# An introduction to data assimilation

Amos S. Lawless Data Assimilation Research Centre University of Reading *a.s.lawless@reading.ac.uk* @amoslawless





# What is data assimilation?

Data assimilation is the process of estimating the state of a dynamical system by combining observational data with an *a priori* estimate of the state (often from a numerical model forecast).

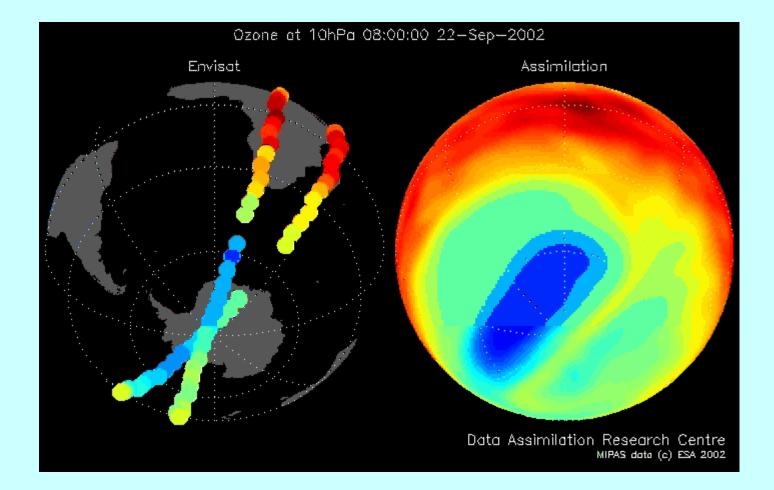
We may also make use of other information such as

- The system dynamics
- Known physical properties
- Knowledge of uncertainties





# Example – ozone hole

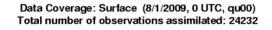






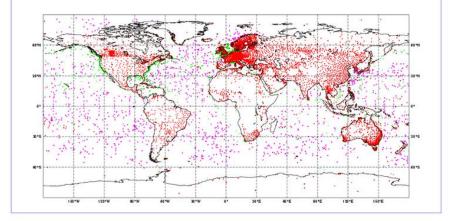
## Why not just use the observations?

### 1. We may only observe part of the state



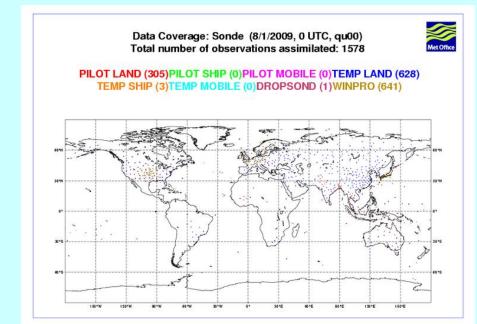


LNDSYN (16578)SHPSYN (2200)MOBSYN (0)BUOY (5454)



#### Surface





#### Radiosonde



Why not just use the observations?

2. We may observe a nonlinear function of the state, e.g. satellite radiances.





# Example

Let the state vector consists of the E-W and N-S components of the wind, u and v.

Suppose we observe the wind speed  $w_s$ .

Then we have 
$$\mathbf{x} = \begin{pmatrix} u \\ v \end{pmatrix}$$
,  $\mathbf{y} = w_s$  and  $\mathbf{y} = H(\mathbf{x})$ 

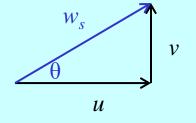
with

$$H(\mathbf{x}) = \sqrt{u^2 + v^2}$$

### H is known as the observation operator.







Why not just use the observations?

3. We need to allow for uncertainties in the observations (and in the *a priori* estimate).





# A scalar example

Suppose we have a background estimate of the temperature in this room T<sub>b</sub> and a measurement of the temperature T<sub>o</sub>.
We assume that these estimates are unbiased and uncorrelated.
What is our best estimate of the true temperature?

We consider our best estimate (analysis) to be a linear combination of the background and measurement

$$T_a = \alpha_b T_b + \alpha_o T_o$$

Then the question is how should we choose  $\alpha_b$  and  $\alpha_o$ ?

We need to impose 2 conditions.





