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• The DA problem is to combine prior knowledge and relevant observations to the give an updated estimate 
of the current atmosphere/oceans/land surface etc. This is then used to initialize a forecast.

• The assimilation is then cycled in time so that information from the observations can be continuously fed 
into the forecast.
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The aim of this lecture is to explain the DA ingredients: what they represent and where they come from.
DA ingredients:

• First guess of the model state known as the background
• The background uncertainty

• Observations
• The observation uncertainty

• A mapping form the model grid and variables  to the observation variables and locations, known as the 
observation operator
• A forecast model

• Data assimilation methodology
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Data assimilation methodology
• To understand why each of the DA ingredients are important, let’s first look at how they are used. This will depend 

upon the DA method implemented.
• Different DA methods will be described over the following days
• Here we will give the basic idea of the Kalman equations. This assumes that the errors in the observation and 

background are Gaussian and unbiased and is the foundation of many methods.
The analysis equation: 

𝐱!" = 𝐱#" + 𝐊" 𝐲" − ℎ 𝐱#" = (irst guess + update,

i.e. the analysis is a weighted combination of the background (𝒙$" ) and the observations (𝐲"). 𝑖 is a time index 
indicating the assimilation cycle.

The Kalman gain matrix: 
𝐊" = 𝐁" (𝐇")%(𝐇"𝐁" (𝐇")% + 𝐑") &', 

a function of the background and observation error covariance matrices (B and R) and the linearised observation 
operator (H).
• These can be derived from finding the state x with the minimum error variance or equivalently (in the case of 

Gaussian errors) the maximum a-posteriori probability. 



Vector notation
• 𝐱! ∈ ℝ" is a column vector containing all the model variables that you wish to update via data 

assimilation at time 𝑖. In NWP n is typically of the order 108. 

• 𝐲! ∈ ℝ# is a column vector containing all the relevant observations in updating 𝐱! . This will 
include observations from different instruments, measuring different variables, and possibly be 
at different times. In NWP p is typically of the order 106. 

Expansion of x into model variables, 
latitude, longitude and model levels.

Expansion of y into instruments, 
time, variables and location.

The observation operator, 
ℎ!: ℝ" → ℝ# is a vector 
mapping from state to 
observation space



Matrix notation
• The update to the background is given as 

𝐱$ = 𝐱% + 𝐊(𝐲 − ℎ(𝐱% ))
or 𝛿𝐱$ = 𝐊 𝐝, 

where 𝛿𝐱$ ∈ ℝ" is the analysis increment and 𝐝 ∈ ℝ# is the innovation. (I’ve dropped the time 
index as was getting a bit unwieldly!). The Kalman gain then has dimensions 𝐊 ∈ ℝ"×#. 
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Each element of 𝛿𝐱$ is a linear 
combination of the innovations, 
with weightings given by the 
rows of 𝐊.

𝐊 = 𝐁𝐇%(𝐇𝐁𝐇T+ 𝐑) &'



The background and its uncertainty
• The background, to be updated by DA, often comes from the forecast initialized from an 

analysis from the previous assimilation time.

• 𝐱(! = 𝑀(𝐱)!&', 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑓𝑜𝑟𝑐𝑖𝑛𝑔)
• The background error is defined as 𝛆( = 𝐱( − 𝐱*+,*-
• Sources of error in the background include

• Initial conditions (i.e. the previous analysis)
• Intrinsic model error growth
• The model equations
• Discretisations of model equations
• Parmeterisations
• External forcing

• These different sources of error can make it very difficult to quantify the background error 
statistics. However, we can make approximations to allow us to give a realistic description.

• The first approximation is to assume that the errors are unbiased and Gaussian (or 
alternatively we have been able to remove biases and we have transformed to variables that 
have Gaussian errors).

• This leave us to define the background error covariance matrix – the B matrix! 



Error covariance matrices

• If the errors in the background and observations are unbiased and Gaussian, then their statistics 
can be described solely by their respective error covariance matrices. 𝛆~𝑁(𝟎, 𝐂)

𝜀'𝜀' 𝜀'𝜀. …             𝜀'𝜀"

𝜀.𝜀' 𝜀.𝜀. …             𝜀.𝜀"

⋮ ⋮ ⋮

𝜀"𝜀' 𝜀"𝜀. …            𝜀"𝜀"

• An error covariance matrix is given by the expectation of the outer 
product of the errors.

