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Variational DA vs. ensemble KF

Variational Bare ensemble KF

Description Minimize a cost function (maximum a-posteriori) N ens. members of poss. background and
analysis. Analyses derived from KF eqs.

Flavours 1D-Var, 3-D Var, 4-D Var (strong/weak const.) Basic EnKF, 'square-root' forms, localized �lters
Uncertainty Respect obs and background uncertainty Respect obs and background uncertainty

Stats Gaussian Gaussian
Operators Allows weakly non-linearM, H

Allows direct and indirect observations
Need M, H, and MT, HT

Allows weakly non-linearM, H
Allows direct and indirect observations
Does not need M, H, and MT, HT

Obs types Direct and indirect observations Direct and indirect observations
A-priori

error stats
Pf → B (prescribed)

B di�cult to determine
Pf adapts with �ow (approx. from ens.)
Initial ensemble di�cult to determine

Ens. tends to be under-spread (�lter divergence)
Analysis Smooth and balanced (according to B)

Analysis err. stats can be est. with extra
procedures

Sampling noise in ens. leads to noisy analyses
Appropriate balance properties

Est. of analysis err stats from analysis ens.
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Sampling error for one variable
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Sampling error and covariances

Basic ensemble estimate of the forecast error covariance matrix:

1. Take ensemble analysis at t = −T (N ensemble members
stored in an n×N matrix):

XA(−T ) =

 ↑ ↑
x
(1)
A (−T ) · · · x

(N)
A (−T )

↓ ↓

 .

2. Propagate all members to t = 0 (with added noise to
represent model error):

Xf(0) =M [XA(−T )]+η =

 ↑ ↑
x
(1)
f (0) · · · x

(N)
f (0)

↓ ↓

 .

3. Calculate perturbations from the mean, x
′(i)
f = x

(i)
f −〈xf〉

(proxy for forecast errors):

X′f = X′f(0) =

 ↑ ↑
x
′(0)
f · · · x

′(N)
f

↓ ↓

 .

4. Formula for the sample error covariance:

Pf ≈ P
(N)
f =

1

N − 1

N∑
i=1

x
′(i)
f x

′(i)T
f ,

=
1

N − 1
X′fX

′T
f .

This matrix is not calculated explicitly for large systems, but we can use the formula to explore the consequences of N � n.
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Sampling error and covariances (continued)

Reminder

Analysis increment formula for member i : x
(i)
A − x

(i)
f = P

(N)
f HT

(
R + HP

(N)
f HT

)−1 (
y(i)
o −H(x

(i)
f )
)
,

= P
(N)
f v(i),

Reminder: sample forecast error cov. matrix: P
(N)
f =

1

N − 1

N∑
i=1

x
′(i)
f x

′(i)T
f .

1. Analysis increments (x
(i)
A − x

(i)
f ) lie in the subspace of the forecast error ensemble

Approximate Pf with P
(N)
f in the analysis increment formula:

x
(i)
A − x

(i)
B ≈ 1

N − 1

N∑
i=1

x
′(i)
f x

′(i)T
f v(i),

≈ 1

N − 1

N∑
i=1

x
′(i)
f α(i),

where α(i) = x
′(i)T
f v(i) = x

′(i)
f · v(i).

Even if the observations indicate otherwise, the analysis increments are restricted to be a linear combination of the forecast error
ensemble.
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2. The forecast error covariance matrix is rank de�cient

The rank of P
(N)
f is an indication of the size of the state space spanned by the forecast error ensemble.

rank
(
P

(N)
f

)
≤ N − 1.

This is a guide to the severity of the sampling problem in point 1.

3. The forecast ensemble spread will be subject to sampling error

• If the spread is too large then the analysis ens. will over-�t the obs. - too little trust in the fc. ens.

• If the spread is too small then the analysis ens. will under-�t the obs. - too much trust in the fc. ens.

� Once in this regime, it is di�cult to escape as the ens. will (e�ectively) ignore the obs..