1. We want the analysis to be unbiased.

Let

$$T_a = T_t + \epsilon_a$$
  

$$T_b = T_t + \epsilon_b$$
  

$$T_o = T_t + \epsilon_o$$

Then

$$\begin{aligned} < \epsilon_a > &= < T_a - T_t > \\ &= < \alpha_b T_b + \alpha_o T_o - T_t > \\ &= < \alpha_b (T_b - T_t) + \alpha_o (T_o - T_t) + (\alpha_b + \alpha_o - 1) T_t > \\ &= \alpha_b < \epsilon_b > + \alpha_o < \epsilon_o > + (\alpha_b + \alpha_o - 1) < T_t > \end{aligned}$$

Hence to ensure that  $\langle \epsilon_a \rangle = 0$  for all values of  $T_t$  we require that

$$\alpha_b + \alpha_o = 1$$

SO

$$T_a = \alpha_b T_b + (1 - \alpha_b) T_o$$





2. We want the uncertainty in our analysis to be as small as possible, i.e. we want to minimize its variance

$$<\epsilon_b^2 > = \sigma_b^2$$
  
$$<\epsilon_o^2 > = \sigma_o^2$$
  
$$<\epsilon_a^2 > = \sigma_a^2$$

Then

$$\alpha_b = \frac{\sigma_o^2}{\sigma_o^2 + \sigma_b^2}$$





Hence we have

$$T_a = \frac{\sigma_o^2}{\sigma_o^2 + \sigma_b^2} T_b + \frac{\sigma_b^2}{\sigma_o^2 + \sigma_b^2} T_o$$

This is known as the Best Linear Unbiased Estimate (BLUE).

We find that

$$\sigma_a^2 = \frac{\sigma_b^2 \sigma_o^2}{\sigma_b^2 + \sigma_o^2} < \min\{\sigma_b^2, \sigma_o^2\}$$

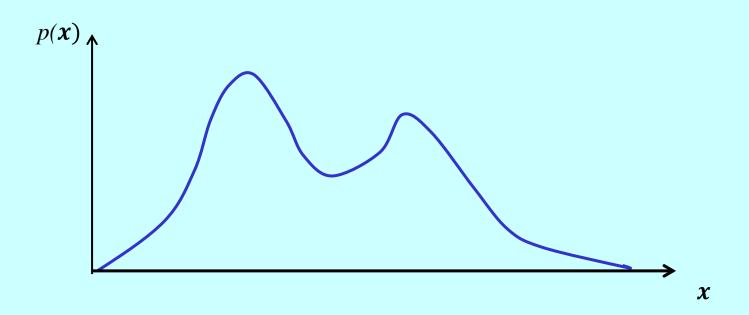
How can we generalise this to a vector state and a vector of observations?





# More general problem

In order to generalise the problem we need to use probability distribution functions (pdf's) to represent the uncertainty.







# Bayes theorem

We assume that we have

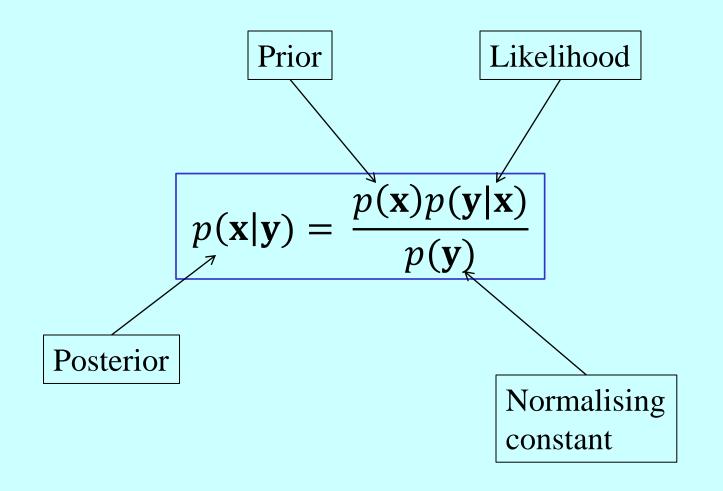
- A prior distribution of the state  $\mathbf{x}$  given by  $p(\mathbf{x})$
- A vector of observations **y** with conditional probability  $p(\mathbf{y}|\mathbf{x})$

Then Bayes theorem states

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y})}$$



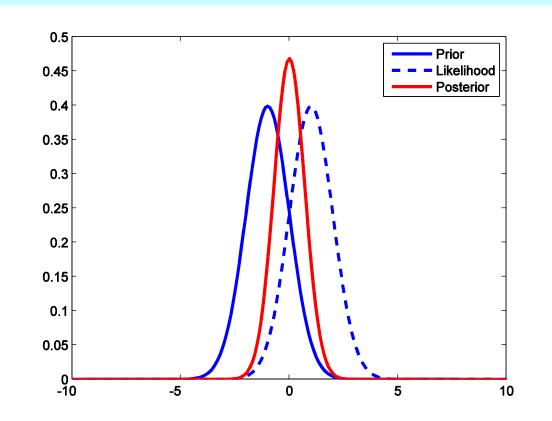








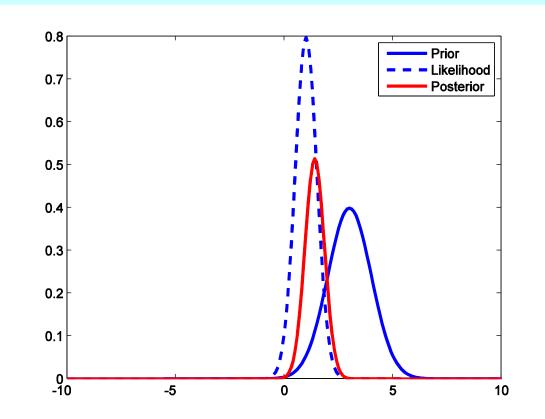
$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y})}$$







