution of the bias is:

brf = bra—l

e ——
i i . |
|The University of Reading g';-
e Met Office




Repeat assimilation using pressure correction
method with » =¢&/10

Pressure correction Original assimilation

“@surface

300 m

Annual mean potential temperatures (°C)
along the equatorial Pacific

—
. . . 1o
-\ Aﬂmm Ly of Readi ng Q- %
[ Met Office




Repeat assimilation using pressure correction
method with ¥ =¢&/10

Pressure correction Original assimilation

surface

400 m

Latituda Latituda

Annual mean vertical velocities
at 110 °W (5 °N to 5 °S) contour interval =
103 cm/s = 1 m/day

221
-\ | The University of Reading L;. %
7 Met Office




Repeat assimilation using pressure correction
method with ¥ =¢&/10

Pressure correction Original assimilation

surface

Annual mean temperature increment
from assimilation along the equatorial
Pacific (contour interval =°C per month)

—
. . . 23
|The University of Reading L;.
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Concluding summary

1. Simple assimilation of thermal data into an OGCM
drives unrealistic motions within equatorial belt

2. A “pressure correction” method has been developed to
control these motions using control theory ideas

3. It enables a better balanced assimilation of
thermal data within the equatorial belt of OGCMs

4. There is a need to trial the method for seasonal forecasts

e ——
i i . |
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5.
Conclusions
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Conclusions

4D Variational Data Assimilation is a powerful
technique for estimating and predicting the
states of very large environmental systems.

It is used in major operational forecasting
centres. The method can be adapted to a
wide variety of problems and can be simplified
by using approximations in the procedure.
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Many challenges left! ="
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