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The data assimilation problem

@ To combine imperfect data from models, from observations distributed
in time and space, exploiting any relevant physical constraints, to
produce a more accurate and comprehensive picture of the system as it
evolves in time.

Traditionally we are interested in a state of the system.

This is just a first moment of the posterior PDF.

n

“All models are wrong ..." (George Box)

“All models are wrong and all observations are inaccurate.”
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Bayes' Theorem

p(x) x p(y[x)
p(y)
prior distribution x likelihood

p(xly) =

posterior distribution = —
normalizing constant

Prior distribution: PDF of the state before observations are considered
(e.g. PDF of model forecast).

Likelihood: PDF of observations given that the state is x.

Posterior: PDF of the state after the obs. have been considered.

(The “p’s in the above are actually different functions.)
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The Gaussian assumption

o PDFs are often described by Gaussians (normal distributions).

@ Gaussian PDFs are described by a mean and covariance only.

S S
(27)" det(C)

exp— (= ()T € (x ()
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Meaning of x and y

x (4D)

I X (3D)
x(0)
7:‘ M., x3“ State space, n=3

@ Vectors of vectors ...

@ x® analysis; x° background state; dx increment (perturbation).
@ y observations; y™ = J#(x) model observations.

e J7(x) is the observation operator / forward model.

@ Sometimes x and y are for only one time (3DVar).

@ x-vectors have n elements; y-vectors have p elements.
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Back to the Gaussian assumption

b

covariance B

—;ex —} x — xP g1 x —x°
PO) = —mrarseP () B ()

Prior: mean x

Likelihood: mean 7 (x), covariance R

1 1 > T 1 #(x
P(Y\X):WGXP—E(}’—%(X)) R™(y —(x))

Posterior
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Variational DA — the idea

@ In Var., we seek a solution that maximizes the posterior probability
p(x|y) (maximum-a-posteriori, MAP).
o This is the most likely state given the observations (and the background),
called the analysis, x2.
o Maximizing p(x|y) is equivalent to minimizing —Inp(x|y) = J(x) (a
least-squares problem).

p(xly) = Cexp{—; [(x—xb)TB’1 (x—x)

Jx) = —-InC+ % (x—xb)TB_1 (x—x)

L % (y — #(x) R (y — #(x))

= constant (ignored) + Jy(x) + Jo(x)
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Exercises — practise the ‘short hand’ algebra

@ uTv (product of 1 x n and nx 1 vectors [an inner product], result is 1 x 1 [a scalar])

u1 T %1 %1
(Ul Un)

= Sl =uvittupvp

Un Vn Vn

o uTAv (product of a 1 x n, an nx n matrix, and a nx 1 vector [an inner product in a
particular norm], result is 1 x 1 [a scalar])

A1in - A vi ) A11vi+ -+ Atnva

(b - un) (w1
An1 T Ann Vn Apivi+--+AnnVi

uy [A11V1 +"'+A1nVn]+---+Un[An1V1+"‘+AnnVn]

@ uvl (product of nx 1 and 1 x m vectors [an outer product], result is n x m matrix)

uy vy -0 U1Vm

RS

Un Upvi UnVm
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Four-dimensional Var (“strong constraint” 4DVar)

To find the ‘best’ estimate of the true state of the system (analysis),
consistent with the observations, the background, and the system dynamics.

X A Xa0 yr A
XbO / /xaT
77777777777777777777777777777 Xb
6XO { 7777777777777777777777777777 A/ T
CECMWF
>
B time
t, t=t,
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Towards a 4DVar cost function

Consider the observation operator in this case:

X0 6 (x0)
H(x) = = :
XT A (x1)
So the J° is (assume that R is block diagonal):
1 - 2,
Py ARy () =
) yo — 7% (%o) "/Re 0 0 ! Yo — 7% (%o)
> : 0 . 0 :
— A7 (xT) 0 0 Rt yT — 7 (XT)

- Z — (%)) R (yi — A (xi))

1

subject to the strong constraint x; 11 = . (x;)
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The 4DVar cost function (‘full 4DVar')

Let (a)" A (a) = (a)T A1 (o)
Jx) = %(xo—XB)TBal(o)—i—%(y—Jf(x))TR’l(o)
T
= (o) B (&) 45 ¥ (i~ (i) R (o)

subject to the strong constraint x; 11 = .#; (x;)

xg a-priori (background) state at tp; x; state at t;; y; obs at t;.

