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What is data assimilation?

Data assimilation is the process of estimating the state of a 

dynamical system by combining observational data with an 

a priori estimate of the state (often from a numerical 

model forecast).

We may also make use of other information such as

• The system dynamics

• Known physical properties

• Knowledge of uncertainties



Example – ozone hole



Why not just use the observations?

1. We may only observe part of the state 

Surface Radiosonde



Why not just use the observations?

2. We may observe a nonlinear function of the state, e.g. 

satellite radiances.



Example

u

v

ws

θ

Let the state vector consists of the E-W 

and N-S components of the wind, u and 

v.

Suppose we observe the wind speed ws.

Then we have                  ,              and𝐱 =
𝑢
𝑣

𝐲 = 𝑤𝑠

with

𝐲 = 𝐻(𝐱)

𝐻 𝐱 = 𝑢2 + 𝑣2

H is known as the observation operator.



Why not just use the observations?

3. We need to allow for uncertainties in the observations 

(and in the a priori estimate).



A scalar example

Suppose we have a background estimate of the temperature in this room Tb and a 

measurement of the temperature To. 

We assume that these estimates are unbiased and uncorrelated.

What is our best estimate of the true temperature?

We consider our best estimate (analysis) to be a linear combination of the 

background and measurement

𝑇𝑎 = 𝛼𝑏𝑇𝑏 + 𝛼𝑜𝑇𝑜

Then the question is how should we choose αb and αo?

We need to impose 2 conditions. 



1. We want the analysis to be unbiased.

Let

𝑇𝑎 = 𝑇𝑡 + 𝜖𝑎
𝑇𝑏 = 𝑇𝑡 + 𝜖𝑏
𝑇𝑜 = 𝑇𝑡 + 𝜖𝑜

Then

< 𝜖𝑎 >=< 𝑇𝑎 − 𝑇𝑡 >
= < 𝛼𝑏𝑇𝑏 + 𝛼𝑜𝑇𝑜 − 𝑇𝑡 >
= < 𝛼𝑏 𝑇𝑏 − 𝑇𝑡 + 𝛼𝑜 𝑇𝑜 − 𝑇𝑡 + 𝛼𝑏 + 𝛼𝑜 − 1 𝑇𝑡 >
= 𝛼𝑏 < 𝜖𝑏 > + 𝛼𝑜 < 𝜖𝑜 > + 𝛼𝑏 + 𝛼𝑜 − 1 < 𝑇𝑡 >

Hence to ensure that                      for all values of Tt we require that

so 

< 𝜖𝑎 >= 0

𝛼𝑏 + 𝛼𝑜 = 1

𝑇𝑎 = 𝛼𝑏𝑇𝑏 + (1 − 𝛼𝑏)𝑇𝑜
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Then setting                    we find

2. We want the uncertainty in our analysis to be as small as possible, i.e. we want 

to minimize its variance
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Hence we have

This is known as the Best Linear Unbiased Estimate (BLUE).

We find that
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How can we generalise this to a vector state and a vector of 

observations?



More general problem

In order to generalise the problem we need to use probability 

distribution functions (pdf’s) to represent the uncertainty.

𝒙

p(𝒙)



Bayes theorem

We assume that we have 

• A prior distribution of the state x given by p(x)

• A vector of observations y with conditional probability 

p(y|x)

Then Bayes theorem states

𝑝 𝐱 𝐲) =
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)



𝑝 𝐱 𝐲) =
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)

Posterior

Prior Likelihood

Normalising

constant



𝑝 𝐱 𝐲) =
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)



𝑝 𝐱 𝐲) =
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)



𝑝 𝐱 𝐲) =
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)



But … In practice the pdf’s are very high dimensional (e.g. 

109 in NWP). 

This means

- We cannot calculate the full pdf.

- We need to either calculate an estimator based on the pdf or 

generate samples from the pdf.



Gaussian assumption

If we assume that the errors are Gaussian then the pdf is defined solely by 

the mean and covariance.

Prior

Likelihood

Posterior 

𝑝 𝐱 =
1

(2𝜋)𝑛/2|𝐏|1/2
exp{ −

1

2
(𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 }

𝑝 𝐲|𝐱 =
1

(2𝜋)𝑝/2|𝐑|1/2
exp{ −

1

2
(𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))}

𝑝 𝐱 𝐲 ∝ exp{ −
1

2
{(𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 + (𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))} }



Maximum a posterior probability (MAP)

Find the state that is equal to the mode of the posterior pdf.

For a Gaussian case this is also equal to the mean.

x

p (x|y)

Mode = Mean



Recall for the Gaussian case

So the maximum probability occurs when x minimises

In the case of H linear we have 

𝑝 𝐱 𝐲 ∝ exp{ −
1

2
{(𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 + (𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))} }

𝐽 𝐱 = (𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 + (𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))

𝐱 = 𝐱𝑏 + 𝐏𝑇𝐇𝑇(𝐇𝐏𝐇𝑇 + 𝐑)−1(𝐲 − 𝐇𝐱𝑏)

Note size of matrices!



How can we solve this in practice?

1. Variational methods – Directly minimize J.

(Ross Bannister & Amos Lawless - Today)

2. Solve linear equation and approximate covariances with 

ensemble 

(Alison Fowler - Wednesday)

3. Hybrid methods – A combination of 1 & 2 

(Javier Amezcua - Thursday)

4. Particle filters - Use a weighted sample of states to sample 

the true posterior pdf  p(x|y) 

(Peter Jan van Leeuwen - Thursday/ Friday)



Summary

• Data assimilation provides the best way of using data with 

numerical models, taking into account what we know 

(uncertainty, physics, …).

• Bayes’ theorem is a natural way of expressing the problem 

in theory.

• Dealing with the problem in practice is more challenging

… This is the story of the rest of the week!


