
DARC/NCEO Data Assimilation Training course
Data Assimilation Beyond Gaussianity

Jochen Bröcker

DARC/NCEO 2023

How does Gaussianity come into DA

Is non–Gaussianity relevant in DA

Three ways to deal with non–Gaussianity: Parametric approaches

Three ways to deal with non–Gaussianity: Particle filters

Three ways to deal with non–Gaussianity: EnKF

How does Gaussianity come into DA

Is non–Gaussianity relevant in DA

Three ways to deal with non–Gaussianity: Parametric approaches

Three ways to deal with non–Gaussianity: Particle filters

Three ways to deal with non–Gaussianity: EnKF

Setup

Consider signal process {X0,X1,X2, . . .} satisfying

Xn+1 =M(Xn) + Rn+1, n = 0, 1, . . . ,

on some state space E and with modelM. The observation
process {Y1,Y2, . . .} is given by

Yn = H(X) + Sn, n = 1, 2,

Further
I the RV’s {X0,R1,R2, . . . ,S1,S2, . . .} are all independent,
I {R1,R2, . . .} have identical distribution r ,
I {S1, S2, . . .} have identical distribution s.

Setup

Consider signal process {X0,X1,X2, . . .} satisfying

Xn+1 =M(Xn) + Rn+1, n = 0, 1, . . . ,

on some state space E and with modelM. The observation
process {Y1,Y2, . . .} is given by

Yn = H(X) + Sn, n = 1, 2,

Further
I the RV’s {X0,R1,R2, . . . ,S1, S2, . . .} are all independent,
I {R1,R2, . . .} have identical distribution r ,
I {S1, S2, . . .} have identical distribution s.

Setup

Consider signal process {X0,X1,X2, . . .} satisfying

Xn+1 =M(Xn) + Rn+1, n = 0, 1, . . . ,

on some state space E and with modelM. The observation
process {Y1,Y2, . . .} is given by

Yn = H(X) + Sn, n = 1, 2,

Further
I the RV’s {X0,R1,R2, . . . ,S1, S2, . . .} are all independent,
I {R1,R2, . . .} have identical distribution r ,
I {S1, S2, . . .} have identical distribution s.

Goal of data assimilation

Find the conditional distribution

πn(x) = P(Xn = x |Y1 = y1, . . . ,Yn = yn), n = 1, 2, . . . ,

(which is also a function of y1, . . . , yn).
Can be “computed” using two–step recursion:

π+n (x) :=

∫
E
r(x −M(z)) · πn(z) dz prediction step, (1)

πn+1(x) := cn · s(yn+1 −H(x)) · π+n (x) update (or Bayesian) step.
(2)

Here, cn is a normalisation factor, and r , s are the densities of
model error and obs error, resp.

Goal of data assimilation

Find the conditional distribution

πn(x) = P(Xn = x |Y1 = y1, . . . ,Yn = yn), n = 1, 2, . . . ,

(which is also a function of y1, . . . , yn).
Can be “computed” using two–step recursion:

π+n (x) :=

∫
E
r(x −M(z)) · πn(z) dz prediction step, (1)

πn+1(x) := cn · s(yn+1 −H(x)) · π+n (x) update (or Bayesian) step.
(2)

Here, cn is a normalisation factor, and r , s are the densities of
model error and obs error, resp.

Linear models with Gaussian errors

Suppose that
I X0,Rk , and Sk are Gaussian (in particular r , s are Gaussian

densities),
I M,H are linear mappings (more generally affine),

then πn is a Gaussian density with some mean and covariance µn, Γn

which are functions of µn−1, Γn−1 and yn (Kalman recursion).

Linear models with Gaussian errors

Suppose that
I X0,Rk , and Sk are Gaussian (in particular r , s are Gaussian

densities),
I M,H are linear mappings (more generally affine),

then πn is a Gaussian density with some mean and covariance µn, Γn

which are functions of µn−1, Γn−1 and yn (Kalman recursion).

Deeper reason why linear models with Gaussian errors give
Kalman Filter

For Gaussian distributions, the following two facts hold:
1. if X is Gaussian on some space E and A is an affine mapping

from E to F , then AX is also Gaussian.
2. if X ,Y are jointly Gaussian, then the conditional distribution

Y |X is also Gaussian.