� This is called ��lter divergence� (because we diverge from reality).

Filter divergence means that each ensemble member will (e�ectively) be free running.

4. The correlations will be subject to sampling error

• The error in the sample correlation between errors at locations i and j has expectation:

[E(δC
(N)
f )]ij ∼

1√
N

(
1− ([Cf ]ij)

2
)
,

(errors are expected to be large when N small and/or correlations are close to zero).

• Pairs of distant points would be expected to have correlations close to zero.

Sampling error means that we can't trust distant correlations. Left untreated this noise will destroy the bene�ts of DA (analysis
increments will be in�uenced by distant observations).
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From Houtekamer & Mitchell, 1998

(a) p−p correlation (NAE)

latitude

(b) u−p correlation (NAE)
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From Bannister, Migliorini & Dixon, 2011
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Making progress

What can be done to reduce/mitigate this problem N � n?

• Use more ensemble members.

� This is expensive.

� How many is 'enough'? +

• Ensemble in�ation.

� Arti�cially increase the size of each x
′(i)
f .

� How do we know what the ensemble spread should
be?

• Localization.

� Eliminate far-�eld correlations.

� How should this be done?

� Does this have any other consequences?

• Combine ensemble with variational approaches.

� Adopt a hybrid method.

� How to do this?
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Ensemble in�ation: how do we know what the ens spread should be?

Rank histograms (Talagrand diagrams)

• Each ensemble member should be equally likely.

• Consider a point in space that has many observations:

� Rank values of ensemble members at that point from lowest to highest (N − 1 bins). Add an extra bin at each end
to give N + 1 bins.

� Bin each observation to give a frequency histogram.

• Interpretation:

� ∪-shaped: the ensemble is under-spread.

� ∩-shaped: the ensemble is over-spread.

� Flat: the ensemble is correctly spread.

� Asymmetric: the ensemble is biased.
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Ensemble in�ation: how do we know what the ens spread should be?

Example rank histograms

Rank histograms for surface precipitation rate rate. From Migliorini et al., 2011.
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Ensemble in�ation: how do we know what the ens spread should be?

Spread/skill diagrams

Suppose that we have an ensemble of N forecasts, x(i) spread around a background state, xb.

1. For each ob (ob index j):

(a) Calculate ens variance at the ob location [where

ymij = Hj(x
(i)) and ymj = 1

N

∑N
i=1Hj(x

(i))]:

σ2ens,j =
1

N − 1

N∑
i=1

(
ymij − ymj

)2
.

(b) Calculate the innovation [where ymbj = Hj(xb)]:

dj = yj − ymbj.

2. Bin the results according to the ens var (let there be M
obs per bin).

3. For each bin (bin index k):

(a) Calculate the mean ens var:

σ2ens(k) =
〈
σ2ens,j

〉
bin k

.

(b) Calculate the innovation mean-square:

σ2innov(k) =
〈
d2j
〉
bin k

.

4. Plot σ2innov(k) (the 'skill') against σ2ens(k) (the spread).

5. Can use this information to derive an in�ation factor.
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Ensemble in�ation: how do we know what the ens spread should be?

Example spread/skill diagram

From Baker et al., 2014
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Localisation

Many ways of doing localisation, e.g.:

R-localisation:

• Perform a separate ens analysis at each grid point.

• Include obs inside a de�ned radius. Divide obs error vari-
ance by a weight, ρ (decreases with distance).

• Used in the ETKF.

• Di�cult to use for non-local observations.

Pf-localisation:

• Modify P
(N)
f with a localisation/moderation function that

decreases with separation.

• What length-scale? How to do multivariate aspects?

• Has side e�ects (e.g. a�ects length-scales, a�ects bal-
ance).
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Pf-localisation (univariate)

PLoc
f = Pf ◦Ω,

=



P
(N)
f11 P

(N)
f12 · · · · · · P

(N)
f15 · · · · · · P

(N)
f18 P

(N)
f19

P
(N)
f21 P

(N)
f22 · · · · · · P

(N)
f25 · · · · · · P

(N)
f28 P

(N)
f29

...
... . . . · · · P

(N)
f35 · · · · · · ...

