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Reminder: what is data assimilation?

• To blend information from models and observations.
• State/parameter estimation (some kind of `optimal' blending).
• The posterior PDF or certain moments of it.

State vector and observation vectors



Probability Density Functions

∫ b
a p(x)dx is the probability that X lies between values a and b.

Form of a Gaussian:

x∼ N(xb,B)

p(x) =
1√

(2π)n det(B)
exp−1

2

(
x−xb)T

B−1
(
x−xb)



Covariance matrices

A covariance matrix describes the second moment of a PDF.

x=


x1
x2
...
xn

 , x′ = x−〈x〉

cov(x′) =
〈
x′x′T

〉
=


〈
x ′21
〉
〈x ′1x ′2〉 · · · 〈x ′1x ′n〉

〈x ′2x ′1〉
〈
x ′22
〉
· · ·

...
...

...
. . .

...
〈x ′nx ′1〉 · · · · · ·

〈
x ′2n
〉





Bayes' Theorem � the foundation of DA

p(x|y) =
p(x)×p(y|x)

p(y)

posterior dist. =
prior dist.× likelihood
normalizing constant

• Prior distribution: PDF of the state before observations are considered
(e.g. PDF of model forecast).

• Likelihood: PDF of observations given that the state is x.

• Posterior distribution: PDF of the state given the observations.



Association between non-linearity and non-Gaussianity

Example with observation operator (observation of a scalar, non-linear H )

ym = H (x) = H (xR +δx)

ym ≈ H (xR)+Hδx

Suppose the likelihood term has the form:

p(y |x) ∝ exp− (y −H (x))2

2σ2
y

∝ exp(non-quadratic in x)

linearize . . .

p(y |xR,δx)∼ exp−
(
y −H (xR)−Hδx

)
2

2σ2
y

∝ exp(quadratic in δx)

Non-linearity leads to non-Gaussianity; Gaussianity can be approximately
preserved if non-linearity is weak.



Association between non-linearity and non-Gaussianity
(cont)

A non-linear forecast model x0 = M (x−T )

Again non-linearity leads to non-Gaussianity.



Confused? Overwhelmed?

In realistic practical applications we cannot represent the PDFs explicitly, so
we need approximate DA methods

• Kalman �lter (+ extended KF)

• Variational data assimilation

• Ensemble Kalman �lters

• En-Var �lters

• Hybrid methods

• Particle �lters
Which method to use for
your application?



Data insertion/nudging

Data insertion
Overwrite model values with observations, xi → y .
Dangerous � e.g. sudden jump in value.

Nudging

Introduce observations gradually, e.g. for one observation of gridpoint i :

∂x

∂ t
=m(x)− fi

(xi −y)

τ

fi structure function associated with obs position, τ timescale

• No account of uncertainty of model or obs.

• How to treat indirect observations?

• No information in observation voids



The Kalman �lter (and extended Kalman �lter)
.Propagates the mean state and its error covariance sequentially; .
forecast/analysis is mean of the prior/posterior; . the analysis is the state
that has minimum variance; . strong theoretical basis.

forecast state: xf
t = Mt(x

a
t−1)

forecast covariance: Pf
t = MtP

a
t−1M

T
t +Qt

analysis state: xa
t = xf

t +Kt

(
yt −Ht(x

f
t)
)

analysis covariances: Pa
t = (I−KtHt)P

f
t

Kalman gain: Kt = Pf
tH

T
t

(
HtP

f
tH

T
t +Rt

)−1
• Assumes Gaussian prior and observations.

• Assumes M and H are linear (weak non-linearity is allowed in the
extended KF).

• Unfeasible when n is large as matrices are treated explicitly.



Traditional variational data assimilation

.Forecast is mean of the prior, analysis is mode of the posterior (minimises a
cost fn); .OK when n is large; . iterative method of solution; . can add
extra terms (e.g. weak constraint for model error); . strong theoretical basis;
.M and H can be non-linear; . usually incremental formulation used

forecast state: xf
0 = M−T (xa

−T )

analysis state: xa
0

= xf
0+ arg min

δx0

J[δx0]

J[δx0] =
1

2
δxT

0B
−1
0

δx0+
1

2

T

∑
t=0

(
yt −Ht(x

f
t)−Htδxt

)T
R−1t (•)

subject to δxt+1 =Mt (δxt)

xf
t+1 = Mt

(
xf
t

)
Flavours: weak-constraint 4DVar (additional control vectors);
strong-constraint 4DVar (as above); 3DFGAT (set Mt = I); 3DVar (use
persistence model in the cost function, Mt (xt) = xt).