Deeper reason why linear models with Gaussian errors give
Kalman Filter

For Gaussian distributions, the following two facts hold:
1. if X is Gaussian on some space E and A is an affine mapping

from E to F , then AX is also Gaussian.
2. if X ,Y are jointly Gaussian, then the conditional distribution

Y |X is also Gaussian.

How does Gaussianity come into DA

Is non–Gaussianity relevant in DA

Three ways to deal with non–Gaussianity: Parametric approaches

Three ways to deal with non–Gaussianity: Particle filters

Three ways to deal with non–Gaussianity: EnKF

Reasons for non–Gaussianity: Nonlinear models

If Xn is Gaussian, then Xn+1 =M(Xn) + Rn+1 is generally not
Gaussian as soon asM is nonlinear (whether R is Gaussian or not).

Example

Xn+1 = X 2
n + Rn+1, Xn and Rn+1 standard Gaussian.

4 2 0 2 4 6 8 10 12
0

20

40

60

80

100

Reasons for non–Gaussianity: Nonlinear models

If Xn is Gaussian, then Xn+1 =M(Xn) + Rn+1 is generally not
Gaussian as soon asM is nonlinear (whether R is Gaussian or not).

Example

Xn+1 = X 2
n + Rn+1, Xn and Rn+1 standard Gaussian.

4 2 0 2 4 6 8 10 12
0

20

40

60

80

100

Reasons for non–Gaussianity: Nonlinear models

If Xn is Gaussian, then Xn+1 =M(Xn) + Rn+1 is generally not
Gaussian as soon asM is nonlinear (whether R is Gaussian or not).

Example

Xn+1 = X 2
n + Rn+1, Xn and Rn+1 standard Gaussian.

4 2 0 2 4 6 8 10 12
0

20

40

60

80

100

Reasons for non–Gaussianity: Nonlinear observations

If Xn is Gaussian and Yn = H(Xn) +Sn, then Xn|Yn is generally not
Gaussian as soon as H is nonlinear (whether S is Gaussian or not).

Example

Yn = X 2
n + Sn, Xn and Sn standard normal.

Then Xn|Yn ∼ exp(q(x)) with q a fourth–order polynomial.

Reasons for non–Gaussianity: Nonlinear observations

If Xn is Gaussian and Yn = H(Xn) +Sn, then Xn|Yn is generally not
Gaussian as soon as H is nonlinear (whether S is Gaussian or not).

Example

Yn = X 2
n + Sn, Xn and Sn standard normal.

Then Xn|Yn ∼ exp(q(x)) with q a fourth–order polynomial.

Reasons for non–Gaussianity: Non–Gaussianity errors

Clearly we also leave Gaussianity if Rn and/or Sn have
non–Gaussian distributions.
Many nonlinear observation functions essentially require
non–Gaussian error distributions, or in fact non–additive error
models. Examples where Gaussian distribution (or additive error
model) is not adequate:
I Ratios, rates, percentages and angles are inherently bounded,
I Wind speed and precipitation is nonnegative
I Measurement error of variable A depends on A itself or other

variable B .

Reasons for non–Gaussianity: Non–Gaussianity errors

Clearly we also leave Gaussianity if Rn and/or Sn have
non–Gaussian distributions.
Many nonlinear observation functions essentially require
non–Gaussian error distributions, or in fact non–additive error
models. Examples where Gaussian distribution (or additive error
model) is not adequate:
I Ratios, rates, percentages and angles are inherently bounded,
I Wind speed and precipitation is nonnegative
I Measurement error of variable A depends on A itself or other

variable B .

Reasons for non–Gaussianity: Non–Gaussianity errors

Clearly we also leave Gaussianity if Rn and/or Sn have
non–Gaussian distributions.
Many nonlinear observation functions essentially require
non–Gaussian error distributions, or in fact non–additive error
models. Examples where Gaussian distribution (or additive error
model) is not adequate:
I Ratios, rates, percentages and angles are inherently bounded,
I Wind speed and precipitation is nonnegative
I Measurement error of variable A depends on A itself or other

variable B .