4 (x;) observation operator at t;.

°
°

@ By background error covariance matrix at tp.
@ R; observation error covariance matrix at t;.
°

Ultimately Jis a fn of xg as x; = A1 (M;—2 (- -+ #5(x0))).



How to minimize this (‘full 4DVar') cost function?

Minimize J(xq) iteratively

n=2 ?ackJ?m:{L
A The gradient of the cost
%), ; function
Co au/[
o‘fcan!‘hr\fj’ aJ/a[XO]l
\Y = o
Anaijn‘s shie /Z“)I J(XO) )
_ dJ/d[xo]n
Use the gradient of J at
each iteration: —VJ points in the direction of
steepest descent.
xé“ =x§+avVJ(x§) ~

Methods: steepest descent
(inefficient), conjugate
gradient, quasi-Newton (more
efficient),
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The gradient of the cost function (wrt x(tp))

Either:
@ Minimise J(xg) w.r.t. xo with x; = A1 (Mi_2 (- #p(x0))).
@ Minimise J(x) = J(x0,X1,...,XT) W.r.t. Xg,X1,...,XT subject to the
constraint
Xip1— Mi(x;) =0
T-1

LeA) = J()+ ) A (xivt — 4 (x7)).

i=0
Each approach leads to the adjoint method
@ An efficient means of computing the gradient.
o Uses the linearised/adjoint of .#; and #: MT and HT (see next slides).
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The adjoint method

Equivalent gradient formula:

(1)
VI=VJ(xo) = Vi(xo)~+Vs(xo)
= By (xo—xp)
T
~ Y M MTLHIR (3~ ()
=0
where M,‘ = 8///,-(x,-)/8x,- and H,' = 8%”,-(x,-)/8x,-
Q
Aty = 0
Ai = HIR M (yi— Ai(x)) +Midin
Ao = -V,

V) = V4V,
= Bal(XO—XB)—Ao
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The adjoint method

N« M hie, =~ BB %p) -
2lte)> Xlt) s M - H R (e /)

\\\ _—> FORWARD MODEL INTEGRATION —
i —>  Xlt) —> xlble > xftn)s s AlE)=
S s
- 77, (21t)) Phaleltrs))  Phafete)
g | J v
= 3 - 3 R =Y (Tra “ylts
I L7 b e
E’i /\01’4:/\1 « AN :MT');,, e an e /\T-I=MI_,>\7 P A= M1 Sra
S AL Hrrn dr i et
/ ADJOINT MODEL INTEGRATION ’\
72 Aty =2

VTl = + B (x1) >1t))
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Simplifications and complications

The full 4DVar method is expensive and difficult to solve.
Model .#; is non-linear.

Observation operators, 77 can be non-linear.

e 6 o6 o

Linear .7 — quadratic cost function — easy(er) to minimize,

Jo~ 3y —ax)?/c2.

@ Non-linear 5 — non-quadratic cost function — hard to minimize,
SO~ 5y = F(x))? /08,

@ Later will recognise that models are ‘wrong’!

Look for simplifications: Complications:
Incremental 4DVar (linearised 4DVar) Weak constraint
3D-FGAT (imperfect model)
3DVar
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Incremental 4DVar (1)

define reference trajectory: x5, 1 = .#; (x?) ymR = 7 (x}-{)

x; = xR 4 8x; x5 = xR + 8x)

i1 = Mi(xi) = M (<5 + %)
X?—}—] —+ 5XI'+1 ~ ,%, (XF) + M '6X,’ 6Xi+1 ~ M,’6Xi
Y= (ki) = () + %)
MR SYP & () +Hidx; oy;" = H;dx;
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Incremental 4DVar (2)

J(0x0) = % (8x0 — SXB)T By (o) +

’Z yi — i H5Xl) R (o)

M,',lM,',z . M05X0

Q

Ox;

o Initially set reference to background, x& = x§.

@ ‘Inner loop': iterations to find 6x§ = argmin J(dxo) (use adjoint
method).

o ‘Outer loop’: iterate x§ — x& + 6x3
@ Inner loop is exactly quadratic (e.g. has a unique minimum).

@ Inner loop can be simplified (lower res., simplified physics).
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How to minimize this (‘incremental 4DVar') cost function?

