What to use when? With a brief recap

Amos Lawless

Data Assimilation Research Centre & NCEO, Univ. of Reading

With thanks to Ross Bannister

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Reminder: what is data assimilation?

- To blend information from models and observations.
 - State/parameter estimation (some kind of 'optimal' blending).
 - The posterior PDF or certain moments of it.

- Prior distribution: PDF of the state before observations are considered (e.g. PDF of model forecast).
- Likelihood: PDF of observations given that the state is x.
- Posterior distribution: PDF of the state given the observations.

In realistic practical applications we cannot represent the PDFs explicitly, so we need approximate DA methods

- Variational data assimilation
- Kalman filter (+ extended KF)
- Ensemble Kalman filters
- En-Var filters
- Hybrid methods
- Particle filters

Which method should you use for your application?

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

 \triangleright Forecast is mean of the prior, analysis is mode of the posterior (minimises a cost fn); \triangleright OK when *n* is large;.

$$\begin{aligned} J[\mathbf{x}_0] &= \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}_0^{-1} (\mathbf{x}_0 - \mathbf{x}^b) + \frac{1}{2} \sum_{t=0}^{T} (\mathbf{y}_t - \mathscr{H}_t(\mathbf{x}))^{\mathrm{T}} \mathbf{R}_t^{-1} (\mathbf{y}_t - \mathscr{H}_t(\mathbf{x})) \\ & \mathbf{x}_{t+1} = \mathscr{M}_t(\mathbf{x}_t) \end{aligned}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Flavours:

- Strong-constraint 4DVar (as above)
- Weak-constraint 4DVar (allow for model errors)
- Incremental version
- 3D-FGAT (incremental version with $M_t = I$)
- 3DVar ($\mathcal{M}_t(\mathbf{x}_t) = \mathbf{x}_t$).

Properties:

- Uses observations at correct time.
- Uses dynamical model as a constraint, so can fit changes in observations over a window.
- Weak-constraint formulation allows for model error (but need to specify \mathbf{Q}_t).
- Assumes Gaussian prior and observations.
- **B**₀ is modelled/parametrised (e.g. need control variable transforms). Not properly flow-dependent and is too simple, but can include balances.
- Analysis is sub-optimal if $\mathscr M$ or $\mathscr H$ is non-linear; can end up in a local minimum.
- Need tangent linear of \mathcal{M}_t and \mathcal{H}_t and their adjoints (for gradient calculation) Difficult to develop (time and expertise). But 3D-FGAT avoids this.

- Usually does not provide information on analysis uncertainty.
- Difficult to parallelize.

 \triangleright Propagates the mean state and its error covariance sequentially; \triangleright forecast/analysis is mean of the prior/posterior; \triangleright the analysis is the state that has minimum variance; \triangleright strong theoretical basis.

forecast state:
$$\mathbf{x}_{t}^{f} = \mathcal{M}_{t}(\mathbf{x}_{t-1}^{a})$$

forecast covariance: $\mathbf{P}_{t}^{f} = \mathbf{M}_{t}\mathbf{P}_{t-1}^{a}\mathbf{M}_{t}^{T} + \mathbf{Q}_{t}$
analysis state: $\mathbf{x}_{t}^{a} = \mathbf{x}_{t}^{f} + \mathbf{K}_{t}(\mathbf{y}_{t} - \mathcal{H}_{t}(\mathbf{x}_{t}^{f}))$
Kalman gain: $\mathbf{K}_{t} = \mathbf{P}_{t}^{f}\mathbf{H}_{t}^{T}(\mathbf{H}_{t}\mathbf{P}_{t}^{f}\mathbf{H}_{t}^{T} + \mathbf{R}_{t})^{-1}$
analysis covariances: $\mathbf{P}_{t}^{a} = (\mathbf{I} - \mathbf{K}_{t}\mathbf{H}_{t})\mathbf{P}_{t}^{f}$

・ロト ・ 日 ・ モート ・ 田 ・ うへで

The Kalman filter (and extended Kalman filter) cont.

Properties:

- Allows for correct propagation of forecast covariance matrix.
- Provides estimate of analysis error covariance.
- Allows for model error (but need to specify **Q**_t).
- Assumes Gaussian prior and observations.
- Assumes *M* and *H* are linear (weak non-linearity is allowed in the extended KF).

ション ふゆ く 山 マ チャット しょうくしゃ

• Unfeasible when *n* is large as matrices are treated explicitly.