Reasons for non–Gaussianity: Non–Gaussianity errors

Clearly we also leave Gaussianity if Rn and/or Sn have
non–Gaussian distributions.
Many nonlinear observation functions essentially require
non–Gaussian error distributions, or in fact non–additive error
models. Examples where Gaussian distribution (or additive error
model) is not adequate:
I Ratios, rates, percentages and angles are inherently bounded,
I Wind speed and precipitation is nonnegative
I Measurement error of variable A depends on A itself or other

variable B .

Effects of distributional errors in DA
in fact, any type of error

DA is an iterative procedure, hence errors made at some point in
time will affect performance at all later times and can accumulate,
rendering results invalid due to unphysical effects or “numerical
fireworks”.
More specifically
I the algorithm places probability in regions that are physically

implausible or numerically unstable . . .
I while important regimes are deemed unlikely,
I extreme (large magnitude) events might not be represented

well,
I computational resources will be allocated poorly.

Effects of distributional errors in DA
in fact, any type of error

DA is an iterative procedure, hence errors made at some point in
time will affect performance at all later times and can accumulate,
rendering results invalid due to unphysical effects or “numerical
fireworks”.
More specifically
I the algorithm places probability in regions that are physically

implausible or numerically unstable . . .
I while important regimes are deemed unlikely,
I extreme (large magnitude) events might not be represented

well,
I computational resources will be allocated poorly.

Effects of distributional errors in DA
in fact, any type of error

DA is an iterative procedure, hence errors made at some point in
time will affect performance at all later times and can accumulate,
rendering results invalid due to unphysical effects or “numerical
fireworks”.
More specifically
I the algorithm places probability in regions that are physically

implausible or numerically unstable . . .
I while important regimes are deemed unlikely,
I extreme (large magnitude) events might not be represented

well,
I computational resources will be allocated poorly.

Effects of distributional errors in DA
in fact, any type of error

DA is an iterative procedure, hence errors made at some point in
time will affect performance at all later times and can accumulate,
rendering results invalid due to unphysical effects or “numerical
fireworks”.
More specifically
I the algorithm places probability in regions that are physically

implausible or numerically unstable . . .
I while important regimes are deemed unlikely,
I extreme (large magnitude) events might not be represented

well,
I computational resources will be allocated poorly.

Effects of distributional errors in DA
in fact, any type of error

DA is an iterative procedure, hence errors made at some point in
time will affect performance at all later times and can accumulate,
rendering results invalid due to unphysical effects or “numerical
fireworks”.
More specifically
I the algorithm places probability in regions that are physically

implausible or numerically unstable . . .
I while important regimes are deemed unlikely,
I extreme (large magnitude) events might not be represented

well,
I computational resources will be allocated poorly.

The poor man’s remedy

DA attempts to “optimally” combine information from present
observations with information from past observations, propagated
forward.

Strategy to avoid error accumulation
Do not trust your own computations!
More precisely, stronger weight is placed on current rather than
past information, e.g. by inflating the model error. Problems with
this strategy:
I not optimal as potentially useful information from the past is

ignored,
I often still leads to rather unphysical effects,
I each observation represents a big update (rather than a small

perturbation) which is a burden on computational resources.

The poor man’s remedy

DA attempts to “optimally” combine information from present
observations with information from past observations, propagated
forward.

Strategy to avoid error accumulation
Do not trust your own computations!
More precisely, stronger weight is placed on current rather than
past information, e.g. by inflating the model error. Problems with
this strategy:
I not optimal as potentially useful information from the past is

ignored,
I often still leads to rather unphysical effects,
I each observation represents a big update (rather than a small

perturbation) which is a burden on computational resources.

The poor man’s remedy

DA attempts to “optimally” combine information from present
observations with information from past observations, propagated
forward.

Strategy to avoid error accumulation
Do not trust your own computations!
More precisely, stronger weight is placed on current rather than
past information, e.g. by inflating the model error. Problems with
this strategy:
I not optimal as potentially useful information from the past is

ignored,
I often still leads to rather unphysical effects,
I each observation represents a big update (rather than a small

perturbation) which is a burden on computational resources.