...
...

...
... . . . P

(N)
f45

...
...

...
...

P
(N)
f51 P

(N)
f52 P

(N)
f53 P

(N)
f54 P

(N)
f55 P

(N)
f56 P

(N)
f57 P

(N)
f58 P

(N)
f59

...
...

...
... P

(N)
f65

. . . ...
...

...
...

... · · · · · · P
(N)
f75 · · · . . . ...

...

P
(N)
f81 P

(N)
f82 · · · · · · P

(N)
f85 · · · · · · P

(N)
f88 P

(N)
f89

P
(N)
f91 P

(N)
f92 · · · · · · P

(N)
f95 · · · · · · P

(N)
f98 P

(N)
f99


◦



1.0 0.8 0.5 0.1 0.0 0.0 0.0 0.0 0.0
0.8 1.0 0.8 0.5 0.1 0.0 0.0 0.0 0.0
0.5 0.8 1.0 0.8 0.5 0.1 0.0 0.0 0.0
0.1 0.5 0.5 1.0 0.8 0.5 0.1 0.0 0.0
0.0 0.1 0.1 0.8 1.0 0.8 0.5 0.1 0.0
0.0 0.0 0.0 0.5 0.8 1.0 0.8 0.5 0.1
0.0 0.0 0.0 0.1 0.5 0.8 1.0 0.8 0.5
0.0 0.0 0.0 0.0 0.1 0.5 0.8 1.0 0.8
0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.8 1.0


,

P Loc
fij = PfijΩij.

Can be extended to multivariate localisation. But - we rarely have access to explicit Pf or Ω matrices (n× n).
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Localisation without explicit Pf and Ω matrices

Sample forecast error cov. matrix from N members : P
(N)
f =

1

N − 1

N∑
l=1

x
′(l)
f x

′(l)T
f ,

Sample localisation/moderation matrix from K members : Ω(K) =
1

K − 1

K∑
k=1

ω(k)ω(k)T,

One matrix element: P
(N)
fij =

1

N − 1

N∑
l=1

x
′(l)
fi x

′(l)
fj ,

One matrix element: Ω
(K)
ij =

1

K − 1

K∑
k=1

ω
(k)
i ω

(k)
j .

P Loc
fij = P

(N)
fij Ω

(K)
ij ,

=

[
1

N − 1

N∑
l=1

x
′(l)
fi x

′(l)
fj

][
1

K − 1

K∑
k=1

ω
(k)
i ω

(k)
j

]
,

=
1

N − 1

1

K − 1

N∑
l=1

K∑
k=1

x
′(l)
fi ω

(k)
i︸ ︷︷ ︸

element i
of x̃′(m)

x
′(l)
fj ω

(k)
j︸ ︷︷ ︸

element j
of x̃′(m)

,

=
1

N − 1

1

K − 1

M∑
m=1

x̃
′(m)
i x̃

′(m)
j , M = NK,

x̃′(m) = x
′(l)
f ◦ ω(k) =

 x
′(l)
f1
...

x
′(l)
fn

 ◦
 ω

(k)
1
...

ω
(k)
n

 =

 x
′(l)
f1 ω

(k)
1

...

x
′(l)
fn ω

(k)
n

 ,

m = 1⇒ (l = 1, k = 1) m = 2⇒ (l = 1, k = 2) . . . m = K ⇒ (l = 1, k = K) m = K + 1⇒ (l = 2, k = 1) . . .
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Hybrid (Var and ensemble) data assimilation

Key di�erences between variational and ensemble methods (background error statistics)

• Variational: Pf → B: B is full rank but is static

• Ensemble KF: Pf → P
(N)
f : P

(N)
f is low rank, but is �ow-dependent.

