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Dynamical system

Consider ordinary differential equation

u̇t = f (t, ut)

on some space (E , (., ..)), where
I time t ∈ R≥0,
I solution u : R≥0 → E , t → ut ,
I initial value u0 = ξ ∈ E .

We assume to have solutions for every initial value ξ ∈ E .
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Bellmann–Grönwall lemma

Suppose α : [0,T ]→ R≥0 satisfies

α̇t ≤ λαt + K

for all t ∈ [0,T ], with λ ∈ R,K ≥ 0. Then

αt ≤ eλtα0 +
K

λ
(eλt − 1)

Note that negative λ is permitted! In that case we have
asymptotically αt

∼= K
|λ| .



Bellmann–Grönwall lemma

Suppose α : [0,T ]→ R≥0 satisfies

α̇t ≤ λαt + K

for all t ∈ [0,T ], with λ ∈ R,K ≥ 0. Then

αt ≤ eλtα0 +
K

λ
(eλt − 1)

Note that negative λ is permitted! In that case we have
asymptotically αt

∼= K
|λ| .



Bellmann–Grönwall lemma

Suppose α : [0,T ]→ R≥0 satisfies

α̇t ≤ λαt + K

for all t ∈ [0,T ], with λ ∈ R,K ≥ 0. Then

αt ≤ eλtα0 +
K

λ
(eλt − 1)

Note that negative λ is permitted! In that case we have
asymptotically αt

∼= K
|λ| .



Application 1 of Bellmann–Grönwall
Sort of energy balance

Typical GFD models look like this:

u̇t = B(u)︸ ︷︷ ︸
Advection

+ Au︸︷︷︸
Dissipation

+ f︸︷︷︸
Forcing

with
B(u) Nonlinear advection, often bilinear, with the property

(u,B(u)) = 0,
Au Linear dissipation (viscosity) Au with the property

(u,Au) ≤ −λ|u|2,
f Forcing term, bounded |f | ≤ f0 (may even depend on

u).
Lots of models fit that bill: Navier–Stokes, Lorenz’XX, QG, . . .
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Energy balance
continued

We interprete 1
2 |u|

2 as energy. Calculate d
dt

1
2 |u|

2 = (u, u̇) and use
equation:

d
dt

1
2
|u|2 = (u,B(u)) + (u,Au) + (u, f ) ≤ −λ|u|2 + a

2
|u|2 + 1

2a
f 2
0 .

(holds for arbitrary a). Take a = λ to find

d
dt

1
2
|u|2 ≤ −λ

2
|u|2 + 1

2λ
f 2
0 .

Finally, Bellmann–Grönwall gives

|u|2 ≤ e−λt |u|2 + f 2
0
λ2 (1− e−λt)→ f 2

0
λ2 .

If solution exists at all, it remains bounded!
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More applications

Mathematical folklore theorem: Existence of solutions
Given a problem P, suppose we can show that any would–be
solution u is bounded (in a suitable sense), then P has a solution.
We have just done the calculations!

Other application: uniqueness of solutions
Suppose that f satisfies

|f (u)− f (v)| ≤ λ|u − v | for all u, v ∈ E .

Then for two solutions u, v compute energy of u − v :

d
dt

1
2
|u − v |2 = (u − v , f (u)− f (v)) ≤ λ|u − v |2

so BG gives |u − v |2 ≤ e2λt |u0 − v0|2.

Solutions for same initial conditions agree!
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A data assimilation problem

Suppose model has the form

Żt = f (Zt) with Z = (X ,Y )

Where X hidden, Y observed. Try data assimilation with

żt = f (zt) +
[

0
k(Yt − yt)

]
with z = (x , y).
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A data assimilation problem
cont.

The error e = (ex , ey ) = (X − x ,Y − y) satisfies

1
2

d
dt
|e|2t = (e, f (Zt)− f (zt))− k |ey |2.

Theorem
Suppose that there are α, β, γ > 0 so that

(e, f (Z)− f (z)) ≤ −α|ex |2 + β|ey |2 + γ|ex ||ey |.

(Note the sign of α). Then |e|2 → 0, provided k is set large enough
The proof is Exercise 1.
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Local instabilities

Consider two solutions

u̇t = f (ut), v̇t = f (vt),

with “nearby” initial conditions u0 = v0 + h. Can we describe
et := ut − vt by linearisation

ėt ∼= Df (ut)et , e0 = h?

Works well only if (e,Df (ut)e) ≤ −λ|e|2 for all t along solution ut .
Otherwise merely indicates potentially more complex dynamics.
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Example: Lorenz’63

Consider

f1(u) = α(u2 − u1)

f2(u) = −αu1 − u1u3 − u2

f3(u) = u1u2 − γ(u3 − β)

with α = 10, β = 38, γ = 8
3 . The system exhibits

Energy balance Solutions are asymptotically confined to some large
energy sphere |u|2 ≤ K , but . . .

Local instability There are three fixed points (f (u) = 0 has three
roots), all of which have at least one unstable
direction (Df (u) has at least one positive eigenvalue.)
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Probabilistic approach
on the level of distributions rather than solutions

Switch to discrete time (for simplicity)

un+1 = f (un).

Suppose un
D∼ pn(x)dx . Then un+1

D∼ Fpn(x)dx where

Fφ(x) :=
∑

{y ;f (y)=x}

φ(y)

|Df (y)|
.

is the Transfer operator. (The proof is Exercise 2; need to assume
that every image point x has finite number of preimages y , and
|Df (y)| 6= 0.)
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Application to doubling map
Very chaotic!

Define f through
un+1 = 2un mod 1.

Can be interpreted as smooth map on unit circle “doubling the
angle”:

f

Fφ(x) =
1
2
φ(

x

2
) +

1
2
φ(

x + 1
2

)
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F has smoothing effect!
Thanks to chaos

Assume density p satisfies

p(x)

p(y)
≤ eK |x−y |

for all x , y ∈ [0, 1]. Smaller K ⇔ density is smoother.

Fp(x)

Fp(y)
=

1
2p(

x
2 ) +

1
2p(

x+1
2 )

1
2p(

y
2 ) +

1
2p(

y+1
2 )

≤
p( y2 )e

K | x2−
y
2 | + p( y+1

2 )eK |
x+1
2 −

y+1
2 |

p( y2 ) + p( y+1
2 )

≤ e
K
2 |x−y |.

Application of F renders densities smoother!
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1
2p(

x+1
2 )

1
2p(

y
2 ) +

1
2p(

y+1
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p( y2 )e

K | x2−
y
2 | + p( y+1

2 )eK |
x+1
2 −

y+1
2 |

p( y2 ) + p( y+1
2 )

≤ e
K
2 |x−y |.

Application of F renders densities smoother!



Exercise 3: application to filtering
Consider

un = 2un−1 mod 1 (dynamics), yn = un + σrn (observations).

with {r1, r2, . . .} iid standard normal random variables. The density
pn(x) := p(un = x |y1:n) satisfies the following recursion:

pn(x) = cg(x , yn)Fpn−1(x),

where g(x , y) := exp
(
− (x−y)2

2σ2

)
and c is a normalising constant.

1. Show that the smoothness parameter Kn of pn satisfies

Kn ≤
1
2
Kn−1 + L(yn)

for some function L.
2. Find a lower bound on the variance of pn in terms of the

smoothness parameter Kn.
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