𝐂 = 𝛆𝛆% , where e.g. 𝛆 = 𝒙/ - 𝒙*+,*-
Note we have not removed the mean because we assume the errors are 

unbiased i.e. have a zero mean.
• The error variances are given by the diagonal elements, 𝜎!. = 𝜀!𝜀! .
• The error covariances are given by the off-diagonal elements.
• By definition an error covariance matrix is symmetric, 𝜀!𝜀0 = 𝜀0𝜀!

and positive definite.
• The error correlations are the covariances normalized by the 

respective error standard deviations:
𝑐𝑜𝑟𝑟!0 = (𝐂!0)/(𝜎!𝜎0)

𝑐𝑜𝑟𝑟!0 =
𝜀!𝜀0

𝜀!𝜀! 𝜀0𝜀0



The B matrix

• 𝐁 ∈ ℝ"×" has n2 elements describing how the errors in each model variable covary spatially as 
well as how errors in different variables covary.

• The importance of its structure is seen in the expression for the Kalman gain 

𝐊! = 𝐁! (𝐇!)'(𝐇!𝐁! (𝐇!)' + 𝐑!) (). 

Recall this governs how the innovations are linearly weighted to update the background and 
provide the analysis. As B is the final operator, the analysis increments will lie in the subspace 
spanned by B.

• The structure of B is essential for defining how information in observations is spread to other 
locations and variables. It is also important for minimizing the risk of the analysis increments 
resulting in an analysis that is inconsistent with the model equations.



The B matrix- example of a single observation 
experiment 
• Let a single observation observe 

the ith state variable such that 

𝐇 = 0 … 1 ⋯ 0 , 

𝐑 = 𝜎*+ and 𝐇𝐁𝐇, = 𝐵!!. 

• Then 𝐱- = 𝒙. +

𝐵)!
⋮
𝐵!!
⋮
𝐵"!

/(0./
10123//

.

Structure function i (in this case i is the pressure field at this position) 

In this case the wind part of the structure function is in geostrophic
balance with the pressure

𝐁𝐇% 𝐇𝐁𝐇% + 𝐑 &'𝑑

Figure supplied by Ross Bannister
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The B matrix

• Due to its size, B can rarely be represented explicitly.

• B can be simplified by enforcing balance relationships, the modelling of the spatial correlations, 
and making assumptions about how it changes in time. In this way the number of parameters 
needed to describe B is reduced.

For example (See Bannister 2008b for a comprehensive review)
• ‘Inverse Laplacians’
• Diffusion operators (commonly used in the ocean)
• Recursive filters
• Spectral and wavelet methods
• Exploitation of physics (e.g. geostrophic balance)
• Control variable transforms (transform to a space where B is simpler e.g. diagonal)



Control variable transform

• Define a transform matrix U such that 𝐔𝐔, ≈ 𝐁. The idea is then to perform the assimilation for 
the variable 𝛿𝐯 instead of 𝛿𝐱 , where 𝛿𝐱 = 𝐔𝛿𝐯. The error covariances for 𝛿𝐯 will, by definition, 
be the identity, greatly simplifying the DA algorithms. After the analysis for 𝛿𝐯 is found it can be 
transformed back to the space of the modelled variables and the analysis updates will implicitly 
account for the covariances of the original B.

• Example, modelling hydrostatic balance:
• Let 𝛿𝐱 = 𝛿 𝑇

𝛿Δ𝑧
be our model variables that we wish to update. 

• Split 𝛿Δ𝑧 into a part balanced with the mean temperature (L𝛿 𝑇 ) and an unbalanced part (𝛿Δ𝑧2,$34), where 𝐿 =
5
'67 𝑙𝑛

8!
8!"#

.

• Define our control variables as 𝛿𝒗=
𝛿𝑣$34
𝛿𝑣2,$34

with 𝛿 𝑇
𝛿Δ𝑧

= 1 0
𝐿 1

𝜎$34 0
0 𝜎2,$34

𝛿𝑣$34
𝛿𝑣2,$34

• The implied covariances are then 𝐁 = 𝐔𝐔9 =
𝜎$34+ 𝜎$34+ 𝐿
𝜎$34+ 𝐿 𝜎$34+ 𝐿+ + 𝜎2,$34+ . 

• Observations of 𝑇 or Δ𝑧 will now update the analysis of the other variable in a physically consistent way.

U describes the hydrostatic 
balances scaled by the error 
standard deviations of the 
control variables. The key is 
there are no correlations in 
the errors of these variables.

500hPa

1000hPa

Δ𝑧= thickness
Layer mean 
temperature 

𝑇



Estimating the B-matrix

• Even with simplifications, it is necessary to estimate the key features of the B matrix. This may be 
done in a few ways each acknowledging the sources of the errors in the background in different 
ways (See Bannister 2008a for a comprehensive review). 

• For example
• Forecast differences
• Analysis of innovations, e.g. H-L method or consistency diagnostics
• Ensembles 

• Each of these methods estimates the error covariance matrix using a sample of the approximated 
background errors.