Traditional variational data assimilation (cont)

grad: ∇δx0J[δx0] = B−10 δx0−
T

∑
t=0

MT
0 · · ·MT

tH
T
tR
−1
t

(
yt −Ht(x

f
t)−Htδxt

)

• Assumes Gaussian prior and observations.

• Mode of posterior is equivalent to mean of KF if B0 = Pf
t , all obs at

same time and Ht linear.

• Analysis is sub-optimal if M or H is non-linear; can end up in a local
minimum.

• B0 is modelled/parametrised (e.g. need control variable transforms) �
not properly �ow-dependent and is too simple.

• Need tangent linear of Mt and Ht and their adjoints (for gradient
calculation).

• Usually no second moment of analysis found.

• Di�cult to develop (time and expertise).

• Di�cult to parallelize.



Ensemble Kalman �lters

.Based on KF equations; . propagates N-member ensemble of forecasts to
estimate Pf

t ; .M and H can be non-linear; .works when N � n (but see
below); . avoids linear/adjoint coding; . easy to code; . parallelization is
scalable with N.

x
(i),f
t = Mt(x

(i),a
t−1) + β

(i)

n×N : X′ft =
(
x

(1),f
t − x̄f

t · · · x
(N),f
t − x̄f

t

)
p×N : Y′t =

(
Ht(x

(1),f
t )−H (x̄f

t) · · · Ht(x
(N),f
t )−Ht(x̄

f
t)
)

n×N : X′at =
(
x

(1),a
t − x̄a

t · · · x
(N),a
t − x̄a

t

)
Stochastic EnKF Ensemble Transform KF

x̄a
t = x̄f

t +Kt

(
yt −Ht(x̄

f
t)
)

x
(i)a
t = x

(i)f
t +Kt

(
yt + ε

(i)
y −Ht(x

(i)f
t )

)
X′at = X′ft Tt

Kt = X′ft Y
′T
t

(
Y′tY

′
t

T + (N−1)Rt

)−1
Kt = X′ft TtT

T
t Y
′
t

T
R−1t

Tt =
(
I+Y′t

T
R−1t Y′t

)−1/2



Ensemble Kalman �lters (cont)

Flavours

• Stochastic EnKF

• Singular Evolutive Interpolated Kalman Filter (SEIK)

• Ensemble Transform Kalman Filter (ETKF)

• Ensemble Adjustment Kalman Filter (EAKF)

• Ensemble Square Root Filter (EnSRF)

• etc.



Ensemble Kalman �lters (cont)

• Assumes Gaussian prior and observations.

• Pf
t-matrix = X′ftX

′f
t

T
/(N−1), rank de�cient (N < n)

• Sampling noise (e.g. spurious covariances)
• Needs localization to �x (how depends on the �avour)

• Localization can be applied in model space: Pf
t ◦Ω (not e�cient if done

explicitly)
• Localization can be applied in `observation' space, e.g.

Kt ≈ ρ ◦
[
X′ft Y

′T
t

](
ρ ◦
[
Y′tY

′T
t

]
+(N−1)Rt

)−1
• Localization can be applied by performing a separate analysis for each

grid point and using observations in the locality only (as in LETKF)
• Localization can disturb physical properties of ensemble (e.g. balance).

• Filter divergence (ensemble under-spread)
• Needs in�ation (additive, multiplicative, relaxation to prior, . . . )



EnVar (ensemble-variational)
.As variational DA, but where B→ X′f0X

′f
0

T
/(N−1) from a parallel

ensemble; . has the bene�ts of variational DA but with a �ow-dependent
B-matrix; . analysis increment is a linear combination of forecast ensemble
perturbations. E.g. En4DVar:

xa
0

= xf
0+X

′f
δvens/

√
N−1 δvens is an N-element vector

J[δvens] =
1

2
δvT

ensδvens +
1

2

T

∑
t=0

(yt −Ht(xt))
T
R−1t (•)

subject to δxt+1 =Mt (δxt) and δx0 = X′fδvens/
√
N−1

xf
t+1 = Mt

(
xf
t

)
• Assumes Gaussian prior and observations.