 \triangleright Based on KF equations; \triangleright propagates N-member ensemble of forecasts to estimate $\mathbf{P}_t^{\rm f}.$

$$\begin{aligned} \mathbf{x}_{t}^{(i),f} &= \mathscr{M}_{t}(\mathbf{x}_{t-1}^{(i),a}) + \beta^{(i)} \\ n \times N : \quad \mathbf{X}_{t}^{\prime f} &= \left(\mathbf{x}_{t}^{(1),f} - \bar{\mathbf{x}}_{t}^{f} \cdots \mathbf{x}_{t}^{(N),f} - \bar{\mathbf{x}}_{t}^{f}\right) \\ p \times N : \quad \mathbf{Y}_{t}^{\prime} &= \left(\mathscr{H}_{t}(\mathbf{x}_{t}^{(1),f}) - \mathscr{H}(\bar{\mathbf{x}}_{t}^{f}) \cdots \mathscr{H}_{t}(\mathbf{x}_{t}^{(N),f}) - \mathscr{H}_{t}(\bar{\mathbf{x}}_{t}^{f})\right) \\ n \times N : \quad \mathbf{X}_{t}^{\prime a} &= \left(\mathbf{x}_{t}^{(1),a} - \bar{\mathbf{x}}_{t}^{a} \cdots \mathbf{x}_{t}^{(N),a} - \bar{\mathbf{x}}_{t}^{a}\right) \end{aligned}$$

Stochastic EnKF

$$\mathbf{x}_{t}^{(i)a} = \mathbf{x}_{t}^{(i)f} + \mathbf{K}_{t} \left(\mathbf{y}_{t} + \varepsilon_{y}^{(i)} - \mathscr{H}_{t}(\mathbf{x}_{t}^{(i)f}) \right)$$
$$\mathbf{K}_{t} = \mathbf{X}_{t}^{f} \mathbf{Y}_{t}^{T} \left(\mathbf{Y}_{t}^{\prime} \mathbf{Y}_{t}^{\prime \mathrm{T}} + (N-1)\mathbf{R}_{t} \right)^{-1}$$

Ensemble Transform KF $\bar{\mathbf{x}}_{t}^{a} = \bar{\mathbf{x}}_{t}^{f} + \mathbf{K}_{t} \left(\mathbf{y}_{t} - \mathscr{H}_{t} (\bar{\mathbf{x}}_{t}^{f}) \right)$ $\mathbf{X}_{t}^{\prime a} = \mathbf{X}_{t}^{\prime f} \mathbf{T}_{t}$ $\mathbf{K}_{t} = \mathbf{X}_{t}^{\prime f} \mathbf{T}_{t} \mathbf{T}_{t}^{T} \mathbf{Y}_{t}^{\prime T} \mathbf{R}_{t}^{-1}$ $\mathbf{T}_{t} = \left(\mathbf{I} + \mathbf{Y}_{t}^{\prime T} \mathbf{R}_{t}^{-1} \mathbf{Y}_{t}^{\prime} \right)^{-1/2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Flavours

- Stochastic EnKF
- Singular Evolutive Interpolated Kalman Filter (SEIK)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Ensemble Transform Kalman Filter (ETKF)
- Ensemble Adjustment Kalman Filter (EAKF)
- Ensemble Square Root Filter (EnSRF)
- etc.

Ensemble Kalman filters (cont)

Properties:

- \mathcal{M} and \mathcal{H} can be non-linear.
- Works when $N \ll n$ (but caveats).
- Avoids linear/adjoint coding.
- Easy to code.
- Parallelization is scalable with N.
- Assumes Gaussian prior and observations.
- Need localization to deal with sampling noise.
- Localization can disturb physical properties of ensemble (e.g. balance).
- Needs inflation to avoid filter divergence (ensemble under-spread).

 \triangleright As variational DA, but where $\mathbf{B} \to \mathbf{X}_0^{\prime f} \mathbf{X}_0^{\prime f^T} / (N-1)$ from a parallel ensemble; \triangleright analysis increment is a linear combination of forecast ensemble perturbations. E.g. En4DVar:

$$\begin{aligned} \mathbf{x}_{0}^{a} &= \mathbf{x}_{0}^{f} + \mathbf{X}^{\prime f} \delta \mathbf{v}_{ens} / \sqrt{N-1} & \delta \mathbf{v}_{ens} \text{ is an } N \text{-element vector} \\ J[\delta \mathbf{v}_{ens}] &= \frac{1}{2} \delta \mathbf{v}_{ens}^{T} \delta \mathbf{v}_{ens} + \frac{1}{2} \sum_{t=0}^{T} (\mathbf{y}_{t} - \mathscr{H}_{t}(\mathbf{x}_{t}))^{T} \mathbf{R}_{t}^{-1}(\bullet) \\ & \text{subject to } \delta \mathbf{x}_{t+1} = \mathbf{M}_{t} (\delta \mathbf{x}_{t}) \quad \text{and } \delta \mathbf{x}_{0} = \mathbf{X}^{\prime f} \delta \mathbf{v}_{ens} / \sqrt{N-1} \\ & \mathbf{x}_{t+1}^{f} = \mathscr{M}_{t} \left(\mathbf{x}_{t}^{f} \right) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Properties:

- Has the benefits of variational DA but with a flow-dependent B-matrix.
- Assumes Gaussian prior and observations.
- Needs localization and a separate parallel ensemble.
- En4DVar still needs the linear model and adjoint. 4DEnVar uses 4D ensembles and avoids these, but localization becomes very difficult.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

As variational DA, but where

$$\mathbf{B}_0
ightarrow (1 - eta) \mathbf{B}_0 + eta \mathbf{X}_0^{\prime \mathrm{f}} \mathbf{X}_0^{\prime \mathrm{f}^\mathrm{T}} / (N - 1)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

(new matrix is full rank and flow-dependent).

Traditional 4DVar with control variable transform:

$$J[\delta \mathbf{v}_{B}] = \frac{1}{2} \delta \mathbf{v}_{B}^{T} \delta \mathbf{v}_{B} + \frac{1}{2} \sum_{t=0}^{T} \left(\mathbf{y}_{t} - \mathscr{H}_{t}(\mathbf{x}_{t}^{f}) - \mathbf{H}_{t} \delta \mathbf{x}_{t} \right)^{T} \mathbf{R}_{t}^{-1}(\bullet)$$

subject to $\delta \mathbf{x}_{t+1} = \mathbf{M}_{t}(\delta \mathbf{x}_{t}), \quad \delta \mathbf{x}_{0} = \mathbf{U} \delta \mathbf{v}_{B}$

Hybrid-En4DVar:

$$J[\delta \mathbf{v}_{B}, \delta \mathbf{v}_{ens}] = \frac{1}{2} \delta \mathbf{v}_{B}^{T} \delta \mathbf{v}_{B} + \frac{1}{2} \delta \mathbf{v}_{ens}^{T} \delta \mathbf{v}_{ens} + \frac{1}{2} \sum_{t=0}^{T} \left(\mathbf{y}_{t} - \mathscr{H}_{t}(\mathbf{x}_{t}^{f}) - \mathbf{H}_{t} \delta \mathbf{x}_{t} \right)^{T} \mathbf{R}_{t}^{-1}(\bullet)$$

subject to
$$\delta \mathbf{x}_{t+1} = \mathbf{M}_{t}(\delta \mathbf{x}_{t}), \quad \delta \mathbf{x}_{0} = \sqrt{1 - \beta} \mathbf{U} \delta \mathbf{v}_{B} + \sqrt{\beta} \mathbf{X}'^{f} \delta \mathbf{v}_{ens} / \sqrt{N - 1}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Properties:

• Has the benefits of variational DA but with a full-rank flow-dependent **B**-matrix.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

- Assumes Gaussian prior and observations.
- Still needs localization and a separate parallel ensemble.
- Can get very complex to develop.

 \triangleright Non-Gaussian; \triangleright approximates prior and posterior PDFs as summation of 'delta-functions'. Standard PF:

prior PDF:
$$p(\mathbf{x}) = \sum_{i=1}^{N} w_i^{\text{prior}} \delta(\mathbf{x} - \mathbf{x}_i), \qquad \sum_{i=1}^{N} w_i^{\text{prior}} = 1/N$$

posterior PDF: $p(\mathbf{x}|\mathbf{y}) = \sum_{i=1}^{N} w_i^{\text{post}} \delta(\mathbf{x} - \mathbf{x}_i), \qquad w_i^{\text{post}} = \frac{w_i^{\text{prior}} p(\mathbf{y}|\mathbf{x}_i)}{\sum_{i=1}^{N} w_i^{\text{prior}} p(\mathbf{y}|\mathbf{x}_i)}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Properties:

• Fundamentally no need for covariance matrices - Sample from full pdf.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

- No need to assume Gaussianity
- Standard PF is degenerate (weight tends to accumulate for one particle). But several approaches to try to overcome this.
- 'Resampling' still a problem for lots of obs.