𝐵!4 = ε!ε4 ≈ )
5/:()

∑67)
5/: ε!,6ε4,6, where 𝑁!4 is the sample size available for estimating 𝐵!4.

• The difference between the methods is how the samples of the errors, ε , are obtained.



Estimating the B-matrix: Forecast differences

The background error can be approximated by comparing two forecasts:

• Canadian quick method Polavarapu et al. (2005):
• Compares forecast valid at different times, 𝛆 ≈ (𝐱 𝑡 + 𝑇 − 𝐱 𝑡 )/√2, where T is 

fixed.
• The sample population is given by subsampling from one long forecast run.
• Has advantage of being able to provide estimates of B prior to assimilation system 

being available.
• NMC method (Parrish and Derber (1992)):

• Compares pairs of lagged forecasts valid for the same time but initialized from 
different background (or analysis) fields, e.g. the difference between a 30 and 6 hour 
forecast valid at time t, 𝛆 ≈ (𝐱9: 𝑡 − 𝐱; 𝑡 )/√2.

• The sample population is given by cycling the DA system.
• Can have problems in poorly observed regions where the forecasts do not differ much.

Both estimated matrices can expect to need some scaling to represent the error in the background 
(often a 6 hour forecast).

timet t+T

timet



Estimating the B-matrix: Analysis of 
innovations
• The innovation can be written in terms of the errors in the observations and background 

transformed to observation space: 
𝐝 = 𝐲 − ℎ 𝐱% = 𝐲 − ℎ 𝐱<=><? + ℎ 𝐱<=><? − ℎ(𝐱. ) = 𝛈 − 𝐇𝛆

• The covariance of the innovations is then 𝐃 = 𝐝𝐝, = 𝐑 + 𝐇𝐁𝐇,, assuming that the errors in 
the observations and background are uncorrelated, and the errors are unbiased.

• An estimate of D is then possible given a sample population of innovations from a cycled DA 
system.

• 𝐇𝐁𝐇, can then be isolated from D by 
1. making assumptions about R, e.g. observation errors are uncorrelated, and assuming the 

background covariances are isotropic and homogeneous e.g. Hollingworth and Lönnberg, 
1986 

2. Or by using additional information in the analysis increments e.g. Desroziers et al. 2005 
method.

• Only gives information about B in the space of the observations (need to observe key model 
variables!).



Estimating the B-matrix: Ensembles

• A sample of background errors can be provided by perturbing every known source of background 
uncertainty given assumptions about the distributions of these uncertainties.

• This produces an ensemble of possible backgrounds all valid for the same time from which the 
background error is estimated, 𝛆 ≈ 𝐱.,6 𝑡 − P𝐱 𝑡 , where 𝐱.,6 𝑡 is the kth ensemble member 
and P𝐱 𝑡 is the ensemble mean.

• The sample population is given by the ensemble, with the possibility of increasing the sample by 
including different assimilation times. 

• The sample of background errors can be compactly written in terms of the perturbation matrix 
𝐗′ ∈ ℝ"×5, where N is the size of the ensemble.

𝐗" = 𝐱#,% 𝑡 − &𝐱 𝑡 ⋯ 𝐱#,&'( 𝑡 − &𝐱 𝑡

𝐁 ≈ (
&'(

𝐗′ 𝐗′ )



Estimating the B-matrix

• What sources of error in the background can each method account for?

Source of error Canadian 
Quick

NMC Analysis of 
innovations

ensemble

Initial conditions 
(analysis)

Intrinsic model error 
growth

The model equations

Discretisations of model 
equations

Parmeterisations

External forcing



Estimating the B-matrix

• What sources of error in the background can each method account for?

Source of error Canadian 
Quick

NMC Analysis of 
innovations

ensemble

Initial conditions 
(analysis)

✔ ✔ ✔

Intrinsic model error 
growth

✔ ✔ ✔ ✔

The model equations ✔ depends

Discretisations of model 
equations

✔ depends

Parmeterisations ✔ depends

External forcing ✔ depends



The observations

• Tens of millions of observations are 
assimilated globally in each cycle.

• There are many different types of 
instruments.
• Over 90% of data comes from 

satellite radiances. 

• Before the observations are 
assimilated, they may be subject to
• Different levels of preprocessing
• Quality control, 
• adaptive thinning, 
• Superobbing,
• bias correction (this could also be 

performed during assimilation)



The observation operator

To compare the modelled variables to the observations, the observation operator should account 
for:

• Differences in location of the observations to the the model grid (e.g. using interpolation)
• Difference in variables observed (e.g. using known physical or geometrical relationships, e.g. 

radiative transfer equations or projections from latitudal and londitudal winds to wind speed and 
direction).