The poor man’s remedy

DA attempts to “optimally” combine information from present
observations with information from past observations, propagated
forward.

Strategy to avoid error accumulation
Do not trust your own computations!
More precisely, stronger weight is placed on current rather than
past information, e.g. by inflating the model error. Problems with
this strategy:
I not optimal as potentially useful information from the past is

ignored,
I often still leads to rather unphysical effects,
I each observation represents a big update (rather than a small

perturbation) which is a burden on computational resources.

The poor man’s remedy

DA attempts to “optimally” combine information from present
observations with information from past observations, propagated
forward.

Strategy to avoid error accumulation
Do not trust your own computations!
More precisely, stronger weight is placed on current rather than
past information, e.g. by inflating the model error. Problems with
this strategy:
I not optimal as potentially useful information from the past is

ignored,
I often still leads to rather unphysical effects,
I each observation represents a big update (rather than a small

perturbation) which is a burden on computational resources.

How does Gaussianity come into DA

Is non–Gaussianity relevant in DA

Three ways to deal with non–Gaussianity: Parametric approaches

Three ways to deal with non–Gaussianity: Particle filters

Three ways to deal with non–Gaussianity: EnKF

Parametric families

A parametric family is a set of probability densities {p(x , θ), θ ∈ Θ}
where Θ is some parameter space.

Idea
Find parametric family so that filtering process is given by
πn(x) = p(x , θn), where θ1, θ2, . . . satisfy the finite–dimensional
system

θn+1 = F (θn, yn+1), n = 0, 1, 2, . . . (“Meta–Model”).

The Kalman Filter is an example, with the Gaussian densities as
parametric family.

Unfortunately, . . .
apart from the Kalman Filter, there are very few examples where
this works (of hardly any practical relevance).

Parametric families

A parametric family is a set of probability densities {p(x , θ), θ ∈ Θ}
where Θ is some parameter space.

Idea
Find parametric family so that filtering process is given by
πn(x) = p(x , θn), where θ1, θ2, . . . satisfy the finite–dimensional
system

θn+1 = F (θn, yn+1), n = 0, 1, 2, . . . (“Meta–Model”).

The Kalman Filter is an example, with the Gaussian densities as
parametric family.

Unfortunately, . . .
apart from the Kalman Filter, there are very few examples where
this works (of hardly any practical relevance).

Sufficient statistics

. . . but useful as an approximation. Given parametric family
{p(x , θ), θ ∈ Θ}, suppose there is a function Φ so that the equation

m =

∫
E

Φ(x)p(x , θ) dx (3)

can be solved for θ.
Example is the Gaussian family with Φ(x) = (x , x2) (i.e. first and
second moment).

Sufficient statistics

. . . but useful as an approximation. Given parametric family
{p(x , θ), θ ∈ Θ}, suppose there is a function Φ so that the equation

m =

∫
E

Φ(x)p(x , θ) dx (3)

can be solved for θ.
Example is the Gaussian family with Φ(x) = (x , x2) (i.e. first and
second moment).

Assumed density filters, moment matching filters, . . .

Approximations ρn of πn can be calculated iteratively as follows:
1. Suppose ρn is given. Calculate predicted moments

mn =

∫
E×E

Φ(M(x) + ξ)ρn(x)r(ξ) dxdξ

2. Use mn as lhs in Eq (3) and solve for θn.
3. Perform update step (exact Bayesian step)

ρn+1(x) = cn · s(yn+1 −H(x)) · p(x , θn)

Applications: Fast but small scale such as target tracking, robotics,
finance,

Assumed density filters, moment matching filters, . . .

Approximations ρn of πn can be calculated iteratively as follows:
1. Suppose ρn is given. Calculate predicted moments

mn =

∫
E×E

Φ(M(x) + ξ)ρn(x)r(ξ) dxdξ

2. Use mn as lhs in Eq (3) and solve for θn.
3. Perform update step (exact Bayesian step)

ρn+1(x) = cn · s(yn+1 −H(x)) · p(x , θn)

Applications: Fast but small scale such as target tracking, robotics,
finance,

Assumed density filters, moment matching filters, . . .