	Var	KF	EnKF	EnVar	Hybrid	PF
Non-Gaussian						
Large system						
Need info on analysis error						
TLM/ adjoint needed				(√X)	(√X)	
Model expensive to run						
(no more than 50-100 runs)						
Easily parallelizable						

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

DA software:

PDAF=Parallel Data Assimilation Framework;

DART=Data Assimilation Research Testbed;

DAPPER=Data assimilation package in Python for experimental research;

	Var	KF	EnKF	EnVar	Hybrid	PF
Non-Gaussian	Х	Х	Х	Х	Х	\checkmark
Large system	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark
Need info on analysis error						
TLM/ adjoint needed				(√X)	(√X)	
Model expensive to run						
(no more than 50-100 runs)						
Easily parallelizable						

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

DA software:

PDAF=Parallel Data Assimilation Framework;

DART=Data Assimilation Research Testbed;

DAPPER=Data assimilation package in Python for experimental research;

	Var	KF	EnKF	EnVar	Hybrid	PF
Non-Gaussian	Х	Х	Х	Х	Х	\checkmark
Large system	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark
Need info on analysis error	Х	\checkmark	\checkmark	Х	Х	\checkmark
TLM/ adjoint needed				(√X)	(√X)	
Model expensive to run						
(no more than 50-100 runs)						
Easily parallelizable						

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

DA software:

PDAF=Parallel Data Assimilation Framework;

DART=Data Assimilation Research Testbed;

DAPPER=Data assimilation package in Python for experimental research;

	Var	KF	EnKF	EnVar	Hybrid	PF
Non-Gaussian	Х	Х	Х	Х	Х	\checkmark
Large system	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark
Need info on analysis error	Х	\checkmark	\checkmark	Х	Х	\checkmark
TLM/ adjoint needed	\checkmark	\checkmark	Х	(√X)	(√X)	Х
Model expensive to run						
(no more than 50-100 runs)						
Easily parallelizable						

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

DA software:

PDAF=Parallel Data Assimilation Framework;

DART=Data Assimilation Research Testbed;

DAPPER=Data assimilation package in Python for experimental research;

	Var	KF	EnKF	EnVar	Hybrid	PF
Non-Gaussian	Х	Х	Х	Х	Х	\checkmark
Large system	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark
Need info on analysis error	X	\checkmark	\checkmark	Х	Х	\checkmark
TLM/ adjoint needed	\checkmark	\checkmark	Х	(√X)	(√X)	Х
Model expensive to run	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Х
(no more than 50-100 runs)						
Easily parallelizable						

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

DA software:

PDAF=Parallel Data Assimilation Framework;

DART=Data Assimilation Research Testbed;

DAPPER=Data assimilation package in Python for experimental research;

	Var	KF	EnKF	EnVar	Hybrid	PF
Non-Gaussian	Х	Х	Х	Х	Х	\checkmark
Large system	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark
Need info on analysis error	Х	\checkmark	\checkmark	Х	Х	\checkmark
TLM/ adjoint needed	\checkmark	\checkmark	Х	(√ X)	(√X)	Х
Model expensive to run	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Х
(no more than 50-100 runs)						
Easily parallelizable	Х	Х	\checkmark	Х	Х	\sim

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

DA software:

PDAF=Parallel Data Assimilation Framework;

DART=Data Assimilation Research Testbed;

DAPPER=Data assimilation package in Python for experimental research;

	Var	KF	EnKF	EnVar	Hybrid	PF
Non-Gaussian	Х	Х	Х	Х	Х	\checkmark
Large system	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark
Need info on analysis error	Х	\checkmark	\checkmark	Х	Х	\checkmark
TLM/ adjoint needed	\checkmark	\checkmark	Х	(√X)	(√X)	Х
Model expensive to run	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Х
(no more than 50-100 runs)						
Easily parallelizable	Х	Х	\checkmark	Х	Х	\checkmark

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

DA software:

PDAF=Parallel Data Assimilation Framework;

DART=Data Assimilation Research Testbed;

DAPPER=Data assimilation package in Python for experimental research;

	Var	KF	EnKF	EnVar	Hybrid	PF
Non-Gaussian	Х	Х	Х	Х	Х	\checkmark
Large system	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark
Need info on analysis error	Х	\checkmark	\checkmark	Х	Х	\checkmark
TLM/ adjoint needed	\checkmark	\checkmark	Х	(√X)	(√X)	Х
Model expensive to run	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Х
(no more than 50-100 runs)						
Easily parallelizable	Х	Х	\checkmark	Х	Х	\checkmark

DA software:

....

PDAF=Parallel Data Assimilation Framework;

- DART=Data Assimilation Research Testbed;
- DAPPER=Data assimilation package in Python for experimental research;
- JEDI=Joint Effort for Data assimilation Integration;