Minimize J(6xo) iteratively

The gradient of the cost
ey, | function
~ ~ N
/ %&% 9/218%l

[t (6. (ellipres) VJ(8xq) =

(%) g POIE]
/ /3[6x0]n
55%«'/#‘2 state foé‘ Hhic outer loop
*eze —VJ points in the direction of
Use the gradient of J at each steepest descent.
iteration: ’
Methods: steepest descent
SxETL = Sxf + aVJ(5x§) (inefficient), conjugate
gradient, quasi-Newton (more
efficient), . ..
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Simplification 1: incremental 3D-FGAT

o Three dimensional variational data assimilation with first guess (i.e. x¥)
is computed at the appropriate time.

o Simplification is that M; — |, i.e. 0x; = M;_1...Mgxg — Oxg:

J3DFGAT(5X0) — % (5x0 — 5x8)T Bal (o) +
1 T/2 T
S Y (yi— AR —Hidxo) R (e).
2 i=—T/2

@ Note the centring of the assimilation window about ty (to reduce the
impact of the 3D-FGAT approximation).
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Simplification 2: incremental 3DVar

@ This has no time dependence within the assimilation window.
o Not used (these days “3DVar” really means 3D-FGAT).

, 1
J3DVar(5XO) — 5(5x0—5x8)TBal (0)+
1 TR T
5 L (vi— i) —Hidxo) R (o)
i=—T/2

@ But note: 3DVar is not an approx. if all obs. in this cycle are at t =0
(no time index t = 0). For x® = x":

POVar(§x) = %3XTB*16X + % (y — 2 (x*) —H8x) 'R (o)
Setting V = B '8x—HR™ (y—(x") —Hx) =0
Gives x* =x"+8x = x"+ (Bf1 + HTRle)i1 HTR! (y = (x))
As the Kalman Filter! = x"+BHT (R+HBHT) - (y—#(x))
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Reminder: the Kalman Filter

P
K¢

Xt+1
£
Pt

He

M

X + Ky (Yt - %(Xi))

(1= KiHe) P
-1
PgH? (Rt+ HtPl;H?) <_
M (<) (B +H'R™'H) BH"
M, PiMT
ePiMe Qe =HR™ (R+HBH")

d (:(x)) (S-M-W formula)

X x:xi
9 (A+(x))

X x=x}
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Properties of 4DVar

@ Observations are treated at the correct time.

@ Use of dynamics means that more information can be obtained from
observations.

e Covariance By is implicitly evolved, B; = (M;_1...Mg)Bo(M,_1 ... Mg)™.

@ In practice development of linear and adjoint models is complex.

o M;, H, M;, H;, MT, and HT are subroutines, and so ‘matrices’ are
usually not in explicit matrix form.

But note

@ Standard 4DVar assumes the model is perfect.
@ This can lead to sub-optimalities.

@ Weak-constraint 4DVar relaxes this assumption.
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Weak constraint 4DVar

Modify evolution equation: -
Ny

xip1 = AMi(xi)+n; o

where 1; ~ N(0,Q)) >

;O time t;tr

‘State formulation’ of WC4DVar
wCe b 0 1T71 TA-1
Siate (X0, - xT) = S+ S+ 5 Y (xig1— 4 (xi)) Q; (o)
i—0

‘Error formulation” of WC4DVar

1T*1 B
Jortor (%0, Mg oM7) = S+ L+ 5 Y niQi T,
i=0
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Implementation of weak constraint 4DVar

@ Vector to be determined (‘control vector’) increases from n in 4DVar to
n+nT in WC4DVar.

@ The model error covariance matrices, Q;, need to be estimated. How?

@ The ‘state’ formulation (determine xq,...,x7) and the ‘error’
formulation (determine xg,Mg...,N7_1) are mathematically equivalent,
but can behave differently in practice.

@ There is an incremental form of WC4DVar.
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Summary of 4DVar

@ The variational method forms the basis of many operational weather and
ocean forecasting systems, including at ECMWF, the Met Office,
Météo-France, etc.

o It allows complicated observation operators to be used (e.g. for
assimilation of satellite data).

@ It has been very successful.
@ Incremental (quasi-linear) versions are usually implemented.

@ It requires specification of By, the background error cov. matrix, and R;,
the observation error cov. matrix.

@ 4DVar requires the development of linear and adjoint models — not a
simple task!

@ Weak constraint formulations require the additional specification of Q;.
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