Approximations ρn of πn can be calculated iteratively as follows:
1. Suppose ρn is given. Calculate predicted moments

mn =

∫
E×E

Φ(M(x) + ξ)ρn(x)r(ξ) dxdξ

2. Use mn as lhs in Eq (3) and solve for θn.
3. Perform update step (exact Bayesian step)

ρn+1(x) = cn · s(yn+1 −H(x)) · p(x , θn)

Applications: Fast but small scale such as target tracking, robotics,
finance,

Assumed density filters, moment matching filters, . . .

Approximations ρn of πn can be calculated iteratively as follows:
1. Suppose ρn is given. Calculate predicted moments

mn =

∫
E×E

Φ(M(x) + ξ)ρn(x)r(ξ) dxdξ

2. Use mn as lhs in Eq (3) and solve for θn.
3. Perform update step (exact Bayesian step)

ρn+1(x) = cn · s(yn+1 −H(x)) · p(x , θn)

Applications: Fast but small scale such as target tracking, robotics,
finance,

How does Gaussianity come into DA

Is non–Gaussianity relevant in DA

Three ways to deal with non–Gaussianity: Parametric approaches

Three ways to deal with non–Gaussianity: Particle filters

Three ways to deal with non–Gaussianity: EnKF

Basic Monte Carlo

Basic idea of Monte Carlo
Let X ∼ p(x) (density) and φ some function, then

E(φ(X)) =

∫
φ(x)p(x) dx ∼=

1
K

K∑
k=1

φ(X (k))

where X (1),X (2), . . . are independent with distribution p(x).

Weighted Monte Carlo

Yet better idea: weighted Monte Carlo
Let X ∼ p(x) (density) and φ some function, then

E(φ(X)) =

∫
φ(x)p(x) dx

=

∫
φ(x)

p(x)

q(x)
q(x) dx

∼=
1
K

K∑
k=1

φ(X (k))
p(X (k))

q(X (k))

where X (1),X (2), . . . are independent with distribution q(x).
Heuristically the samples X (k) with corresponding weights
wk = p(X (k))

q(X (k))
for k = 1, 2, . . . represent the distribution p.

Weighted Monte Carlo

Yet better idea: weighted Monte Carlo
Let X ∼ p(x) (density) and φ some function, then

E(φ(X)) =

∫
φ(x)p(x) dx

=

∫
φ(x)

p(x)

q(x)
q(x) dx

∼=
1
K

K∑
k=1

φ(X (k))
p(X (k))

q(X (k))

where X (1),X (2), . . . are independent with distribution q(x).
Heuristically the samples X (k) with corresponding weights
wk = p(X (k))

q(X (k))
for k = 1, 2, . . . represent the distribution p.

A first particle filter
Does not quite work yet

Let X (1)
n , . . . ,X

(K)
n with weights w (1)

n , . . . ,w
(K)
n an approximation

to πn.

Algorithm I

1. Create new particles using model

X
(k)
n+1 =M(X

(k)
n) + R(k), k = 1, . . . ,K

(The new samples X (k)
n+1 with weights w (1)

n , . . . ,w
(K)
n represent

an approximation to π+n .)
2. Update weights according to update step

w
(k)
n+1 = cn+1 · w (k)

n · s(yn+1 −H(X
(k)
n+1)) k = 1, . . . ,K

(cn is a normalisation constant so that
∑

k w
(k)
n+1 = 1.)

This approach suffers from weight degeneration.

A first particle filter
Does not quite work yet

Let X (1)
n , . . . ,X

(K)
n with weights w (1)

n , . . . ,w
(K)
n an approximation

to πn.

Algorithm I

1. Create new particles using model

X
(k)
n+1 =M(X

(k)
n) + R(k), k = 1, . . . ,K

(The new samples X (k)
n+1 with weights w (1)

n , . . . ,w
(K)
n represent

an approximation to π+n .)
2. Update weights according to update step

w
(k)
n+1 = cn+1 · w (k)

n · s(yn+1 −H(X
(k)
n+1)) k = 1, . . . ,K

(cn is a normalisation constant so that
∑

k w
(k)
n+1 = 1.)