Flow-dependence is important!
T

x

background

analysis increment

analysis

T−observation

The B-matrix doesn't know about the front in basic variational schemes. The P
(N)
f -matrix does know about the front.
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Flow-dependent structure functions

Longitude/latitude and longitude/pressure analysis increments of a single T observation
Variational

Ensemble

From Buehner 2005
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Hybrid (Var and ensemble) data assimilation (continued)

Propose doing a variational assimilation, but:

B→ αB + (1− α)P
(N)
f (unlocalised), B→ αB + (1− α)PLoc

f (localised), 0 ≤ α ≤ 1.

A basic variational hybrid scheme (example for unlocalised case)

original variational scheme: J [x] =
1

2
(x− xf)

TB−1(x− xf) +
1

2
(yo −H(x))TR−1(yo −H(x)).

�

�

�

�
J [χvar,χens︸ ︷︷ ︸

hybrid

] =
1

2
χT

varχvar︸ ︷︷ ︸
static term

+
1

2
χT

ensχens︸ ︷︷ ︸
ensemble

+
1

2
(yo −H{U [χvar,χens]})R−1(yo −H{U [χvar,χens]}).

• χvar is part of the hybrid variational control vector associated with B (n elements, b/g variance I).

• χens is another part associated with the ensemble (N elements, b/g variance I).

x = U [χvar,χens] = xf +
√
αB1/2χvar +

√
1− α
N − 1

X′fχens, B = B1/2BT/2

= xf +

( √
αB1/2

√
1−α
N−1X

′
f

) (
χvar

χens

)
,

= xf +
U
(
χvar

χens

)
.

The cost function J [χvar,χens] is minimised with respect to χvar and χens simultaneously (n + N elements). The implied
background error covariance matrix is:

Bimplied = UUT =

( √
αB1/2

√
1−α
N−1X

′
f

) ( √
αBT/2√
1−α
N−1X

′T
f

)
= αB + (1− α)P

(N)
f .
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Summary

• Ensemble data assimilation schemes su�er from sampling error as N � n:

� Analysis increments lie in subspace of ensemble.

� Rank de�ciency.

� Filter divergence.

� Anomalous far-�eld correlations.

• To make ensemble DA practical:

� Ensemble in�ation.

� Localization.

� Use with other schemes (hybrid).
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Further Reading- selected papers and websites

Ensemble KF vs variational data assimilation, Schur product localisation

• Lorenc A.C., The potential of the ensemble Kalman �lter for NWP - a comparison with 4d-Var, Q.J.R.Meteor.Soc. 129 3183-3203 (2003).

• Ehrendorfer M., A review of issues in ensemble-based Kalman �ltering, Meteorol. Z. 16, 795-818 (2007).

Impact of sampling error

• Houtekamer P.L., Mitchell H.L., Data assimilation using an ensemble Kalman Filter technique, Mon. Wea. Rev. 126 796-811 (1998).

In�ation

• Bowler N.E., Arribas A., Mylne K.R., Robertson K.B., Beare S.E., The MOGREPS short-range ensemble prediction system, Q.J.R.Meteor.Soc. 134, 703-722 (2008).

Hybrid formulations

• Clayton A.M., Lorenc A.C., Barker D.M., Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met O�ce, Q.J.R.Meteor.Soc.
DOI:10.1002/qj.2054.

• Wang X., Snyder C., Hamill T.M., On the theoretical equivalence of di�erently proposed ensemble-3D-Var hybrid analysis schemes, Mon. Wea. Rev. 135., 222-227
(2007).

• Buehner M., Ensemble derived stationary and �ow dependent background error covariances: Evaluation in a quasi-operational NWP setting, Q.J.R.Meteor.Soc. 131,
1013-1043 (2005).

Forecast veri�cation

• www.cawcr.gov.au/projects/veri�cation

Control variable transforms

• Bannister R.N., A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics., Q.J.

Roy. Met. Soc. 134, 1971-1996 (2008).