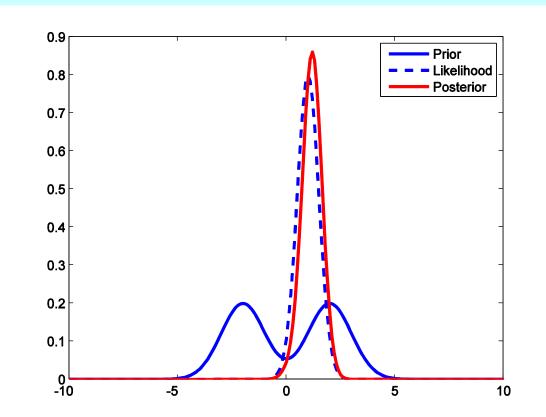
$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y})}$$







$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y})}$$







But ... In practice the pdf's are very high dimensional (e.g.  $10^9$  in NWP).

This means

- We cannot calculate the full pdf.
- We need to either calculate an estimator based on the pdf or generate samples from the pdf.





# Gaussian assumption

If we assume that the errors are Gaussian then the pdf is defined solely by the mean and covariance.

Prior

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\mathbf{P}|^{1/2}} \exp\{-\frac{1}{2} (\mathbf{x} - \mathbf{x}^b)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}^b)\}$$

Likelihood

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{R}|^{1/2}} \exp\{-\frac{1}{2} (\mathbf{y} - H(\mathbf{x}))^T \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))\}$$

Posterior

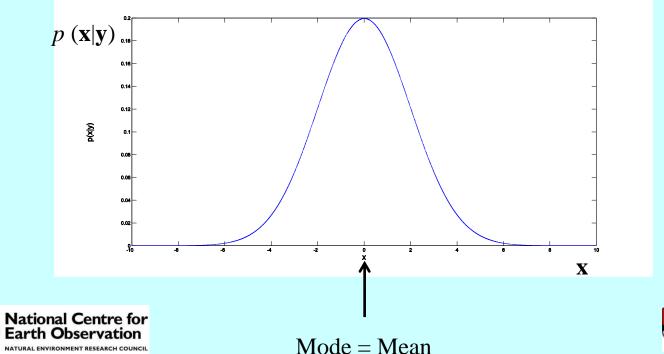
$$p(\mathbf{x}|\mathbf{y}) \propto \exp\{-\frac{1}{2}\{(\mathbf{x}-\mathbf{x}^b)^T \mathbf{P}^{-1}(\mathbf{x}-\mathbf{x}^b) + (\mathbf{y}-H(\mathbf{x}))^T \mathbf{R}^{-1}(\mathbf{y}-H(\mathbf{x}))\}\}$$





# Maximum a posterior probability (MAP)

Find the state that is equal to the mode of the posterior pdf. For a Gaussian case this is also equal to the mean.





Recall for the Gaussian case

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\{-\frac{1}{2}\{(\mathbf{x}-\mathbf{x}^b)^T \mathbf{P}^{-1}(\mathbf{x}-\mathbf{x}^b) + (\mathbf{y}-H(\mathbf{x}))^T \mathbf{R}^{-1}(\mathbf{y}-H(\mathbf{x}))\}\}$$

So the maximum probability occurs when x minimises

$$J(\mathbf{x}) = (\mathbf{x} - \mathbf{x}^b)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}^b) + (\mathbf{y} - H(\mathbf{x}))^T \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

In the case of *H* linear we have

$$\mathbf{x} = \mathbf{x}^b + \mathbf{P}^T \mathbf{H}^T (\mathbf{H} \mathbf{P} \mathbf{H}^T + \mathbf{R})^{-1} (\mathbf{y} - \mathbf{H} \mathbf{x}^b)$$

Note size of matrices!





How can we solve this in practice?

- Variational methods Directly minimize J. (Ross Bannister & Amos Lawless - Today)
- Solve linear equation and approximate covariances with ensemble (Alison Fowler - Wednesday)
- 3. Hybrid methods A combination of 1 & 2 (Javier Amezcua - Thursday)
- 4. Particle filters Use a weighted sample of states to sample the true posterior pdf p(x|y)
  (Peter Jan van Leeuwen Thursday/ Friday)





# Summary

- Data assimilation provides the best way of using data with numerical models, taking into account what we know (uncertainty, physics, ...).
- Bayes' theorem is a natural way of expressing the problem in theory.
- Dealing with the problem in practice is more challenging ... This is the story of the rest of the week!



