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• Why data assimilation?

• What is data assimilation?

• How – is for the rest of the week!  



Why data assimilation? Key uses
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• Forecasting - Using recent observations to improve initial conditions for short-term 
predictions

• Re-analysis: Learning more about how the Earth works, by using models to 
interpret/extend different types of data

• Diagnosis, including parameter estimation: Testing and improving models by 
comparing predictions to observations

• Real-time Control: Use continually changing estimates of system state to determine 
control actions



Why data assimilation?
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• Initial conditions for a forecast

Bauer et al. (2005). A measure of forecast skill at 3, 5, 7 and 10-day ranges, 
computed over the extra-tropical northern and southern hemispheres.

• Example - Steady improvement in 
global numerical weather  
prediction skill

• Corresponding improvements in 
regional forecasts

• In large part due to improved 
initial conditions for weather 
forecasts.
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Reanalysis Example – ozone hole



Why data assimilation? Key uses

7

• Forecasting - Using recent observations to improve initial conditions for short-term 
predictions
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Parameter diagnosis example

• Estimation of key parameters during 

the COVID-19 pandemic using 

observed data and SEIR models

• Approach was used to provide 

decision-support in Norway, 

regarding lockdowns and planning 

for healthcare resource management 

(hospital beds, ventilators etc) 
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Evensen et al (2021) Doi: 10.3934/fods.2021001

https://doi.org/10.3934/fods.2021001
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Real time control example - navigation

• Kalman filters are used in navigation 

systems (e.g., aircraft, missiles…)

• Need to use good numerical 

implementations

• Failure of a Patriot Missile to track 

and intercept an Iraqi Scud missile in 

Dharan, Saudi Arabia, on February 

25, 1991, resulting in the deaths of 

28 American soldiers.

• The failure was ultimately 

attributable to poor handling of  

numerical rounding errors. 
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Poll (hands up in the room, poll via teams online)
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Which uses of data assimilation are you most interested in? (Choose as many as 

you like)

• Forecasting

• Reanalysis

• Model diagnosis (inc parameter estimation)

• Real-time control

• Anything else – please say in the room or by typing in the chat.



What is data assimilation?

• Data assimilation is the process of estimating the state of a dynamical system 

by combining observational data with an a priori estimate of the state (often from 

a numerical model forecast).

• We may also make use of other information such as

• The system dynamics

• Known physical properties

• Knowledge of uncertainties



Why not just use the observations?

• 1. We may only observe part of the state 

Surface Radiosonde



Why not just use the observations?

• 2. We may observe a nonlinear function of the state, e.g. satellite radiances.

Image from https://www.satnavi.jaxa.jp/en/satellite-knowledge/whats-eosatellite/observation/index.html



Example

u

v
ws

θ

Let the state vector consists of the E-W and N-S components of 
the wind, u and v.

Suppose we observe the wind speed ws.

Then we have ,              and𝐱 =
𝑢
𝑣

𝐲 = 𝑤𝑠

with

𝐲 = 𝐻(𝐱)

𝐻 𝐱 = 𝑢2 + 𝑣2

H is known as the observation operator.



Why not just use the observations?
• 3. We need to allow for uncertainties in the observations 

(and in the a priori estimate).



Handling the uncertainty

• We need to use probability density functions (pdfs) to represent the uncertainty.

𝒙

p(𝒙)



Bayes theorem
• We assume that we have 

• A prior distribution of the state x given by p(x)

• A vector of observations y with conditional probability p(y|x)

•Then Bayes theorem states

𝑝 𝐱 𝐲) =
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)



𝑝 𝐱 𝐲) =
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)

Posterior

Prior Likelihood

Normalising
constant



𝑝 𝐱 𝐲) =
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)



𝑝 𝐱 𝐲) =
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)

Can you explain this 
plot? 

Hint: think about 
whether you are 
more confident (less 
uncertain) in the 
observations or 
prior. 



𝑝 𝐱 𝐲) =
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)



Practical considerations
In practice the pdfs are very high dimensional (e.g. 109 in NWP). 

This means

• We cannot calculate the full pdf.

• We need to either calculate an estimator based on the pdf or generate samples 

from the pdf.



Gaussian assumption
• If we assume that the errors are Gaussian (aka multivariate normal) then the pdf is defined 

solely by the mean and covariance.

• Prior

• Likelihood

• Posterior 

𝑝 𝐱 =
1

(2𝜋)𝑛/2|𝐏|1/2
exp{ −

1

2
(𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 }

𝑝 𝐲|𝐱 =
1

(2𝜋)𝑝/2|𝐑|1/2
exp{ −

1

2
(𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))}

𝑝 𝐱 𝐲 ∝ exp{ −
1

2
{(𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 + (𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))} }



Maximum a posterior probability (MAP)
• Find the state that is equal to the mode of the posterior pdf.