• Pf-matrix = X′f
0
X′f
0

T
/(N−1), rank de�cient (N < n).

• Needs localization and a separate parallel ensemble.

• EnVar schemes can get very complex with localization scheme.

En4DVar still needs the linear model and adjoint. 4DEnVar uses 4D ensembles and avoids
these, but localization becomes very di�cult. Worth considering for very large ensemble.



Hybrid methods

As variational DA, but where

B0→ (1−β )B0+βX′f0X
′f
0

T
/(N−1)

(new matrix is full rank and �ow-dependent).



Hybrid methods (cont)
Traditional 4DVar with control variable transform:

J[δvB] =
1

2
δvT

BδvB +
1

2

T

∑
t=0

(
yt −Ht(x

f
t)−Htδxt

)T
R−1t (•)

subject to δxt+1 =Mt (δxt) , δx0 =UδvB

Hybrid-En4DVar:

J[δvB,δvens] =
1

2
δvT

BδvB +
1

2
δvT

ensδvens +

1

2

T

∑
t=0

(
yt −Ht(x

f
t)−Htδxt

)T
R−1t (•)

subject to δxt+1 =Mt (δxt) , δx0 =
√
1−βUδvB +

√
βX′fδvens/√

N−1

• Assumes Gaussian prior and observations.

• Still needs localization and a separate parallel ensemble.

• Can get very complex to develop.



Particle �lters

.Non-Gaussian; . fundamentally no need for covariance matrices; .
approximates prior and posterior PDFs as summation of `delta-functions'.
Standard PF:

prior PDF: p(x) =
N

∑
i=1

wprior
i δ (x−xi ),

N

∑
i=1

wprior
i = 1/N

posterior PDF: p(x|y) =
N

∑
i=1

wpost
i δ (x−xi ), wpost

i =
wprior
i p(y|xi )

∑
N
i=1

wprior
i p(y|xi )



Particle �lters (cont)

Standard PF is degenerate (weight tends to accumulate for one particle)

• `Resampling' � still a problem for lots of obs.
• `Localized PF' � weights become a function of position.

• `Proposal density' � freedom to sample particles from another distribution
to try to even out the weights.

• Localized adaptive PF (Potthast et al. 2019).

• Proposal density

• Sample particles from a chosen proposal density (to be closer to the
observations).

• Adjust the weights to compensate.

• Particle �ow �lter.



Which method is right for you?
• Do you have PDFs that are highly non-Gaussian for high-probability regions (e.g.

multi-modal)? Yes: PF. No: KF, Var, EnKF, EnVar, Hybrid.
• Is n large (e.g. n > 100)? Yes: not the KF!
• Is only a �rst moment of the posterior required? Yes: Var, EnVar, Hybrid. No: EnKF, PF.
• Is the prior error cov matrix quasi-static? Yes: Var. No: KF, EnKF, EnVar, Hybrid, PF.
• Are linearized/adjoint models available? Yes: KF, 4DVar, En4DVar, Hybrid-En4DVar. No:

3DVar (still need linear/adjoint of H ), EnKF, 4DEnVar, Hybrid-4DEnVar, PF.
• How many model runs can you a�ord per cycle? 1: Hmm. Dozens: Var, EnKF (loc), EnVar

(loc), Hybrid (loc), PF. Large number: (less need for loc).
• Is easy parallelization crucial? Yes: EnKF,PF. No: KF, Var, EnVar, Hybrid.
• Do you already have a model, but want minimal development time of the DA system? Yes:

EnKF via PDAF/DART/DAPPER/JEDI.

PF=Particle Filter (various �avours); KF=Kalman Filter; EnVar=Ensemble-Variational (includes

En4DVar and 4DEnVar); Var=Variational (includes 4DVar, 3DVar); loc=localization required;

hybrid (includes hybrid-En4DVar, hybrid-4DEnVar), PDAF=Parallel Data Assimilation Framework

(pdaf.awi.de/trac/wiki); DART=Data Assimilation Research Testbed

(www.image.ucar.edu/DAReS/DART), DAPPER=Data assimilation package in Python for

experimental research (www.nersc.no/news/data-assimilation-package-python-experimental-

research-dapper), JEDI=Joint E�ort for Data assimilation Integration

(www.jcsda.org/jcsda-project-jedi). Existing and new methods are constantly being developed.