This approach suffers from weight degeneration.

A first particle filter
Does not quite work yet

Let X (1)
n , . . . ,X

(K)
n with weights w (1)

n , . . . ,w
(K)
n an approximation

to πn.

Algorithm I

1. Create new particles using model

X
(k)
n+1 =M(X

(k)
n) + R(k), k = 1, . . . ,K

(The new samples X (k)
n+1 with weights w (1)

n , . . . ,w
(K)
n represent

an approximation to π+n .)
2. Update weights according to update step

w
(k)
n+1 = cn+1 · w (k)

n · s(yn+1 −H(X
(k)
n+1)) k = 1, . . . ,K

(cn is a normalisation constant so that
∑

k w
(k)
n+1 = 1.)

This approach suffers from weight degeneration.

A resampling particle filter
which avoids degeneracy

Let X (k)
n with weights w (k)

n , k = 1, . . . ,K approximate πn.

Algorithm II

1. Each particle X
(k)
n generates multiple (or potentially no)

offspring according to weight w (k)
n

X
(l)
n+1 =M(X

(k)
n) + R(l), l = 1, . . . , Lk

so that Lk ∼= Kw
(k)
n .

2. Repeat step 1 for each k = 1, . . . ,K . New samples X (k)
n+1 with

equal weights represent an approximation to π+n .
3. Compute new weights according to update step

w
(k)
n+1 = cn+1 · s(yn+1 −H(X

(k)
n+1)) k = 1, . . . ,K

(Again, cn is a normalisation constant.)

A resampling particle filter
which avoids degeneracy

Let X (k)
n with weights w (k)

n , k = 1, . . . ,K approximate πn.

Algorithm II

1. Each particle X
(k)
n generates multiple (or potentially no)

offspring according to weight w (k)
n

X
(l)
n+1 =M(X

(k)
n) + R(l), l = 1, . . . , Lk

so that Lk ∼= Kw
(k)
n .

2. Repeat step 1 for each k = 1, . . . ,K . New samples X (k)
n+1 with

equal weights represent an approximation to π+n .
3. Compute new weights according to update step

w
(k)
n+1 = cn+1 · s(yn+1 −H(X

(k)
n+1)) k = 1, . . . ,K

(Again, cn is a normalisation constant.)

A resampling particle filter
which avoids degeneracy

Let X (k)
n with weights w (k)

n , k = 1, . . . ,K approximate πn.

Algorithm II

1. Each particle X
(k)
n generates multiple (or potentially no)

offspring according to weight w (k)
n

X
(l)
n+1 =M(X

(k)
n) + R(l), l = 1, . . . , Lk

so that Lk ∼= Kw
(k)
n .

2. Repeat step 1 for each k = 1, . . . ,K . New samples X (k)
n+1 with

equal weights represent an approximation to π+n .
3. Compute new weights according to update step

w
(k)
n+1 = cn+1 · s(yn+1 −H(X

(k)
n+1)) k = 1, . . . ,K

(Again, cn is a normalisation constant.)

How does Gaussianity come into DA

Is non–Gaussianity relevant in DA

Three ways to deal with non–Gaussianity: Parametric approaches

Three ways to deal with non–Gaussianity: Particle filters

Three ways to deal with non–Gaussianity: EnKF

Thank you!
Andrew H. Jazwinski.
Stochastic Processes and Filtering Theory, volume 64 of
Mathematics in Science and Engineering.
Academic Press, 1970.
ISBN 9780123815507.

Alan Bain and Dan Crisan.
Fundamentals of Stochastic Filtering, volume 60 of Stochastic
Modelling and Applied Probability.
Springer-Verlag, New York, first edition, 2010.

N. J. Gordon, D. J. Salmond, and A. F. M. Smith.
Novel approach to nonlinear/nongaussian bayesian state
estimation.
IEE Proceedings, Part F, 140(2), 1993.

	How does Gaussianity come into DA
	Is non–Gaussianity relevant in DA
	Three ways to deal with non–Gaussianity: Parametric approaches
	Three ways to deal with non–Gaussianity: Particle filters
	Three ways to deal with non–Gaussianity: EnKF