• For a Gaussian case this is also equal to the mean.

x

p (x|y)

Mode = Mean



• Recall for the Gaussian case

• So the maximum probability occurs when x minimises

• In the case of H linear we have 

𝑝 𝐱 𝐲 ∝ exp{ −
1

2
{(𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 + (𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))} }

𝐽 𝐱 = (𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 + (𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))

𝐱 = 𝐱𝑏 + 𝐏𝑇𝐇𝑇(𝐇𝐏𝐇𝑇 + 𝐑)−1(𝐲 − 𝐇𝐱𝑏)

Note size of matrices!



How can we solve this in practice?

1. Variational methods – Directly minimize J.

(Ross Bannister & Amos Lawless - Wednesday)

2. Solve linear equation and approximate covariances with ensemble 

(Alison Fowler - Thursday)

3. Hybrid methods – A combination of 1 & 2 

(Ross Bannister - Friday)

4. Beyond the Gaussian assumption – and deep learning

(Jochen Broecker - Thursday)



Summary

• Data assimilation has important uses in forecasting, reanalysis, model diagnosis 

and real-time control

• Data assimilation provides the best way of using partial observational data with 

numerical models, taking into account what we know (uncertainty, physics, …).

• Bayes’ theorem is a natural way of expressing the problem in theory.

• Dealing with the problem in practice is more challenging

… This is the story of the rest of the week!



Extras
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A scalar example

• Suppose we have a background estimate of the temperature in this room Tb and a measurement of the 

temperature To. 

• We assume that these estimates are unbiased and uncorrelated.

• What is our best estimate of the true temperature?

We consider our best estimate (analysis) to be a linear combination of the background and 
measurement

𝑇𝑎 = 𝛼𝑏𝑇𝑏 + 𝛼𝑜𝑇𝑜

Then the question is how should we choose αb and αo?

We need to impose 2 conditions. 



1. We want the analysis to be unbiased.

Let 𝑇𝑎 = 𝑇𝑡 + 𝜖𝑎
𝑇𝑏 = 𝑇𝑡 + 𝜖𝑏
𝑇𝑜 = 𝑇𝑡 + 𝜖𝑜

Then

< 𝜖𝑎 >=< 𝑇𝑎 − 𝑇𝑡 >
=< 𝛼𝑏𝑇𝑏 + 𝛼𝑜𝑇𝑜 − 𝑇𝑡 >
=< 𝛼𝑏 𝑇𝑏 − 𝑇𝑡 + 𝛼𝑜 𝑇𝑜 − 𝑇𝑡 + 𝛼𝑏 + 𝛼𝑜 − 1 𝑇𝑡 >
= 𝛼𝑏 < 𝜖𝑏 > + 𝛼𝑜 < 𝜖𝑜 > + 𝛼𝑏 + 𝛼𝑜 − 1 < 𝑇𝑡 >

Hence to ensure that                      for all values of Tt we require that

so 

< 𝜖𝑎 >= 0

𝛼𝑏 + 𝛼𝑜 = 1

𝑇𝑎 = 𝛼𝑏𝑇𝑏 + (1 − 𝛼𝑏)𝑇𝑜



Let

Then

using

Then setting                    we find

2. We want the uncertainty in our analysis to be as small as possible, i.e. we 

want to minimize its variance

𝜎𝑎
2 =< 𝑇𝑎 − 𝑇𝑡

2 >
=< 𝛼𝑏𝑇𝑏 + 1 − 𝛼𝑏 𝑇𝑜 − 𝑇𝑡

2 >
=< (𝛼𝑏 𝑇𝑏 − 𝑇𝑡 + 1 − 𝛼𝑏 𝑇0 − 𝑇𝑡 )

2 >
=< 𝛼𝑏 𝜖𝑏 + 1 − 𝛼𝑏 𝜖𝑜

2 >
= 𝛼𝑏

2𝜎𝑏
2 + 1 − 𝛼𝑏

2𝜎𝑜
2

< 𝜖𝑏
2 >= 𝜎𝑏

2

< 𝜖𝑜
2 >= 𝜎𝑜

2

< 𝜖𝑎
2 >= 𝜎𝑎

2

𝑑𝜎𝑎
2

𝑑𝛼𝑏
= 0 𝛼𝑏 =

𝜎𝑜
2

𝜎𝑜
2 + 𝜎𝑏

2

< 𝜖𝑏𝜖𝑜 >= 0



• Hence we have

• This is known as the Best Linear Unbiased Estimate 

(BLUE).

• We find that

𝑇𝑎 =
𝜎𝑜
2

𝜎𝑜
2 + 𝜎𝑏

2 𝑇𝑏 +
𝜎𝑏
2

𝜎𝑜
2 + 𝜎𝑏

2 𝑇𝑜

𝜎𝑎
2 =

𝜎𝑏
2𝜎𝑜

2

𝜎𝑏
2 + 𝜎𝑜

2 < min 𝜎𝑏
2, 𝜎𝑜

2

How can we generalise this to a vector state and a vector 
of observations?
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