• Differences in scales observed (e.g. if the observations observe larger scales than the modelled 
variables can use averaging, if the observations observer smaller scales than modelled this is 
trickier).

• Differences in the timing of the observations (e.g. using the dynamical model to evolve the initial 
model state to the time of the observations.)

If we are assuming that both the background and observation errors are Gaussian then this implies 
that the observation operator should be near-linear.

h



Observation errors

• The errors in the observations are given by 
𝛈 = 𝐲 − ℎ 𝐱@AB@C

= 𝐲 − ℎ<=><? 𝐱@AB@C + ℎ<=><? 𝐱@AB@C − ℎ 𝐱@AB@C

= 𝛈*% + 𝛈?
• The uncertainty in the observations is therefore given by a mixture of errors in the observation 

itself, 𝛈*%, and the errors in trying to compare the state to the observations, 𝛈?.

• 𝛈*% will include instrument errors and pre-processing errors (e.g. the effect of superobbing or 
converting a more easily interpretable variable, can also include mistakes in cloud clearing)

• 𝛈? will include representation errors (e.g. observations of sub-grid scales) and errors in 
observation operator.

• Assuming the observation errors are unbiased and Gaussian then they can be fully represented 
by the observation error covariance matrix – the R matrix! 



The R matrix

• It is often assumed that the R matrix is diagonal, greatly simplifying the DA implementation. 

• However, the complex sources of observation error means that this assumption may be invalid.

• If significant spatial error correlations are suspected, then a common approach is to thin the data 
so only uncorrelated data remains. This can result in a large proportion of observations being 
discarded that could contain useful information.

• The importance of accounting for observation error correlations is increasingly being understood 
and are being included for a variety of observation types.



The R matrix: correlated errors
• Spatial error correlations means that the observations 

contain less information about the mean (large scale) 
fields but more about gradients (small scales).

• The interaction of observation error correlations with the 
B matrix is complicated affects the way the information in 
the observations is spread (Fowler et al. 2018). Imagine 
the case when direct observations of the state are 
available i.e. 𝐇 = 𝐈 and 𝐑 = 𝛼𝐁. In this case the Kalman 
Gain that controls the spread of information in the 
observations is 𝐊 = )

)2D
𝐈, that is no matter the structure 

of B there will be no spreading of information if R has the 
same structure.

Rainwater et al. 2015, QJRMS



Estimating the R matrix

• There are two main approaches to estimating R:
• The metrological approach: The accumulative effect of each source of error is meticulously 

traced from its origin to the final observation assimilated. This has analogies with the 
ensemble approach for estimating B.

• The analysis of innovations: We have already seen that the covariance of the innovations 
gives the sum of R and HBHT.	We can similarly use this to isolate R by making assumptions 
about B or by using additional information in the analysis increments e.g. Desroziers et al. 
2005 method.



• Satellite measurements of top of the atmosphere radiances for a given 
wavelength are sensitive to the temperature and gases (e.g. water vapour, 
ozone and carbon dioxide) throughout the atmospheric column as well as 
surface properties.

Andrey-Andrés et al 2018

• The mapping between the model variables 
and observed radiances can be achieved for 
each model column using fast radiative 
transfer models such as RTTOV. Right figure 
shows the Jacobian of the observation 
operator E?(0)

E0
for temperature and 

humidity for 123 IASI channels.

• Left: For many instruments inter-channel 
error correlations are now represented in 
the R matrices. 

Weston et al. 2013

An example: Satellite radiances from IASI



The forecast model

• As we have already seen the forecast model is crucial to allowing us to cycle the assimilation 
system and produce our background estimate.

• It may also be used to evolve the background error covariances either implicitly (see 4DVar) or 
explicitly (see EnKF).

• Most geophysical models are non-linear.
• The non-linearity in the forecast models means that if the time between the analysis and the next 

background is too large then the assumption that the background errors are Gaussian may no 
longer hold.

• Therefore, for methods that rely on the Gaussian assumption we need to be mindful of how 
frequently we perform the assimilation so that we remain in a quasi-linear regime.



Summary

All assimilation methods need the same basic ingredients to implement them:

• A background (first guess) and a representation of its error statistics, usually via the B-matrix.

• Observations and a representation of their error statistics, usually via the R-matrix.
• A way of comparing the model variables to those observed, the observation operator.

• A forecast model to allow for cycling of the assimilation.
Defining the error statistics and the observation operator can be incredibly difficult. Poor estimates 
of any of these will mean the observation cannot be used properly and information will be lost.

To make DA feasible we have made a lot of assumptions. In some situations, these may be quite 
limiting but can be overcome with extra levels of complexity e.g. Correction of observation and 
model biases, allowance for non-Gaussian distributions, estimation of key model parameters.
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